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Abstract: Spinal cord injury (SCI) is one of the most complicated nervous system injuries with
challenging treatment and recovery. Regenerative biomaterials such as chitosan are being reported
for their wide use in filling the cavities, deliver curative drugs, and also provide adsorption sites
for transplanted stem cells. Biomaterial scaffolds utilizing chitosan have shown certain therapeutic
effects on spinal cord injury repair with some limitations. Chitosan-based delivery in stem cell
transplantation is another strategy that has shown decent success. Stem cells can be directed to
differentiate into neurons or glia in vitro. Stem cell-based therapy, biopolymer chitosan delivery
strategies, and scaffold-based therapeutic strategies have been advancing as a combinatorial approach
for spinal cord injury repair. In this review, we summarize the recent progress in the treatment
strategies of SCI due to the use of bioactivity of chitosan-based drug delivery systems. An emphasis
on the role of chitosan in neural regeneration has also been highlighted.

Keywords: chitosan; spinal cord injury; electrospun scaffolds; nerve regeneration; stem cell-based
transplantation

1. Introduction

The spinal cord lies within a bony (skeletal) canal formed by adjacent vertebrae and
soft tissue elements (the vertebral canal). The anterior wall is formed by the vertebral
bodies of the vertebrae, intervertebral discs, and associated ligaments. The lateral walls and
roof are formed by the vertebral arches and ligaments [1]. Within the vertebral canal, the
spinal cord is surrounded by a series of three connective tissue membranes (the meninges)
namely; (a) the pia mater is the innermost membrane and is intimately associated with
the surface of the spinal cord, (b) the second membrane, the arachnoid mater is separated
from the pia by the subarachnoid space which contains cerebrospinal fluid, and (c) the
thickest and most external of the membranes, the dura mater which lies directly against
but is not attached to the arachnoid mater [1]. In the vertebral canal, the dura mater is
separated from the surrounding bone by an extradural (epidural) space containing loose
connective tissue, fat, and a venous plexus. The primary curvature of the vertebral column
is anteriorly concave, reflecting the original shape of the embryo, and is retained in the
thoracic and sacral regions in adults. Secondary curvatures, which are posteriorly concave,
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are formed in the cervical and lumbar regions and bring the center of gravity into a vertical
line that allows the body’s weight to be balanced on the vertebral column in a way that
expends the least amount of muscular energy to maintain an upright bipedal stance [2].
The human spine and cross-sectional of the spinal cord are depicted in Figure 1.
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Figure 1. Human spine and the cross-section of the spinal cord [1].

Spinal cord injury (SCI) is a debilitating disease with a high rate of disability involving
paralysis, sensorimotor dysfunction, urinary incontinence, and gastrointestinal dysfunc-
tion [3]. Subsequently, SCI patients and their families suffer a low quality of life with the
burden of long-term medical care and disability [4]. As a result of SCI, neuronal cells die
in the span of the first 12 h to a few weeks and further leads to substantial neuronal and
glial cell loss, demyelination, cavitation, and glial scarring which in turn results in loss of
sensory perception, distal motor paralysis, and severe functional limitations [5,6]. Albeit,
recovery is more often difficult due to the limited capability of the central nervous system
to regenerate the lost cells, restore disrupted myelin, and re-establish functional neural
connections [7], but the recent developments and impulses in molecular and regenerative
medicine had paved the way for inducing the biological active cells such as stem cells,
bioactive materials and growth factors towards the healing and tissue regenerative process.
In this connotation, mesenchymal stem cells (MSCs) serve as the perfect cell-based tissue
regenerative modality for treating disorders under a minimally invasive environment
without any significant morbidity, which further induces cellular proliferation, differen-
tiation, characterization, regeneration, and rejuvenation of degenerated tissue to attain
native homeostasis [8,9]. The efficacy of such cell therapies in animal models has been
widely recognized [10]. Several preclinical studies and clinical trials have revealed that
neuronal progenitor and stem cells can be used to repair SCI because of their self-renewal
property and capacity for neuronal differentiation into the functional neural cells to form
new synapses, release various neurotrophic factors, and provide an appropriate conducive
microenvironment to promote neuronal repair [11,12]. Although the reliability of such
treatment methodology for SCI is being tested in human subjects by a few clinical trials,
they provide us with conflicting results and thereby clouding this only ray of hope for
SCI patients [13,14]. In this review, we summarize the recent progress in the treatment
strategies of SCI with an emphasis on biomaterial/chitosan scaffolds.

2. Stem Cell-Based Interventions of Spinal Cord Injury
2.1. MSCs: Immunomodulation and Trophic Support for SCI

MSCs are particularly appealing for SCI repair and currently constitute the most
promising type of stem cells in preclinical and clinical research on account of their relative
ease of access and efficient in vitro expansion. Compared to other stem cells, they rouse
no ethical concerns. They can be used in autologous transplants and are presumably
safe when inserted into the CNS. MSCs can be collected from different sources such as
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bone marrow, umbilical cord, amniotic liquid, and adipose tissue. MSCs have recently
shown desirable properties for therapeutic use in CNS pathologies (Alzheimer’s disease,
Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis) including anti-
inflammatory, immunomodulatory, trophic, and anti-apoptotic effects in different animal
models of CNS disorders. We shall discuss the various types of MSCs that are applied for
the treatment of SCI.

2.2. Bone Marrow Stem Cells (BM-MSCs)

Bone marrow (BM)-MSCs may protect the injured spinal cord from further cellular
damage via trophic support and neuroprotective activities among the trophic factors.
The best-studied are vascular endothelial growth factor (VEGF), nerve growth factor
(NGF), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic
factor (BDNF) that are known to support neural protection and fiber regeneration [15].
Umbilical cord (UC)-MSCs are easily obtained by treating umbilical cord or cord blood
from the newborn, can be stored at cryogenic temperatures until use. The key advantages
of UC-MSCs are hypoimmunogenic and cause less graft rejection than other stem cells.
Preclinical studies have shown their broad therapeutic capacity with multifaceted efficacy
in several rats and mouse SCI animal models, including neurotrophic, anti-inflammatory
anti-apoptotic, and angiogenic actions [16]. Similarly, amniotic fetal (AF)-MSCs can be
derived from amniotic fluid or amniotic membrane and are considered as an alternative
source of MSCs for regenerative medicine in SCI. They offer several advantages such as
minimal invasive isolation and no ethical issues. They also show multipotency, efficient
proliferative activity, non- tumorigenicity, and low immunogenicity [17]. The final, adipose
tissue (A)-MSCs can be obtained from adipose tissue in large amounts and are characterized
by the secretion of trophic growth factors (BDNF and GDNF), modulation of activated
immune cells, neuroregeneration, anti-apoptotic action, and multilineage differentiation
capacity which may confer potential regenerative effects in SCI [18].

2.3. Embryonic Stem Cells (ESCs)

The pluripotent nature of ESCs may allow them to generate new cells in human
or animal CNS tissue, including neurons and glial cells. One of the major strategies for
treating the injured spinal cord is to induce ESCs to differentiate into specific phenotypes
to replace the desired cell (neurons or glia) or to produce factors that could limit the
damage and sustain regeneration of the tissue [19,20]. For instance, differentiation of ESCs
into motor neurons using a combination of retinoic acid and sonic hedgehog protein was
demonstrated in vitro, as well as the following transplantation in vivo into the spinal cord
of a paralyzed adult rat. ESCs differentiated into oligodendrocytes have been used to treat
SCI, achieving some improvements in motor activity after reconstitution of part of the
white matter in transection or contusion SCI rat models [21].

2.4. Neural Stem Cells (NSCs)

NSCs are isolated from the subventricular zone of the hippocampus of the brain and a
region of the central canal of the spinal cord and can differentiate into specific neuronal or
glial phenotypes to replace lost tissue or produce pro-regenerative factors. Transplantation
of NSCs into the lesioned spinal cord leads to functional recovery, sustained through
neuronal cell replacement that was able to reconstitute lost neuronal and glial tissue with
trophic support (BDNF, CNTF, GDNF, NGF, and IGF-1) preserving damaged cells and
axons [22]. Studies have shown the immunomodulatory activities of NSCs that can be
helpful in the treatment of SCI [23].

2.5. Induced Pluripotent Stem Cells (iPSCs)

iPSCs are generated by reprogramming somatic cells in the presence of the necessary
transcription factors (Yamanaka factors), as well as various other methods including vi-
ral transfection, microRNA delivery, targeted insertion, transposon-based insertion, and
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protein transfection. iPSCs circumvent ethical concerns regarding the use of embryos and
allow autologous transplantation of pluripotent cells which should reduce the risk of rejec-
tion. In another study, chitosan membranes for sustained proliferation and pluripotency
of human induced pluripotent stem cells (hiPSCs) in long-term culture (up to 365 days)
were prepared and reported. On the chitosan membranes, hiPSCs self-assembled into 3D
spheroids with an average diameter of ~100 µm. These hiPSC spheroids could be directly
differentiated into lineage-specific cells from the three germ layers with 3D structures.
Collectively, chitosan membranes not only promoted the naïve pluripotent features of
hiPSCs but also provided a novel 3D differentiation platform. [24]

2.6. Olfactory Ensheathing Cells (OECs)

OECs are glial cell types that play an important role in the neural regeneration of olfac-
tory neurons by supporting and guiding their constant replacement and axon growth from
the peripheral nervous system into the CNS. OECs can be obtained through nasal biopsies
from the olfactory mucosa (OM) located in the nasal cavity or from the olfactory bulb (OB).
OECs hold great promise for SCI regenerative treatment because after implantation in the
damaged spinal cord they can create a permissive environment for axonal regeneration
that can cross the injured site in several rodent SCI models [25].

2.7. Schwann Cells

Schwann cells in peripheral nerves support axonal regeneration after damage, and
this has suggested their potential application in spinal cord injury. Schwann cells could con-
tribute to regeneration after injury by sustaining axonal regrowth and myelination which
is necessary for appropriate axonal functioning. Schwann cells offer several properties that
could enhance recovery after SCI, such as the production of a variety of growth factors
(including NGF, BDNF, and CNTF), cell adhesion molecules (N-CAM, N-cadherin, and
integrins), and extracellular matrix proteins (collagen and laminin) [26–28].

2.8. Adult Endogenous Stem Cells (AESCs)

AESCs such as ependymal cells, located in proximity to the central canal in the spinal
cord, have stem cell properties that proliferate and constitute mostly new glial cells in
the injured spinal cord. The regenerative response of these cells after an injury has been
shown in different mouse or rat SCI models [29]. In another study, chitosan loaded with
neurotrophin-3 (NT3) was prepared and injected into lesion of traumatic brain injury (TBI)
and the results proved NT3 to effectively engaged endogenous NSCs to proliferate and
migrate to the injury area. Three main actions of NT3-chitosan, i.e., pro-neurogenesis, anti-
inflammation, and pro-revascularization, elicited significant regeneration after TBI [30].

3. Factors for the Regeneration of Cells in Spinal Cord Injury

A spinal cord injury is a very grave incident with varying effects on sensory and
motion depending on the point of injury in the spinal cord and its severity. Receiving
the sensory input signals and establishing the spinal network by the neurons attached to
the spinal network is challenging and, is very crucial for the treatment. Drug delivery
to the CNS has its challenges due to the presence of a blood–brain barrier (BBB) along
with the blood spinal cord barrier and the blood–retinal barrier. These barriers make
the delivery of the drug to the site of injury complicated, and the endothelial cells of the
blood–brain barrier limit the paracellular and also the transcellular transport due to lack
of fenestrae, the activity of endocytic vesicles, as well as high metabolic activity [31,32].
The small molecule pharmacological agents fail to pass through the barriers which lead to
poor vascular drug delivery to the CNS [33,34], which is the key limitation of using the
traditional drug delivery strategies in this case. To overcomes this issue, targeted methods
are used which allow the drug to pass or move through the blood–brain barrier. There
are certain ideal properties of a drug delivery system as illustrated in Figure 2 and it is a
challenging task to combine all these properties in a single drug delivery system.
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Current applications of direct delivery system to the site of injury have many limita-
tions and are as follows.

3.1. Bolus Injection

The bolus injection is injected into the intrathecal space for the transfer of drugs to
the CNS but the route to the spinal cord is disturbed by the continuous cerebrospinal fluid
(CSF) flow which moves at a rate of 0.35 mL.min−1 [33]. The continuous flow of CSF does
not allow any accumulation of the drugs which are injected into the CNS. The speed of
CSF flow in addition to the clearance and regeneration of the entire volume of CSF every
five hours are the key challenges that require higher dose injections as well as increased
frequency [33].

3.2. Continuous Infusion Using a Catheter or a Minipump System

This device implantation has increased risks and shortcomings. The implantation is
invasive and sometimes causes cell death at the insertion site [35], and increases the risk
of infection [36]. Similarly, catheters have several complications as they are susceptible
to dislodgement, kinking, get torn, and disconnected. Besides, studies have shown that
40% of people who use catheter gets infected [37]. The intravenous infusion is disturbed
by the low diffusion rate from the ventricular system to the brain parenchyma cells. The
efficiency of the diffusion rate of drugs usually gets lowered with the square of the distance;
hence, a usual small molecule has a diffusion coefficient of 5 × 10−6 cm2 s−1 which takes
around eight hours to diffuse through 1 mm [38]. Since the diffusion rate is of eight hours,
it means that the drug gets cleared off from the CNS even before it has time to enter the
tissue [33]. Recently, biodegradable polymeric implants are used as drug delivery agents
for controlled delivery [39,40]. A major limitation of these pre-formed polymeric implants
is that they need invasive surgery for the implantation of the polymer. Another alternative
to the physical implants is the injectable in situ gelling hydrogels which is less invasive
than surgery-based implantation. The polymers now used are biodegradable which even
removes the need for surgical removal of polymers and these biodegradable polymers do
no persist in the bloodstream after drug release.

4. Role of Chitosan in Neuroregeneration

Chitosan, which is derived from Chitin, is a renewable natural polymer (cationic
polysaccharide) and is the most abundant natural polymer after cellulose. It acts as a
significant biomaterial for developing drug delivery vehicles, tissue engineering scaffolds,
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and wound dressings due to its hemostatic and mucoadhesive properties. Chitosan’s
versatility lies in its chemical reactivity, which allows the development of several chitosan
derivatives with varied chemical, physical and biological properties.

4.1. Delivery Systems for Neuroregeneration

Neural regeneration is the key step to CNS injury and there have been several studies
to understand neuronal regeneration. There are several nanomaterials, but this chapter dis-
cusses the potential of chitosan to aim at modifying the CNS nerve regeneration; following
which several possible clinical applications have been attempted. The nanoparticles can
accomplish non-toxic, non-ionic properties with their polymers. Such membrane active
polymers like PEG (polyethylene glycol) have demonstrated to be capable of sealing or
repairing the CNS nerve system through a series of steps [41]. The reasons behind their
ability are as followed;

I. They actively interact with the lipid bilayer.
II. The rearrangement of the membrane is spontaneous.
III. They can reduce membrane defects.

To avoid the side effects as much as possible, in the past few decades the research is
focused on the particulate drug delivery system [42]. The direct transport of therapeutic
drugs is very challenging due to the blood–brain barrier (BBB), which is addressed by the
application of nanoparticles that not only effectively cross the BBB but also extend the
circulatory half-life of the drugs [43–45]. The first drug delivery using nanotechnology
was done with the aid of PEG, i.e., nanoparticle-based fusogen [35–41]. The feasibility of a
controlled delivery system with specificity and selectivity is due to certain properties of
NP formulations such as inert, non-toxic properties with a large surface to volume ratio.
The nanoparticle delivery systems also offered supplementary advantages such as the NP
systems could be encapsulated with CNS-targeting drugs through conjugation to increase
the drug efficacy and the target site-specificity. Besides, NP allows a long circulation time
and a controlled delivery system thereby, enhancing the bioactivity. The advantages offered
by the nanoparticle system are worth noting and offer a potential delivery system to treat
and predict disease and also have a wide variety of biomedical applications.

4.2. Chitosan-Based Delivery in CNS Therapeutics

Chitosan has been reported for a controlled drug delivery system due to its ability to
conjugate with organic material along with biomolecules. It can incorporate biologically
active substances like DNA, proteins, anticancer drugs, and insulin as well [46]. A variety
of applications of chitosan including drug carriers, wound-healing agents, and tissue
engineering are attributed to the cationic charge on the chitosan and its mucoadhesive
features make it highly reactive and thereby used as a potential biomaterial [47–50]. A study
report by Cho et al., 2010 showcases the ability of chitosan to function as a membrane
sealant and more importantly as a potent neuroprotector. In several different studies,
the capability of chitosan was discovered to induce the sealing of neuronal membranes
and could potentially renew the damaged nerve impulses along the entire length of the
spinal cord, specifically targeting the site of the injury. Apart from that, chitosan could be
promptly involved in the formulation of microspheres or microcapsules which function as
a carrier for the restrained drug delivery system. In one of the recent studies, it has been
shown that when chitosan was loaded with hydralazine it created a liberal environment
that leads to the survival of cells facing the endogenous toxins [51–56]. The surface charge
of chitosan varies with its functional groups, i.e., polyanions. For instance, the surface
charge for phosphoric acid in tripolyphosphate is 14.51 ± 2.58 mV and for the sulfate
group in dextran sulfate, the charge is −4.84 ± 1.38 mV. The surface charge is linked
with the electrostatic interaction taking place in the positively charged amine molecules of
hydralazine and also the active moieties of polyanions which is crucial in improving the
encapsulation efficiency of hydralazine loaded nanoparticles. Hydralazine loaded chitosan
nanoparticles reported an encapsulation efficiency of 15.8% for the spherical shaped solid
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structure of phosphoric acid in tripolyphosphate (TPP) while the efficiency of 23.5% for the
sulfate group in dextran sulfate (DS). Several factors could be associated with accounting
for the drug release of hydralazine which involves the loose attachment of hydralazine
to the chitosan nanoparticle surface or the lack of controllability in the dissociation of the
drug from the core of the nanoparticle system [57].

5. Role of Chitosan-Based Formulations in SCI
5.1. Micro/Nanoparticles (NP)

The role of nanoparticles is increasingly being investigated with the help of experi-
mental models for SCI. The nanoparticles which are tested for the experimental models
to treat the SCI range from metals like gold, silver, oxide, iron oxide [58,59], polymers
including PLGA [60,61] liposomes [62], and others. Let us briefly look at each category.

5.1.1. Iron Oxide, Gadolinium, or Cobalt Platinum Nanoparticles

Iron oxide nanoparticles are a famous tool for clinical applications in SCI, specifically
for cell tracking followed by the cellular implantation in the spinal cord [63–65]. The size
range could vary from 5 to 300 nm for superparamagnetic iron oxide NP. The magnetic
properties of iron oxide make it a useful application in MRI (magnetic resonance imag-
ing) [66]. Cells that are injected with the iron oxide nanoparticles can be tracked in vivo
through MRI [67]. These nanoparticle formulations could be directly infused inside the
animal body to visualize the infiltration of the macrophages in the CNS region which is
followed by autoimmune encephalomyelitis [68] or blood–spinal cord barrier permeability
following SCI [69]. Apart from the cell tracking applications iron oxide nanoparticles could
be used for gene transfer in progenitor cells with a good transfection level and the results
indicate a high cell viability rate in the culture models [70,71]. The iron oxide NP location
could be controlled using the magnetic fields in the spinal cord. This magnetofection could
be achieved using the superparamagnetic iron oxide NP formulation at precise locations
in the spinal cord [72]. There are many studies which exhibit demonstrate the use of iron
oxide nanoparticles. Nishida et al. used the iron oxide nanoparticles that were magnetically
labeled bone marrow stromal cells along with the mesenchymal stem cells to target the
spinal cord lesions through the magnetic field in the rat model [73]. Another study used
the heated iron oxide NP which was heated using a high frequency of magnetic fields to
destroy the tumor cells by inducing hyperthermia [74]. Similarly, Jordan et al. showed that
the iron-oxide-induced hyperthermia also extends the survival rate of animals, i.e., rats
following tumor implantation in CNS [75]. Despite several benefits offered by the metal
nanoparticles, it also has several drawbacks, which include the use of metal nanoparticles
can lead to certain undesired effects in the tissue such as toxicity in the CNS region [76],
gold nanoparticle-induced DNA damage [77], silver nanoparticle-induced developmental
deficits in the spinal cord flexure [58].

5.1.2. Polymer Nanoparticles

Polymer nanoparticles have diverse applications in spinal cord injury and are very
crucial in therapeutic delivery. The size of the nanoparticles ranges from 50 nm to 1000 nm
and most commonly are spherical [78]. Polymers are biocompatible and thus have low
toxicity even in the CNS region which makes them an ideal system for the delivery of ther-
apeutic drugs to the spinal cord. The synthetic polymers include PLGA [79], poly(methyl
methacrylate) [80], poly-L-lactic acid (PLLA), and polycyanoacrylate [81] which are very
commonly utilized in the SCI models, whereas the natural polymers include chitosan
which is rather a new approach to the spinal cord therapy and applications [82]. The
polymer nanoparticles have been utilized in deducting the permeability of BBB followed by
experimental allergic encephalomyelitis and induce antigen-specific T cell tolerance [81,83].
Biological materials such as proteins, DNA, or even RNA could be encapsulated in the
polymeric nanoparticles for extended drug release duration. The research on the abilities of
polymeric nanoparticles in spinal cord therapy is ongoing and looks promising. Chitosan
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nanoparticles have been recognized as a novel type of biomaterial for the treatment of SCI
which helped in targeted drug delivery to the injured spinal cord. A recent study revealed
that the valproic acid-labeled chitosan nanoparticles (VA-CN) promote the recovery of
neuronal injury after spinal cord injury in rat models [84]. The evaluation of valproic acid
labeled chitosan nanoparticles demonstrated significant recovery of the function and tissue
repair after SCI. Figure 3 shows the data depicting the decreased lesion cavity volume by
the application of VA-CN compared to sham (negative control), SCI (positive control), CN,
and VA.
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5.2. Nanoscaffolds

Nanoscaffolds are physical structures that are used as delivery agents in the cell to
create an artificial permissive atmosphere for the regeneration in the CNS region. These
implants are mainly restricted for use in a transaction injury of the spinal cord. In cases
where the injury on the cord is severe, the scaffolds or stumps can be placed in nerve
guidance channels corresponding to systems utilized in the periphery nerve fixing system.
The scaffolds are prepared considering certain physical factors like the design of the
material of scaffolds, tube dimension, the thickness of the wall, the porosity of the scaffolds,
and the strength of the material of scaffolds. To avoid necrosis, the specific modulus and the
characteristics of the material must be similar to that of the injured tissue specifically at the
implant tissue junction [85,86]. Poly(2-hydroxyethyl methacrylateco-methyl methacrylate)
has been used to construct the nerve guidance channels [87]. The nerve guidance channel
must be biocompatible, but not biodegradable. There are certain biodegradable materials
like, poly(L-lactide) [88], poly(hydroxybutyrate) [89], chitosan [90–92], and collagen [93]
which are used by the researchers in vivo experiments. The scaffolds are used as a delivery
agent for delivering various cells including the Schwann cells [88,89,94], astrocytes [94],
and neural stem cells [90,91,95]. The drug is loaded in the inner lumen of the tube which is
either adherent to the inner surface of the tube or suspended in a hydrogel; for instance,
dilute collagen [96], laminin functionalized agarose [97], or even fibrin [95], within the
tube of the scaffold. If the spinal cord is partly transected implantable hydro in-situ gelling
system could be used to fill the tissue defects hereby speeding up the tissue growth to fill the
gaps [98–100]. The implantable scaffolds are prepared from materials like; PLGA (poly(L-
lactic acid)acid) [101], PMMA (laminin coated poly(methyl methacrylate)) [102], PGS
(poly(glycerol-sebacate)) [103,104], PCL (polycaprolactone) [105] and electrospun PLGA
moieties [106]. These scaffolds have some limitations such as scaffolds remain dissimilar
to tissue modulus, lack of flexibility in the sub-retinal delivery system and the delicate
tissue are vulnerable to get damaged from the implant [101]. The similarity between the
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scaffolds and the tissue is very critical, in particular to the delivery in CNS regions which
requires a simultaneous application for drug and cell delivery. A recent study reported that
the scaffold prepared from merging the chitosan nanoparticles into polypyrrole/alginate
composite showed minimal cytotoxicity and improved proliferation when evaluated with
OLN-93 neural cells and fibroblasts [107]. The viability and proliferation of OLN-93
neural and fibroblast cells confirmed cytocompatibility of Nanochitosan/PPy-Alg scaffold
depicting as an ideal candidate for neural tissue engineering. Figure 4 shows the increased
number of OLN-93 cells from Day 7 to Day 14 on nano chitosan/PPy-Alg indicating the
synergistic effect on the proliferation of neural cells.
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5.3. Nanoemulsions

Albumin conjugated multilayered nanoemulsions also commonly known as albumin-
MNE of methylprednisolone were constructed to aim specifically at the spinal cord injury
site and the drug delivery at the site of injury [108]. The study showed that albumin-
MNE showed sustained release, improved systemic circulation, and site-specificity of
methylprednisolone in SCI rats. Besides, decreased toxicities of higher concentrations of
methylprednisolone was observed on astrocytes. Another study reported that albumin
functionalized, cholesterol stabilized, phospholipid nanoemulsion showed controlled
release of rapamycin resulting in improved cytokine inhibition and in-vivo efficacy to
offer effective treatment for post-SCI-like conditions [109]. Figure 5 shows the in vitro
rapamycin drug release profile in nanoemulsion (RN7) and nanoemulsion conjugated with
albumin (ARN7) against rapamycin solution (RS) for 12 h. The cumulative drug release
was plotted against time which showed that the cumulative percentage drug release from
RS in 2 h was 89 ± 6 whereas RN7 and ARN7 released 57 ± 9 and 62 ± 11%, respectively, in
12 h. The sustained release of rapamycin in RN7 and ARN7 helped to keep the astrocytes
viable when compared to RS, which was confirmed in another set of experiments (data
not shown).

5.4. Hydro/Nano/In-Situ Gelling Systems

Hydrogels, as the name suggests are polymeric material whose main component
is water, i.e., 90% and are physically or chemically cross-linked in a manner that they
become highly bio-compatible and a popular choice, mainly for the tissue regeneration
strategy [110]. Hydrogels possess a porous structure allowing them to be a suitable
candidate for drug delivery with the drug discharge depending rate of diffusion of the
drug into the hydrogel matrix. The rate of diffusion could be maneuvered by changing
the crosslink density of the hydrogel which creates a space in the matrix for the drug and
a controlled drug release [111]. Hydrogels are not all perfect and have some limitations
which include their high percentage of water due to which the hydrophilic drugs like
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proteins get easily solubilized and diffuse out of the gel in a period of several hours to
days. To solve this issue, hydrogels are covalently bound to hydrophilic drugs through a
cleavable linker which in turn increases the delivery time. The rate of linker cleavage is
also directly linked to the rate of drug release [112,113]. Another technique that is also very
well-known is the combination of hydrogel with other drug carriers like liposomes and a
lipid microtubule [114,115] or the use of polymeric microspheres [116–119]. The hydrogel
limits the burst release which resembles the properties of the microsphere system and keeps
the particles at the site of injury. The hydrophobic liposome or microsphere gives extended
discharge duration for hydrophilic molecules [120]. Injectable hydrogels also have in-situ
gel formation application. The formation of gels in polymers differs in the case of polymer
the formation of gel takes place when the temperature increases than the lower critical
solution temperature below body temperature while for the other polymers like chitosan
and alginate the formation of gels takes place through ionic interactions by the addition of
salt or changing the pH values [121]. The light-induced hydrogel formation takes place
through the addition of a photo-initiator to the monomer [122]. The biodegradability of
the hydrogel is the reason for its removal from the body; since they are biodegradable
the delivery system is easily eliminated. The hydrogels, therefore, come as a promising
material that fulfills the entire criteria for an ideal drug delivery system. Studies have
shown that the chitosan-based hydrogels contribute to inflammatory response modulation,
tissue repair, gain in locomotor function recovery, and induces neural tissue repair to treat
SCI [123,124]. Chitosan and water as fragmented physical hydrogel suspension (Chitosan-
FPHS) promoted reconstitution of spinal tissue and vasculature while diminishing the
fibrous glial scarring in post SCI rat models [123].
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5.4.1. Natural Polymers

Hyaluronan, fibrin, and collagen are certain natural polymers that are used in clinical
applications; for instance, filling of the dermal layer, lubricants, wound sealants, and also
surgical sponges which are very advantageous [125,126]. Other popular natural polymers
include agarose and chitosan which possess active functional groups allowing a wide range
of chemical modification and make them suitable for diverse clinical applications. Natural
polymers are available in the form of gels which could be controlled by several factors like
temperature and pH; for instance, in agarose, the gel formation takes place with the decreas-
ing temperature while on the contrary the methylcellulose and collagen show gel formation
with increasing temperature. The chitosan is not temperature-dependent for gel formation
but instead pH-dependent, and it forms a gel with increasing pH. Agarose, a derivative of
red algae is a polysaccharide of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose
is also a suitable candidate for drug delivery due to the presence of its certain properties
like; soft tissue likes properties and forms a porous gel at low temperature [127]. Agarose
forms hydrogen bonds to form a gel structure when the powder is mixed with liquid media
and heated. The agarose has the drawback that, it cools down in an unmodified form very
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slowly at body temperature [128]. To overcome this problem, researchers suggested the
use of an external liquid nitrogen cooling system to fasten up the process [127].

5.4.2. Synthetic Polymers

Synthetic polymers are another type of polymers that are frequently used in drug
delivery systems as they can be altered in both their composition and molar mass. The
synthetic polymers could be modified for the active functional groups which make the
crosslinks or react with biomolecules to form modified structures. PNIPAAm (poly(N-
isopropyl acrylamide) is widely studied and investigated for its temperature-dependent
drug delivery system [129]. The unique property of poly(N-isopropyl acrylamide) lies
in its low critical solution temperature (LCST), due to which it is a liquid or soluble
form at room temperature while it solidifies to a gel form at the body temperature. The
unmodified PNIPAAm has a poor elastic recovery and has less water holding capacity
which is overcome by combining it with polyethylene glycol (PEG), thus, altering its
physical and mechanical characteristics [130]. The PNIPAAm-PEG was experimented with
by Lowman, which showed that the delivery of BDNF for repairing the partial hemisected
SCI was feasible by the addition of the CNS targeting the drug to the PNIPAAmm-PEG at
the room temperature in the aqueous form [131].

6. Recent Advancements in Chitosan-Based Stem Cell Therapy

The current therapeutic approach for the treatment of SCI mainly aims at eliminating
further damage to the spinal cord. The ultimate goal for the management of SCI is to
reduce cell death and minimize the extent of the injury, as well as to facilitate the process
of neuroregeneration to repair the damaged tissue. Stem cell therapy offers great potential
for neural repair. There have been several strategies to improve the survival and function
of the grafted stem cells, i.e., stem cells seeding on various biomaterials and scaffolds.
Scaffold-based strategies have been established as a very efficient alternative for the neu-
roregeneration after SCI. By definition, scaffolds are temporary supporting structures for
growing cells and tissues [132,133]. Up to date, electrospun guidance channels, scaffolds,
and hydrogels have been the most promising for neural engineering in SCI. Electrospinning
is a simple and rapid technique used for the fabrication of the nanofibrous scaffolds where
a high-voltage electric field is applied to polymer solution coming out from the tip of a
needle to be deposited on the ground collector to form the ultrafine fibers [134,135]. In
neural tissue engineering applications, the electrospun scaffolds mimic the neural extra-
cellular matrix by altering their fibrous structures. Besides, another key advantage to
these scaffolds is the neurotrophic factors can be incorporated into the scaffolds during
the electrospinning process to be delivered at the site of SCI. Studies reported a variety
of electrospun scaffolds have been used to treat injuries in the peripheral nervous system
and SCI. Electrospun scaffolds with aligned structures have been used in several studies
to direct regenerating nerve fibers and thus promote axonal regeneration and functional
recovery. A study reported the functional recovery of the hemisected thoracic spinal cord
due to the sustained delivery of chondroitinase ABC (ChABC) using polypropylene car-
bonate (PPC) electrospun fibers with chitosan (CS) microspheres as the vehicle [136]. The
study reported that PPC-CS supported a stable release of ChABC for over 10 days in PBS
at 37 ◦C and 5% CO2. The quantity of ChABC release accounted for 89.10 ± 1.41% of the
total amount whereas the active ChABC accounted for 26.29 ± 0.46% of the total amount
as shown in Figure 6. The sustained delivery of ChABC promoted axon sprouting and
reduced glial scarring suggesting PPC-CS micron fibers containing ChABC as a feasible
treatment for SCI.

The most recent comparative study evaluated the extent of nerve regeneration by
chitosan scaffolds prepared by using electrospinning and lyophilization [137]. The exper-
imental data showed that the proliferation rate and the adhesion rate of Schwann cells
in the electrospinning group were higher than that of the lyophilization group. Figure 7
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shows the increased proliferation rate of the Schwann cells on the electrospun chitosan
scaffold than that of the chitosan lyophilization scaffold.
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Figure 7. Comparison of the proliferation rate of Schwann cells on the electrospun chitosan scaffold
vs. lyophilized chitosan scaffold. Adapted with permission [137].

Stem cells have played a key role in the SCI treatment due to their inherent prop-
erty of self-replication along with the multi-directional differentiation. The secretion of
ant-inflammatory cytokines inhibiting the inflammatory response of the lesion microenvi-
ronment plays a key role in the tissue regeneration at the SCI site. The major limitation
of stem cells, i.e., survival and limited repair effect on SCI is overcome by the three-
dimensional scaffolds. Stem cell survival and differentiation can be improved at the SCI
site by using stem cell-bearing biological scaffolds [138]. A study showed that the scaf-
fold consisting of the adult neural stem cells contained within a methacrylamide chitosan
(MAC) hydrogel protected by a chitosan conduit resulted in a significant reduction in the
lesion area and macrophage infiltration at the SCI site contributing to its repair [139]. In
another study, the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro
and to assess the supportive effects of chitosan scaffolds in an animal model of spinal
cord injury was investigated. Human dental pulp stem cells (DPSCs) were incubated with
chitosan scaffolds treated with neural differentiation medium for 14 days. The studies
found that in comparison with the control group, the levels of BDNF, GDNF, b-NGF, and
NT-3 were significantly increased in the DPSC/chitosan-scaffold group indicating the key
role of Wnt/β-catenin signaling pathway in the neural differentiation of DPSCs when
combined with chitosan scaffolds. Apart from being non cytotoxic in in-vitro studies,
there was a marked recovery of hind limb locomotor functions observation when the
DPSC/chitosan-scaffold was transplanted in in-vivo spinal cord injury rat model [140].
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7. Future Developments

There has been decent progress in the SCI therapy by tissue engineering techniques,
however, the work so far can be deemed as the tip of the iceberg. There exist several
challenging aspects to be addressed such as build an ideal regenerative microenvironment
at the lesion site which is specifically difficult owing to the dynamic pathology of SCI.
There is a need for the harmonization of the safety evaluation criteria of scaffold materials
across different regions and SCI treatment applications. Further, the most important repair
mechanism of SCI by tissue engineering needs to be fully understood and elucidated. The
most effective and optimized composition of the biomaterials for neural tissue engineering
is yet to be evaluated and harmonized. Future research should focus on developing such
optimized structures for SCI therapy which also offer better feasibility to deliver the drugs
needed for recovery. With advances in the mechanical engineering, biopolymer chemistry,
and regenerative medicine utilization of chitosan alone or to formulate drug delivery
systems for treating neurological problems can be advanced.

8. Conclusions and Outlook

Spinal cord injury (SCI) is a severely traumatic event in the central nervous system,
which usually leads to motor and sensory loss, leaving the patients without the ability to
regenerate lost tissues. Treatment of SCI remains a significant challenge for both clinicians
and scientists. Though there have been several attempts to apply stem cell therapy the
efficacy is limited to date. The strategy of combining the three-dimensional scaffolds
with bioactive molecules or stem cells along with a drug delivery system at the site of
injury has proven to be most effective. Chitosan has demonstrated immense potential
for the widespread application for SCI repair in the form of scaffolds and micro-particles.
Electrospun scaffolds have proven to be the most effective and a comparative study was
reported to depict the advantages of electrospun chitosan scaffolds over that of the one
prepared from lyophilization. Electrospun scaffolds have revealed promising results both
in-vivo and in-vitro as they can actively mimic the extracellular matrix of neural cells and
thus influence the growth, differentiation, and proliferation at the injured site. The new
advancements in the design of the scaffolds with the integration of the new techniques to
improve the chemical, directional and structural aspects are expected to contribute to the
development of treatment of injured spinal cord. In short, all characteristics of the spinal
cord tissue could be effectively modeled and used for the development of a more effective
biomaterial composition to propel the clinical research and application for the treatment
of SCI.
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