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Abstract: The surface chemical compositions of powdered cellulose have been characterized utilizing
X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier transform infrared
spectroscopy (ATR-FTIR) techniques. Powdered cellulose was prepared by milling of bleached
softwood pulp residues through a lab-scale planetary ball mill. Here we show how milling a mixture
of the powdered cellulose with potassium hydroxide determines the surface chemical compositions
of the obtained powdered cellulose, in a completely dry condition. The XPS analysis indicated the
presence of new carbon and oxygen atoms as C4, C5, and O3. In turn, the FTIR analysis showed the
stretching vibrations of the carbon–carbon double bond. The results suggest the formation of active
oxygenated species on powdered cellulose surfaces.
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1. Introduction

The activation of reducing sugars in aqueous solution containing a base catalyst has been studied
by carbohydrates chemists substantially to show that reducing sugars may yield complex mixtures of
products which arise from a series of mutarotation, enolization, fragmentation, and benzylic acid-type
reactions [1]. Mutarotation is the conversion of one anomeric form of a sugar (α or β) to another
one (Scheme 1a). It requires the formation of a free aldehyde in two anomeric forms (α and β) in a
sugar [2]. This phenomenon has been studied so far mainly in solution [3–9]. There is no mutarotation
in the crystalline form of glucose and it is dependent on the physical state [10]. This is due to the
fact that hydrogen atoms of both glucose anomeric forms implied in the mutarotation process are
involved in hydrogen bonds and this prevents the mutarotation from occurring in the crystalline
state [11]. To date, however, very few investigations have been performed in the dry state. It has been
recently shown that the amorphization of glucose by milling leads to the formation of anomerically
pure amorphous compounds [12,13]. This solid-state route to the amorphous state was found to be
free of mutarotation, contrary to the usual quenching of the liquid which provides unavoidably a
mixture of two monomers [14,15]. Milling methods such as ball milling are the typical mechanical
techniques which have been studied for a long time to address important hurdles in cellulosic materials
processing [16,17]. Ball milling does not suffer from equipment corrosion and environmental toxicity,
making it a great alternative to break the robust crystalline structure of cellulose and decrease its chain
length in a sustainable way [18]. The glucose C-1 end has reducing properties, while the glucose end
group with a free C-4 hydroxyl group is non-reducing [1]. In cellulose, anomeric carbons (C-1) are tied
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up in the glycosidic bonds and thus they have no reducing properties. The breakage of cellulose chains
during ball milling and mechanical cleavage of glycosidic bonds are correlated to the emergence of
free reducing ends in powdered cellulose [19,20].
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Scheme 1. Activation of reducing sugars by alkali [1,2,4,6,21].

The activation of a reducing end begins with the formation of an acyclic intermediate by the
mutarotation reaction, followed by the formation of an enediol through enolization (Scheme 1b). By the
removal of the hydrogen atom on the carbon atom 2 (α-position of a carbonyl group) through enolization,
d-glucose forms cis or trans-enediol [21,22]. The deprotonation inα-position (acidic proton) of a carbonyl
group induced by treatment with strong alkali is the most important and most frequently applied
procedure for the activation of reducing ends through the formation of enolates in solution [23,24].
The efficacy of alkali to abstract the proton atom in dry state has also been explored. In the synthesis
of mono-2-tosyl-cyclodextrins in dry condition and at room temperature using a lab-scale ball
mill, no reaction happened even after 1.5 h without any base [25]. To tackle the selective C2-OH
monotosylation of cyclodextrins, alkali metal hydroxides KOH, NaOH, and LiOH, and to a lesser extent
carbonate bases K2CO3, RB2CO3, and Cs2CO3, have been shown to be effective in the monotosylation
of cyclodextrins [25]. However, nothing has been described so far on the possibility of the activation of
powdered cellulose by alkali in dry condition through ball milling.

In the present work, we characterized the surface chemical compositions of powdered cellulose
samples using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier
transform infrared spectroscopy (ATR-FTIR) techniques. Powdered cellulose samples were prepared
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by milling of bleached softwood pulp residues through a lab-scale planetary ball mill. The obtained
powdered cellulose samples were then co-milled with potassium hydroxide as an alkali metal hydroxide,
in a completely dry environment. XPS and FTIR are among the techniques best suited for studying the
surface of lignocellulosic fibers [26]. The knowledge obtained on the surface chemical compositions
of powdered cellulose will aid to establish processes to prepare functionalized cellulose for more
demanding applications.

2. Materials and Methods

2.1. Materials

Bleached softwood fluff pulp, which is cellulose pulp (CP), was provided by the Weyerhaeuser
company (Federal way, WA, USA). Our previous composition analysis also showed negligible lignin in
the CP. The CP was stored in ambient conditions. Potassium hydroxide (KOH, ≥85%) was purchased
from Sigma-Aldrich (Milwaukee, WI, USA). The chemical was used without further purification.

2.2. Preparation of Powdered Cellulose through Ball Milling

CP pulverization was conducted at ambient pressure and at room temperature using a planetary
ball mill (PQ-N04 Gear Drive 4-Station, Across International), equipped with two 100 mL and two
50 mL steel jars. Each 100 mL jar was charged with 100 steel balls (Ø 6mm) and 16 steel balls (Ø 10mm).
In addition, 50 mL steel jars were charged with 35 steel balls (Ø 6 mm) and 10 steel balls (Ø 10mm).
The CP was weighed and added to each jar at a ball–cellulose charge ratio of 40:1 and subsequently
ball milled at 30 min and labeled S2. The milling frequency throughout the experiment was 50 Hz,
in single-direction mode and at a rotation speed of 550 rpm. The limited temperature increase resulting
from this process was deemed to have a negligible influence on the powdered cellulose [20].

2.3. Co-Milling Powdered Cellulose with Potassium Hydroxide through Ball Milling

Powdered cellulose (S2) was co-milled with potassium hydroxide at room temperature and in
dry environment using a planetary ball mill (PQ-N04 Gear Drive 4-Station, Across International)
equipped with two 100 mL zirconia jars. Each jar was charged with 10 zirconia balls (Ø 10 mm)
and 10 zirconia balls (Ø 6mm). The obtained powdered cellulose (S2) was weighed and added to each
jar at a powdered cellulose–potassium hydroxide charge ratio of 5:1 w/w loading and subsequently
ball milled at 30 min and labeled S2-1.

2.4. Characterization of Cellulose Powder Samples

After preparing powdered cellulose samples through ball milling, all test samples were
characterized using X-ray photoelectron spectroscopy and ATR-FTIR techniques. (13C-NMR analysis,
see Supplementary Materials).

2.4.1. X-Ray Photoelectron Spectroscopy (XPS)

The XPS analysis was performed using a Kratos AXIS-165 multi-technique electron spectrometer
system (Kratos Analytical Ltd., Manchester, UK), with a base pressure of 8 × 10−10 Torr. Monochromatic
X-ray radiation of 1487.6 eV (Al Kα) was utilized as the XPS excitation source for acquiring the XPS
photoelectron spectra. Powdered cellulose samples were pressed against 99.99% pure indium flattened
shots prior to placing the samples in the vacuum chamber. The powdered cellulose samples were
grounded with metal clips to minimize any possible charging effect which was tested by switching the
neutralizer on and off. No sample charging was detected. The atomic and deconvoluted peaks were
identified by comparing their binding energy with those of the literatures and the National Institute of
Standards and Technology (NIST)-XPS database [27].
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2.4.2. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The FTIR analysis was performed to characterize the functional groups of powdered cellulose
samples (S2 and S2-1). The FTIR spectra were obtained using an ATR-FTIR spectrophotometer
(Shimadzu, Tokyo, Japan) with 64 scans. The ATR supplement was used to measure the changes
in an internally reflected infrared beam, when the beam made contact with a sample with a typical
penetration depth between 0.5 µm and approximately 5 µm. Samples were then pressed onto the
crystal surface of the ATR probe. Samples were analyzed for wavelengths of 3850 to 650 cm−1 at a
resolution of 4 cm−1 [28].

3. Results and Discussion

3.1. XPS Analysis

The XPS analysis was performed to obtain atomic concentrations on powdered cellulose surfaces.
Figure 1 shows typical XPS survey spectra for all investigated powdered cellulose samples and
Table 1 lists the experimental atomic composition as determined from the XPS spectra analysis and the
calculated oxygen to carbon (O/C) ratio for all samples.
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Figure 1. XPS survey spectra of S2 and S2-1 samples.

Table 1. Experimental atomic composition (%) and O/C ratio obtained by XPS analysis for all samples.

Sample % C % O % K O/C

S2 57.36 42.64 0.74

S2-1 40.76 41.4 9.79 1.01

Inspection of the XPS survey spectra reveals that the C and the O are the predominant species and
they occur at around 286–285 eV and 532–531 eV, respectively. The binding energy value of single K2p
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at 291 eV corresponds to the KOH found in the S2-1 sample. Table 1 shows the decrease in carbon
atoms in the S2-1 sample. The O/C ratio can be estimated from the individual ratio and abundance of
each component.

3.1.1. C1s Spectra: Deconvoluted Peaks Analysis

Figures 2 and 3 present high-resolution scans of the XPS spectra of the C1s and the O1s levels
with their deconvoluted peaks. The C1s peaks were decomposed for all samples into S2: C1, C2,
C3 and S2-1: C1, C2, C3, C4, C5. The O1s peaks were decomposed into S2: O1, O2, and S2-1: O1,
O2, O3 with various areas. The assignment of decomposed carbon and oxygen peaks is presented in
Table 2, and the binding energy and intensity for decomposed carbon and oxygen peaks for powdered
cellulose samples are shown in Tables 3 and 4.
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Table 2. Assignment of the carbon and oxygen peak components, C1s and O1s for powdered
cellulose samples.

Group Symbol Carbon Atom or Oxygen Atom Bonded to

Carbon

I C1 C-C/C-H

II C2 C-OH

III C3 C=O, O-C-O

IV C4 -C*=C(OH)-CHO
-C=C*(OH)-CHO

-C-C(O)-C*HOV C5

Oxygen

I O1 C=O*: (-(C6H10O5)-)n
C-O*-C: (-(C6H10O5)-)nII O2

III O3 -C=C(OH)-CHO*
-C-C(O*)-CHO
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Table 3. Binding energy and intensity of C1s peaks for powdered cellulose samples.

Carbon Type Binding Energy (eV) Intensity (CPS)

S2

C1 285.834 3082

C2 286.511 2573.33

C3 287.568 1423.33

S2-1

C1 285.645 3998

C2 286.273 4782.66

C3 287.632 2012.66

C4 284.761 2399.33

C5 284.139 1748

Table 4. Binding energy and intensity of O1s peaks for powdered cellulose samples.

Oxygen Type Binding Energy (eV) Intensity (CPS)

S2

O1 532.032 6880

O2 532.812 5944.44

S2-1

O1 531.691 9206.63

O2 532.706 10,463.55

O3 530.577 7575.66

The C1 corresponds to a carbon atom bound only to other carbon atoms and/or hydrogen atoms
(C-C/C-H). This component arises mainly from cellulose [29,30]. The C2 component is due to a carbon
atom bound to a single non-carbonyl oxygen atom (C-OH), which has been shown to be mainly derived
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from cellulose [29,31]. The C3 peak represents a carbon atom bound to two non-carbonyl oxygen atoms
or to a single carbonyl oxygen (C=O, O-C-O) atom [32]. The signals for the C1-C3 atoms are slightly
shifted to lower binding energies in the S2-1 sample. The signals for C4 and C5 as new carbon atoms
appeared in the lowest binding energy in the S2-1 due presumably to the formation of carbon–carbon
double bond configuration on powdered cellulose surfaces (Table 2). It has been stated that the surface
energy of wood fibers depends not only upon the presence of oxygenated groups on the surface but
also on the specific functionality as determined by the C2/(C2 + C3) ratio [33].

3.1.2. O1s Spectra: Deconvoluted Peaks

The XPS spectra of the O1s levels are presented with their deconvoluted peaks in Figures 2 and 3.
The assignment of the oxygen peak components and the variation of the corresponding area are listed
in Tables 2 and 4. The binding energy of the O1s involved in the -C=O can be located at around
531.4–532.3 eV, whereas the fingerprint of the C-O-C may appear at 533.0–534.0 eV [34]. The O1 peak
originates from an oxygen atom linked to a carbon atom by a double bond, and the O2 peak with higher
binding energy represents an oxygen atom linked by a single bond to a carbon atom [33]. The O3 peak
comes as a new oxygen atom with the lowest binding energy is detected in the S2-1 sample (Table 2).
The signals for the O1, O2, and O3 atoms are shifted to lower binding energies. Likewise, the intensity
for the O1, O2, and O3 peaks is considerably increased in the S2-1 compared with the S2 sample.
It has been observed that the surface energy of wood fibers can be determined by interactions among
oxygenated species [33]. It may indicate the formation of a greater amount of oxygenated species on
the S2-1surfaces.

3.2. ATR-FTIR Analysis

FTIR spectroscopy was used as a complementary technique to XPS spectroscopy. FTIR spectroscopy
constitutes one of the most useful techniques for investigating the composition and structure of
lignocellulosic fibers [35]. A comparison of the FTIR spectra of the S2 sample with the powdered
cellulose, S2-1 is illustrated in Figure 4 and the corresponding assignments of bands are listed in Table 5.
Figure 4 presents the view of the wavelength region from 3850 to 650 cm−1 with bands of interest
identified by their wavelength (cm−1). In Figure 4 a strong hydrogen band (-OH) stretching at around
3380–3290 cm−1 is observed. A strong band between 3500 and 3100 cm−1 which is assigned to the -OH
stretching vibrations is an observable characteristic for cellulosic IR spectra [36]. The hydroxyl band is
attributed to hydroxyl functional groups on glucose units. The C1s deconvoluted peaks of the S2 and
the S2-1 samples (Figure 3) also showed a carbon component (C2) at around 286.5 eV. The assigned
bands around 2850 and 2900 cm−1 are related to the stretching vibrations of the C-H (-CH3 or -CH2-)
in all samples [37]. The bands in the region 1365–1315 cm−1 are due to the CH2 and the C-H bending
in cellulose samples. The broad band in the region 1125–1004 cm−1 is the characteristic band for the
C-O and the C-O-C stretching vibrations in cellulose [38].

Table 5. Assignment of ATR-FTIR absorption bands of powdered cellulose samples.

Assignment Cellulose Powder Samples

λ (cm−1) T (%)

–OH stretching vibrations 3380 (S2), 3290(S2-1) 89.6(S2), 84.2(S2-1)

–CH stretching vibrations (-CH2-, -CH3) 2900 (S2), 2890 (S2-1) 97.1 (S2), 89.7 (S2-1)

C=C stretching vibrations 1590 (S2-1) 92.90 (S2-1)

-C-H stretching vibrations 1440–1370 (S2-1) 87.6–84.6 (S2-1)

CH2 and C-H bending in cellulose 1370 (S2) 97.1 (S2)

C-O and C-O-C stretching vibrations in
cellulose 1050 (S2), 1050 (S2-1) 86.2 (S2), 85.2 (S2-1)
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The difference between the FTIR spectra of the S2 and the S2-1 samples is striking. The emergence
of a band around 1600 cm−1 in the S2-1 sample is the characteristic band for the -C=C- stretching
vibrations. It may be related to carbon–carbon double bond configuration, in which a carbon atom is
bound to a single carbonyl oxygen atom and/or a non-carbonyl oxygen atom (Table 2). In the S2-1
sample, the absorption bands at around 1450 and 1370 cm−1 are presumably attributed to the stretching
vibrations of the -CH in alkene configuration on the surfaces.

4. Conclusions

With the support of X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier
transform infrared spectroscopy (ATR-FTIR) techniques, we described the surface characteristics of the
obtained powdered cellulose samples in terms of both atomic concentrations and chemical functional
groups. This work showed its applicability to prepare and chemically activate powdered cellulose by
co-milling powdered cellulose with potassium hydroxide, in a completely dry condition and at room
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