Next Issue
Volume 3, September
Previous Issue
Volume 3, March

Polysaccharides, Volume 3, Issue 2 (June 2022) – 10 articles

Cover Story (view full-size image): Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. Microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Review
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture
Polysaccharides 2022, 3(2), 441-457; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020027 - 11 Jun 2022
Viewed by 406
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal [...] Read more.
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Graphical abstract

Article
Ionic Strength of Methylcellulose-Based Films: An Alternative for Modulating Mechanical Performance and Hydrophobicity for Potential Food Packaging Application
Polysaccharides 2022, 3(2), 426-440; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020026 - 20 May 2022
Viewed by 248
Abstract
The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the [...] Read more.
The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the present work studied the influence of ionic strength (IS) from 0 to 500 mM to modulate the physicochemical properties of methylcellulose (MC). Moreover, for protection against biological risks, Nisin-Z was incorporated into MC’s polymeric matrices, providing an active function. The incorporation of salts (LiCl and MgCl2) promoted an increase in the equilibrium moisture content in the polymer matrix, which in turn acted as a plasticizing agent. In this way, films with a hydrophobic surface (98°), high true strain (85%), and low stiffness (1.6 mPa) can be manufactured by addition of salts, modulating the IS to 500 mM. Furthermore, films with an IS of 500 mM, established with LiCl, catalyzed antibacterial activity against E. coli, conferring synergism and extending protection against biological hazards. Therefore, we demonstrated that the IS control of MC dispersion presents a new alternative to achieve films with the synergism of antibacterial activity against Gram-negative bacteria in addition to flexibility, elasticity, and hydrophobicity required in various applications in food packaging. Full article
(This article belongs to the Special Issue Polysaccharides for Application in Packaging)
Show Figures

Figure 1

Review
Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement
Polysaccharides 2022, 3(2), 411-425; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020025 - 14 May 2022
Viewed by 457
Abstract
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses [...] Read more.
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Graphical abstract

Article
Modification of Orange Bagasse with Reactive Extrusion to Obtain Cellulose-Based Materials
Polysaccharides 2022, 3(2), 401-410; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020024 - 06 May 2022
Viewed by 304
Abstract
Orange bagasse (OB) could be considered a sustainable, renewable, and low-cost biomass for the extraction of cellulose. In this context, reactive extrusion can be considered an excellent, eco-friendly, alternative process for the extraction of cellulose from lignocellulosic materials. Thus, the present study aimed [...] Read more.
Orange bagasse (OB) could be considered a sustainable, renewable, and low-cost biomass for the extraction of cellulose. In this context, reactive extrusion can be considered an excellent, eco-friendly, alternative process for the extraction of cellulose from lignocellulosic materials. Thus, the present study aimed to obtain cellulose-based materials with a reactive extrusion process and also to investigate the impact of pectin on the delignification process. Two groups of samples (OB and depectinizated OB) were submitted to extrusion with sulfuric acid or sodium hydroxide in one-step processes. The cellulose content of extruded materials was highly affected by pectin content in the raw material; the thermal profile (TGA curves) and crystallinity also changed. The cellulose content of modified materials ranged from 18.8% to 58.4%, with a process yield of 30.6% to 79.2%. The alkaline reagent provided the highest cellulose content among all extrusion treatments tested, mainly for OB without pectin. The extrusion process was considered an efficient and promising process for extracting cellulose from citrus residue. Materials produced in this study can be used as sources of cellulose fiber for various products and processes, such as in the food industry, fermentation substrates, or refined applications after subsequent treatments. Full article
Show Figures

Graphical abstract

Article
Low-Denaturazing Glucose Oxidase Immobilization onto Graphite Electrodes by Incubation in Chitosan Solutions
Polysaccharides 2022, 3(2), 388-400; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020023 - 03 May 2022
Viewed by 400
Abstract
In this work, glucose oxidase (GOx) has been immobilized onto graphite rod electrodes through an assisted-chitosan adsorption reaching an enzyme coverage of 4 nmol/cm2. The direct and irreversible single adsorption of the Flavine Adenine Dinucleotide (FAD) cofactor has been minimized by [...] Read more.
In this work, glucose oxidase (GOx) has been immobilized onto graphite rod electrodes through an assisted-chitosan adsorption reaching an enzyme coverage of 4 nmol/cm2. The direct and irreversible single adsorption of the Flavine Adenine Dinucleotide (FAD) cofactor has been minimized by electrode incubation in a chitosan (CH) solution containing the enzyme GOx. Chitosan keeps the enzyme structure and conformation due to electrostatic interactions preventing FAD dissociation from the protein envelope. Using chitosan, both the redox cofactor FAD and the protein envelope remain in the active form as demonstrated by the electrochemistry studies and the enzymatic activity in the electrochemical oxidation of glucose up to a concentration of 20 mM. The application of the modified electrodes for energy harvesting delivered a power density of 119 µW/cm2 with a cell voltage of 0.3 V. Thus, chitosan presents a stabilizing effect for the enzyme conformation promoted by the confinement effect in the chitosan solution by electrostatic interactions. Additionally, it facilitated the electron transfer from the enzyme to the electrode due to the presence of embedded chitosan in the enzyme structure acting as an electrical wiring between the electrode and the enzyme (electron transfer rate constant 2.2 s−1). This method involves advantages compared with previously reported chitosan immobilization methods, not only due to good stability of the enzyme, but also to the simplicity of the procedure that can be carried out even for not qualified technicians which enable their easy implementation in industry. Full article
Show Figures

Graphical abstract

Article
Pomace-Cassava as Antioxidant Bio-Based Coating Polymers for Cheeses
Polysaccharides 2022, 3(2), 380-387; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020022 - 29 Apr 2022
Viewed by 200
Abstract
Fruit and vegetable-based materials, rich in phenolic pigments, and especially anthocyanins, have attracted attention as promising sources for bio-based antioxidant coating polymers, being a non-toxic, natural, ecofriendly, and green label solution to lower oxidation degradation in oil-water emulsion food, such as cheeses. However, [...] Read more.
Fruit and vegetable-based materials, rich in phenolic pigments, and especially anthocyanins, have attracted attention as promising sources for bio-based antioxidant coating polymers, being a non-toxic, natural, ecofriendly, and green label solution to lower oxidation degradation in oil-water emulsion food, such as cheeses. However, could their pomaces also be used in such materials? This work has investigated the use of jabuticaba peels and red cabbage stir pomace extracts as antioxidant additives for cheese coating polymers. The antioxidant capacity of the jabuticaba-red cabbage pomace cassava-based polymer was evaluated in vitro (total phenolic, total anthocyanin content and DPPH scavenging %) and in vivo (by coating Minas Frescal cheeses and monitoring their peroxide index increase during a 9-day shelf life, at 10 °C). An in vitro characterization has indicated a high antioxidant capacity for both pomace extracts, with a higher capacity observed for the jabuticaba peels. In vivo investigations indicated that the pomace-starch coatings have protected cheeses up to 8.5 times against oxidation when compared to the control, with a synergistic protector effect among pomaces. Physical–chemical characterizations (pH, acidity, total solids, ash, total protein, fat content and syneresis) have indicated no coating interference on the cheese’s development. Full article
(This article belongs to the Special Issue Polysaccharides for Application in Packaging)
Show Figures

Graphical abstract

Article
Removal of Iron, Manganese, Cadmium, and Nickel Ions Using Brewers’ Spent Grain
Polysaccharides 2022, 3(2), 356-379; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020021 - 26 Apr 2022
Viewed by 401
Abstract
The human-made pollution of surface and ground waters is becoming an inevitable and persistently urgent problem for humankind and life in general, as these pollutants are also distributed by their natural circulation. For example, from mining activities and metallurgy, toxic heavy metals pollute [...] Read more.
The human-made pollution of surface and ground waters is becoming an inevitable and persistently urgent problem for humankind and life in general, as these pollutants are also distributed by their natural circulation. For example, from mining activities and metallurgy, toxic heavy metals pollute the environment and present material risk for human health and the environment. Bioadsorbers are an intriguing way to efficiently capture and eliminate these hazards, as they are environmentally friendly, cheap, abundant, and efficient. In this study, we present brewers’ spent grain (BSG) as an efficient adsorber for toxic heavy metal ions, based on the examples of iron, manganese, cadmium, and nickel ions. We uncover the adsorption properties of two different BSGs and investigate thoroughly their chemical and physical properties as well as their efficiency as adsorbers for simulated and real surface waters. As a result, we found that the adsorption behavior of BSG types differs despite almost identical chemistry. Elemental mapping reveals that all components of BSG contribute to the adsorption. Further, both types are not only able to purify water to reach acceptable levels of cleanness, but also yield outstanding adsorption performance for iron ions of 0.2 mmol/g and for manganese, cadmium, and nickel ions of 0.1 mmol/g. Full article
Show Figures

Figure 1

Article
Development and In Vitro Cytotoxicity of Citrus sinensis Oil-Loaded Chitosan Electrostatic Complexes
Polysaccharides 2022, 3(2), 347-355; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020020 - 06 Apr 2022
Viewed by 381
Abstract
Electrostatic complexes based on chitosan, lecithin, and sodium tripolyphosphate were produced and evaluated with respect to their encapsulation capacity and cytotoxicity. Physical chemical properties were determined by zeta potential values and size distributions. For encapsulation assays, the emulsification method was followed, and Citrus [...] Read more.
Electrostatic complexes based on chitosan, lecithin, and sodium tripolyphosphate were produced and evaluated with respect to their encapsulation capacity and cytotoxicity. Physical chemical properties were determined by zeta potential values and size distributions. For encapsulation assays, the emulsification method was followed, and Citrus senensis peel oil was utilized as volatile compound model. Morphology of complexes with oil incorporated was observed by scanning electron microscopy. The cytotoxicity of complexes was related to cell viability of zebrafish hepatocytes. The complexes produced presented positive Zeta potential values and size distributions dependent on the mass ratio between compounds. Higher concentrations of sodium tripolyphosphate promote significant changes (p < 0.05) in zeta values, which did not occur at smaller concentrations of the crosslinking agent. These complexes were able to encapsulate Citrus sinensis peel oil, with encapsulation efficiency higher than 50%. Cytotoxicity profiles showed that in a range of concentrations (0.1–100 μg/mL) studied, they did not promote cellular damage in zebrafish liver cells, being potential materials for food and pharmaceutical applications. Full article
Show Figures

Figure 1

Article
Use of a Hybrid Porous Carbon Material Derived from Expired Polysaccharides Snack/Iron Salt Exhibiting Magnetic Properties, for Hexavalent Chromium Removal
Polysaccharides 2022, 3(2), 326-346; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020019 - 05 Apr 2022
Viewed by 569
Abstract
Nowadays, the scientific interest is focused more and more on the development of new strategies in recycling of waste products as well as on the development of clean technologies due to the increased environmental pollution. In this work we studied the valorization of [...] Read more.
Nowadays, the scientific interest is focused more and more on the development of new strategies in recycling of waste products as well as on the development of clean technologies due to the increased environmental pollution. In this work we studied the valorization of an expired cheese-tomato flavor corn snack, which is polysaccharide food product, by producing advanced hybrid magnetic materials for environmental remediation purposes. The carbonization-chemical activation of this snack using potassium hydroxide leads to a microporous activated carbon with high surface area (SgBET ~800 m2/g). The magnetic hybrid material was synthesized via an in-situ technique using iron acetate complex as the precursor to produce iron based magnetic nanoparticles. The resulting material retains a fraction of the microporous structure with surface area SgBET ~500 m2/g. Such material consists, of homogenously dispersed magnetic isolated zero valent iron nanoparticles and of iron carbides (Fe3C), into the carbon matrix. The magnetic carbon exhibited high adsorption capacity in Cr(VI) removal applications following a pseudosecond order kinetic model. The maximum adsorption capacity was 88.382 mgCr(VI)/gAC at pH = 3. Finally, oxidation experiments, in combination with FT-IR, Mössbauer, and VSM measurements indicated that the possible Cr6+ removal mechanism involves oxidation of iron phases and reduction of Cr6+ to Cr3+. Full article
Show Figures

Graphical abstract

Review
Biofunctionalization of Endolysins with Oligosacharides: Formulation of Therapeutic Agents to Combat Multi-Resistant Bacteria and Potential Strategies for Their Application
Polysaccharides 2022, 3(2), 306-325; https://0-doi-org.brum.beds.ac.uk/10.3390/polysaccharides3020018 - 23 Mar 2022
Viewed by 471
Abstract
In the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field. Derived from years of analysis, [...] Read more.
In the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field. Derived from years of analysis, endolysins have recently been considered as potential alternative therapeutic antibacterial agents, due to their attributes and ability to combat multi-resistant bacterial cells when applied externally. On the other hand, although the aquaculture sector has been characterized by its high production rates, serious infectious diseases have led to significant economic losses that persist to this day. Although there are currently interesting data from studies under in vitro conditions on the application of endolysins in this sector, there is little or no information on in vivo studies. This lack of analysis can be attributed to the relatively low stability of endolysins in marine conditions and to the complex gastrointestinal conditions of the organisms. This review provides updated information regarding the application of endolysins against multi-resistant bacteria of clinical and nutritional interest, previously addressing their important characteristics (structure, properties and stability). In addition, regarding the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop