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Abstract: Carbohydrates or polysaccharides are the main products derived from photosynthesis and
carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microal-
gae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules
present complex biochemical structures according to each microalgal species. In addition, they exhibit
emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory,
antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration
of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in
temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and
saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as
an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pen-
tose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides
can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell
interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms
present rheological and biological properties, making them a promising candidate for application
in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable
alternatives for potential applications in several sectors, and the choice of producing microalgal
species depends on the required functional activity. In this context, this review article aims to provide
an overview of microalgae technology for polysaccharide production, emphasizing its potential in
the food, animal feed, and agriculture sector.

Keywords: animal feed; biostimulant agent; carbohydrates; functional food; packaging material

1. Introduction

Microalgae and cyanobacteria are photosynthetic microorganisms that convert light
energy and carbon dioxide (CO2) to produce biomass and several compounds, including
polysaccharides [1,2]. These microorganisms assimilate solid waste from thermoelectric
plants [3,4], industrial wastewater [5], and other gaseous effluents, such as sulfur oxides,
nitrogen oxides, and hydrocarbons, and use them as alternative sources of nutrients for
their growth [6,7]. Porphyridium sp., Chlorella sp., Spirulina sp., and Nostoc sp. are strains
frequently studied to produce polysaccharides [7].

Polysaccharides synthesis is related to microalgae and cyanobacteria’ ability to grow
under adverse conditions [8,9]. Environmental and nutritional factors, which are inherent
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to microalgae technology, interfere with the production of polysaccharides [10]. Salinity,
nutrient limitation, temperature, growth phase, and presence of ions such as Mg, K, and Ca
impact the production of these compounds [7]. Thus, optimizing process conditions and
infrastructure for microalgae cultivation contributes to increased cell growth rate, biomass
production, and polysaccharide yield [9].

Microalgae polysaccharides are predominantly constituted by galactose, xylose, and
glucose. Other sugars may also be present, and residues of glucuronic and galacturonic
acids [7]. The composition of polysaccharides depends on several factors, such as species,
strains, and growth conditions [11]. In addition, acidic compounds and sulfate and carboxyl
groups contribute to the anionic nature and consequently to the diverse biological activities
of polysaccharides [7,11]. Among the microalgal polysaccharides, exopolysaccharides
(EPS) have gained prominence, mainly due to their bioactive properties. The antioxidant,
anti-inflammatory, antitumor, and antimicrobial characteristics contribute to using these
compounds in several areas [9].

Some reviews report an overview of microalgal polysaccharides, highlighting their
production, structure, and biological properties that direct application in different sec-
tors [7,9,12–14]. Morais et al. [11] discussed aspects of obtaining EPS from microalgae
in a biorefinery structure to improve the production viability of these biocompounds.
Chanda et al. [15] presented a review of microalgae polysaccharides as plant biostimulants,
and Moreira et al. [16] reported microalgae EPS in flocculation [16]. This study stands out in
addressing the production of microalgae polysaccharides for the agri-food field. Thus, this
review article aims to provide an overview of microalgae technology for polysaccharide
production, emphasizing its potential in the food, animal feed, and agriculture sector.

2. Microalgae Polysaccharides

Microalgae, through photosynthesis, convert CO2 or other inorganic (bicarbonate) or
organic carbon sources (industrial and domestic wastewater) into carbohydrates, lipids, and
proteins, among other bioactive metabolites [5,12]. Carbohydrates can constitute 15–75%
of dry biomass [13]. Some species can produce high amounts of polysaccharides, while
others need to be exposed to cellular stress conditions to synthesize these compounds [12].
However, stimulating carbohydrate synthesis can reduce biomass production [17].

Polysaccharides are polymeric carbohydrate macromolecules with complex struc-
tures that vary (structurally and biochemically) in each species of microorganism. Xylose,
galactose, glucose, rhamnose, and mannose are constituent monomers in polysaccha-
rides synthesized by microalgae [12,15,18]. In microalgae, polysaccharides are mainly
found as structural polymers (forming part of the cell wall) or energy storage polymers
for various metabolic processes [12,17], in addition to EPS (with protection and cellular
interaction) [11,19].

Carbohydrate synthesis occurs in the chloroplast for eukaryotes and in the cyto-
plasm for prokaryotes during the Calvin cycle (Figure 1), in the dark phase. The Calvin
cycle has three basic phases for carbohydrate production: fixation, reduction, and re-
generation. Firstly, CO2 is added to a five-carbon sugar (ribulose-1,5-bisphosphate), a
reaction catalyzed by ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo), forming
two three-carbon molecules (phosphoglycerate). Phosphoglycerate is converted to two
molecules of glyceraldehyde-3-phosphate. One of the molecules continues in the Calvin
cycle, while the other is used as a substrate to form carbohydrates (sucrose). The portion
of glyceraldehyde-3-phosphate not immediately used as an energy source is converted to
starch in the chloroplast. The biosynthesis and sulfation of polysaccharides in eukaryotic
cells occur in the Golgi complex, whose main role is the synthesis of EPS [20–22].

The main advantages of using polysaccharides or any other microalgal source biomolecule
are: production takes place throughout the year, biomass harvest does not depend on cli-
matic conditions or seasons, growth is fast, and cultivation is relatively simple compared
to higher plants [20,22]. Microalgae can be cultivated with solar energy, wastewater,
and effluent gases as a source of nutrients and do not require arable land [7]. Besides,
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microalgae-based carbohydrates are easily saccharified and require less treatment than
other sources, being highly competitive for many applications [23]. Microalgae polysaccha-
rides have advantages over other polysaccharides sources (terrestrial plants, crustaceans,
squid pens, or fungal cell walls), such as safety, stability, biocompatibility, and biodegrad-
ability [13,14]. These characteristics contribute to promote quality of life for humans in
different products [22–24].
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RuBP: Ribulose-1,5-bisphosphate, 3-PGA: phosphoglycerate).

The functional activity of polysaccharides depends on their monosaccharides, molec-
ular weight, and degree of sulfation [15]. Thus, the choice of microalgae species to be
cultivated depends on the final application of the biomolecule. Moreover, the cultivation
conditions can be adapted according to production needs.

2.1. Producing Species and Types of Polysaccharides

Polysaccharides contain 20–25 monosaccharide residues or a high degree of polymer-
ization. Most exopolysaccharides are heteropolymers constituted of different proportions
of glucose, xylose, and galactose. Sulfated polysaccharides can bind to specific proteins
in the tissues, exhibiting anticoagulant properties [12]. Sulfate polysaccharides especially
exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic,
anti-inflammatory, antimicrobial, and antiviral activities, including anti-HIV infection,
herpes, and hepatitis viruses. Generally, the biological activity of sulfate polysaccharides
is related to their different composition and mainly to the extent of the sulfation of their
molecules [25]. As for structural carbohydrates, cyanobacteria mainly synthesize glyco-
gen (glucan with α-1,4 bonds). Green algae synthesize amylopectin-type polysaccharides
(starch), and red algae synthesize floridean starch (a hybrid of starch and glycogen) [12,26].

Some genera of eukaryotic microalgae and cyanobacteria widely used in the pro-
duction and extraction of polysaccharides are Tetraselmis sp., Isochrysis sp., Porphyrid-
ium, Chlorella sp. [27], Spirulina platensis, Chlamydomonas reinhardtii, Scenedesmus sp. [24],
Nostoc sp., Anabaena sp., Botryococcus braunii, Dunaliella salina [7], Chlorella vulgaris, and
Haematococcus pluvialis [16]. Species, strain, culture’ age, physiology, and cultivation condi-
tions influence monosaccharide composition and polysaccharide structure [7,12].

The composition of polysaccharides differs in structure and size by microalgae phylum
(Table 1). Glucose is the most abundant sugar, while fructose, in general, is found only in
EPS from cyanobacteria [7]. EPS from Charophyta are mainly constituted of fucose and
uronic acids. EPS from Rhodophyta are predominantly composed of xylose followed by
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galactose. In Chlorophyta, galactose is a majority component of EPS. In cyanobacteria, the
presence of galactose is remarkable, followed by xylose [28]. Deamici et al. [29] identified
eight monosaccharides in Spirulina sp. LEB 18: glucose, galactose, xylose, glucuronic acid,
fucose, rhamnose, galacturonic acid, and arabinose. The first three represented more than
55% of the composition. Rhabdoderma rubrum and Synechocystis have glucosamine and
galactosamine as principal components of the polysaccharide profile [28]. On the other
hand, the polysaccharides that make up the cell wall can range from 82.9% to 49% glucose in
Diacronema lutheri and Arthrospira platensis, respectively, to 46.4% mannose in Phaeodactylum
tricornutum [18].

Table 1. Chemical structure of monosaccharides and polysaccharides from different species
of microalgae.

Monosaccharides
and polysaccharides Chemical Structure Source Reference

Glucose (C6H12O6)
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and polysaccharides Chemical Structure Source Reference
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Euglena gracilis
and Chlorella sp. [31,32]

The direct incorporation of microalgal biomass into products is more sustainable and
economical, as it reduces waste generation and eliminates purification steps. The use of
compound extracts or pure compounds creates high-quality products and increases the
bioavailability of the molecule of interest. Species such as Chlorella vulgaris, Arthrospira
platensis, Euglena gracilis, Chlamydomonas reinhardtii, Auxenochlorella protothecoides, and
Dunaliella bardawil are listed by the Food and Drug Administration (FDA) as Generally
Recognized as Safe (GRAS) for human consumption [33]. Thus, selecting strains with
nutritional and toxicological relevance is essential to developing safe microalgae-based
products. Furthermore, the application of biotechnology for species modification must
also consider health regulations [33]. In this way, a two-stage process (1—ideal cultivation
conditions for growth and 2—adverse conditions for biomolecule production) can be used
as a biotechnology strategy to increase microalgae polysaccharides yield and not lose the
quality of the culture [24].

2.2. Cultivation Conditions to Increase the Concentration of Polysaccharides

The parameters of the microalgae cultivation process can influence the polysaccharide
content in the cell [34] (Table 2). Nutrient limitation is usually performed to accumulate
these macromolecules in microalgae cultures. However, a decrease in the growth rate of
the microorganism is evidenced. In this sense, two-stage cultivation is an alternative to
maintaining a high production of biomass and polysaccharides yield. In the first stage,
microalgae cultivation is performed with a complete supply of nutrients to favor biomass
production. In the second stage, specific nutrient deprivation is applied to improve the
polysaccharides production [35].
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Table 2. Production of polysaccharides by microalgae and influence of cultivation parameters.

Microalga Culture Medium Cultivation Conditions Substrate Results Reference

Chlorella minutissima,
Chlorella sorokiniana and

Botryococcus braunii
BG-11 medium

Carbon (Na2CO3) and nitrogen
(NaNO3) content in the

culture medium
-

Lower concentrations of Na2CO3 (0.02 g L−1)
and (NaNO3) (0.2 g L−1) promoted higher EPS
production in Chlorella minutissima (0.245 g L−1),

Chlorella sorokiniana (0.163 g L−1) and
Botryococcus braunii (0.117g L−1)

[36]

Neochloris oleoabundans Modified medium SE Carbon/nitrogen (C/N) ratio,
nitrogen limitation

Glucose, galactose,
maltose, lactose

and sucrose

The use of 20 g L−1 of glucose and 12 mM of
NaNO3 (low N concentration) were favorable to

the production of polysaccharides.
[37]

Porphyridium purpureum

ASW medium with low
carbon/nitrogen ratio (LC/N),
medium carbon/nitrogen ratio

(MC/N) and high
carbon/nitrogen ratio (HC/N)

C/N ratio -

HC/N and MC/N resulted in higher EPS
production (around 1.75 g L−1). Higher C/N

ratios stimulated the production of
this molecule.

[38]

Porphyridium sordidum and
Porphyridium purpureum Artificial sea water

Different wavelengths—blue
light (430 nm); combination of
lights green/yellow/orange

(572/625/640 nm), orange/red
(660/780 nm) and white light

(combination of all)

-

White light was the most suitable for the
production of polysaccharides (Porphyridium

sordidum (0.10 g L−1) and Porphyridium
purpureum (0.14 g L−1)

[39]

Botryococcus braunii Zehnder medium Light intensity and
nitrogen concentration -

Higher production of polysaccharides at higher
light intensities (650–950 µmol m−2 s−1) and
nitrogen concentration of 6 mM, supplied as

potassium nitrate.

[40]

Chlorella vulgaris BG-11 medium Light intensity and temperature -
Accumulation of 32.7% of polysaccharides
under the conditions of 65 µmol m−2 s−1

and 28 ◦C.
[41]

Chlorella sp. MLA medium Different sources of carbon
and salinity

Methanol, ethanol,
sucrose, glucose, sodium

acetate, glycine,
sodium bicarbonate.

Higher production of polysaccharides
(0.01g L−1) with microalgae cultured with

glucose and sucrose. When increasing salinity
from 0.1% to 3.5%, EPS concentrations

increased 2-fold.

[42]



Polysaccharides 2022, 3 447

Table 2. Cont.

Microalga Culture Medium Cultivation Conditions Substrate Results Reference

Spirulina sp. Zarrouk médium Light intensity and
NaCl concentration -

Light intensity did not affect polysaccharide
production. High concentration of NaCl

(40 g L−1) increased the production of EPS
(1.02 g g−1 of biomass).

[43]

Chlorella sp. BG-11 medium Light intensity.
Mixotrophic cultivation Glucose

Light intensity of 65 µmol m−2 s−1 and glucose
concentration of up to 1% w v−1 improved EPS
yields (1.46 g L−1) in semi-continuous culture.

[44]

Botryococcus braunii BG-11 and D medium
Influence of nitrogen

concentration and salinity of
culture media

-

EPS production was higher in medium D
(0.549 g L−1) than in BG11 (0.336 g L−1).

Influence of lower N concentration and higher
salinity of medium D (NaNO3 = 0.689 g L−1 and

NaCl = 0.008 g L−1)

[45]
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Nitrogen is an essential nutrient for synthesizing vital compounds such as pro-
teins, amino acids, enzymes, coenzymes, and other compounds [46]. Nitrogen depri-
vation primarily influences the efficiency of photosynthetic systems and directs microalgae
metabolism toward the accumulation of reserve compounds (carbohydrates and lipids) [47].
Nagappan and Kumar [48] applied effluents with reduced nitrogen concentration in mi-
croalgae Dunaliella tertiolecta, Dunaliella salina, Chlorella minutissima, and Desmodesmus sp.
MCC34 cultures. Compared to nutrient-sufficient conditions, microalgae cultivated with ni-
trogen deficiency increased carbohydrate production by 1.5 times. Desmodesmus sp. showed
the highest increase in carbohydrate content (18.3%) compared to the other microalgae.

Phosphorus is another essential element for synthesizing important compounds for
cellular metabolisms such as DNA and ATP. Sulfur is necessary for the main cellular
processes in microalgae growth [49]. As with nitrogen, limiting phosphorus and sulfur
diverts protein synthesis and directs the accumulation of carbohydrates and lipids [50].

Stress conditions caused by a gradual increase in salinity, different light intensities,
and temperature also influence the carbohydrate content in microalgae cells [51]. The
salinity affects the synthesis of polysaccharides due to the need to maintain an osmotic
balance between the intracellular and extracellular environments [52,53]. Light intensity
influences the growth rate and biomass composition of the microorganism. Thus, this
parameter contributes to the accumulation of carbohydrates, as it stimulates the precursors
of starch synthesis (dihydroxyacetone and sucrose). Long lighting periods are crucial for
carbohydrate accumulation and content [54]. Besides, the spectral composition of light can
affect photosynthetic activity and polysaccharide production by microorganisms [34].

Temperature can influence the production of polysaccharides in combination with
light energy, as it affects the absorption of nutrients, the structure of cell membranes, and
the evolution of oxygen from the PSII complex [55]. The optimal temperature for the
production of polysaccharides depends on the strain of microalgae studied. Zhao, Han,
and Cao [56] analyzed the effect of temperature on the production of polysaccharides
from Phaeodactylum tricornutum, Chlorella vulgaris, and Nannochloropsis sp., with a light
intensity of 150 µmol photons m−2 s−1. The polysaccharide content was determined by
using gas chromatography. The microalgae Chlorella vulgaris showed higher production
of the macromolecule at a temperature of 25 ◦C (relative area of the absorption peak of
28.32). The polysaccharide contents of Phaeodactylum tricornutum and Nannochloropsis sp.
were lower than Chlorella (peak area of 6.02 and 1.31) at temperatures of 20 ◦C and 25 ◦C,
respectively. In this way, the temperature influences the production of polysaccharides,
showing a relationship with the species of the producing microorganism.

The carbon metabolic mode (photoautotrophic, heterotrophic, photoheterotrophic,
or mixotrophic) must also be considered in polysaccharides production by microalgae.
Heterotrophic and mixotrophic cultures increase the microbial growth rate, promoting a
higher accumulation of carbohydrates [34]. Zhang et al. [57] evaluated the production of
EPS by the microalgae Chlorella zofingiensis and Chlorella vulgaris grown under mixotrophic
conditions in BG-11 medium supplemented with glucose. Chlorella zofingiensis and Chlorella
vulgaris reached maximum EPS production of 208.4 and 364.3 mg L−1, respectively.

3. Applications of Microalgae Polysaccharides

Microalgae are promising alternatives for obtaining polysaccharides while contribut-
ing to the mitigation of environmental pollution generated by industrial waste [7]. Microal-
gae are commonly known for growing faster than any terrestrial plant, not needing fertile
land for their cultivation, and thus not competing with food production. Its efficiency
for carbon fixation is 10 to 50 times that of any plant. Microalgae contribute to reducing
greenhouse gases by capturing carbon dioxide from industrial processes. They can grow
in freshwater, seawater, brackish, and wastewater [13]. Microalgae polysaccharides have
rheological and biological properties for applications in food and sustainable agriculture
fields (Figure 2, Table 3).
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Table 3. Applications of microalgae polysaccharides in the food, animal feed and agriculture sector.

Microalgae Application Polysaccharide Main Results Reference

Arthrospira platensis,
Chlorella vulgaris Food sector

Native and modified
forms of

polysaccharides as
dietary prebiotics

Prebiotic score was 6.93 ± 0.05
and Chlorella vulgaris was

2.54 ± 0.02, results significantly
high compared to the control

(−1.35 ± 0.04).

[58]

Anabaena sp. CCC 745 Food sector Cyanobacteria
exopolysaccharides

Exopolysaccharides exhibited
pseudoplastic fluid behavior,

and significant antioxidant and
scavenging activity.

[59]

Porfyridium sp. Food sector Exopolysaccharides of
red microalga

Exopolysaccharides showed
intrinsic viscosity higher than

the values reported in the
literature for hydrocolloids.

[60]

Lyngbya stagnina Food sector Cyanobacteria
exopolysaccharides

Exopolysaccharides showed
non-Newtonian behavior,
pseudoplastic, and stable

viscosity. Results similar to
commercial Xanthan gum.

[61]

Nannochloropsis oceanica Food sector Cellulose nanofibrils
from Nannochloropsis

Cellulose nanofibrils with
3–4 GPA tensile strength, being

similar or higher than other
general packaging

reinforcements
currently applied.

[62]
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Table 3. Cont.

Microalgae Application Polysaccharide Main Results Reference

Arthrospira platensis,
Dunaliella salina,
Porphyridium sp.

Agriculture
Polysaccharides

extracts used
for irrigation

Polysaccharides extracts
in tomato plants improved

significantly the nodes number,
shoot dry weight, and shoot
length compared to control.

[63]

Nostoc commune,
Scytonema javanicum,

and Phormidium
ambiguum

Agriculture Cyanobacteria
exopolysaccharides

Polysaccharidic matrix produced
by different cyanobacteria can
influence their growth in soil.

[64]

Nostoc sp.,
Phormidium sp.,

and Scytonema arcangeli
Agriculture

Tacki-SprayTM (TKS7),
which consists of

bio-polysaccharides
and tackifiers, was used

as a soil fixing agent.

Combined application of
cyanobacteria with soil fixing
chemicals can rapidly develop

cyanobacterial crust formation in
the field within 12 months.

[65]

Phormidium tenue Agriculture
Crude polysaccharide

synthesized by
Phormidium tenue

The polysaccharide significantly
increased seed germination and
metabolic activity of the seedling
of the shrub Caragana korshinskii.

[66]

Spirulina platensis Animal feed Spirulina platensis crude
polysaccharides

Spirulina platensis
polysaccharides attenuate lipid
and carbohydrate metabolism
disorder in high-sucrose and

high-fat diet-fed rats.

[67]

Spirulina platensis Animal feed
Sulfated

polysaccharide from
Spirulina platensis

In vitro antioxidant activity,
antibacterial activity, and

Zebrafish growth and
reproductive performance.

[68]

Chlorella pyrenoidosa Animal feed Chlorella pyrenoidosa
polysaccharides

Chlorella pyrenoidosa
polysaccharides levels had a
positive effect on the specific
growth rate of the Trachemys

scripta elegans.

[69]

Spirulina platensis Animal feed Polysaccharide of
Spirulina platensis

Chemo- and radio-protective
effects of polysaccharide of

Spirulina platensis on
hemopoietic system of mice

and dogs.

[70]

3.1. Food Sector

Since 1950, microalgae have been consumed as a supplement and food source. Due to
their rich biochemical compositions, microalgae are considered a source of sustainable food
with nutritional value and functional quality. The most commonly used microalgal strains
for consumption include Chlorella, Spirulina, Dunaliella, Haematococcus, and Schizochytrium.
These microorganisms are GRAS (Generally Recognized as Safe) certified by the FDA [71].

The use of microalgae as a source of polysaccharides for applications in functional
foods, nutraceuticals, and supplements should be further explored due to the abundant
nutrients, bioactive compounds, and dietary fiber [25]. Microalgae polysaccharides have
biological properties that vary depending on their structural characteristics. For example,
β-glucan, which has glucose as structural components with β-1,3- or β-1,4-linear linkages
connected by β-1,6 linkages, shows the activity as dietary fiber, whereas the β-1,4 form
has no immunomodulatory effects [72]. Recent studies on applying polysaccharides and
their microalgae derivatives as dietary fibers have attracted attention as a new prebiotic
source for functional foods [58,73]. Furthermore, due to the high viscosity of microalgal
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polysaccharides over a wide range of pH, temperature, and salinity, microalgae have
the potential for applications in the food industry as thickeners and food additives [74]
(Table 2).

Polysaccharides from Spirulina platensis are widely used as a food additive or coloring
in various foods, such as ice cream, chewing gum, candy, popsicle, dairy products, soft
drinks, or jellies [75]. In addition to these applications, microalgae have been reported
as food ingredients for weight management due to their non-digestible polysaccharides
that can act as natural anti-obesity agents [76,77]. Guo et al. [78] evaluated the anti-obesity
effects of polysaccharides isolated from Chlorella pyrenoidosa and Spirulina platensis in obese
C57BL/6 mice induced by high-fat diets (HFD). β-glucan was a positive control. Polysac-
charides were administered daily for 10 weeks, with HFD feeding, via the intragastric route.
Polysaccharides controlled excess weight, protecting against energy imbalance, glucose
tolerance, systemic inflammation and dyslipidemia. In addition, there was a decrease in
lipogenesis in the liver and a restoration of beneficial intestinal bacteria [78].

Polysaccharides are one of the most common biopolymers used in the formulation
of packaging films. Microalgae polysaccharides are also promising for food packaging
development because they are biodegradable and sustainable. In addition to its emulsify-
ing capacity and antifungal property, Morales-Jiménez et al. [79] observed the potential
of polysaccharides from three microalgal strains (Nostoc sp., Synechocystis sp., and Por-
phyridium purpureum) for the formation of biofilms (transparent, flexible, rough with pores
and fissures). This study demonstrates that microalgae polysaccharides have the poten-
tial for developing food and food packaging that guarantee the conservation and quality
of products.

Moreover, polysaccharide-based packaging has efficient mechanical and gas barrier
properties [80]. Some studies have reported that cellulose of microalgal origin can be
used to reinforce packaging materials in the development of bioplastics. However, natural
cellulose fibers are not thermally stable, present incompatibility with some polymers, and
absorb moisture. These aspects can be resolved from other forms of cellulose, for example,
cellulose nanofibrils [81,82] (Table 2).

3.2. Animal Feed

Structural polysaccharides such as cellulose and hemicellulose (xylans, glucans, man-
nans, galactans, and their sulfated derivatives) constitute the cell wall of eukaryotic mi-
croalgae. These components provide rigidity and the formation of a barrier against environ-
mental interference [30]. The thick cell wall of microalgae with polysaccharides or cellulose
can make digestion of microalgae biomass difficult for some animals [83]. Thus, animal
feed producers often use enzymes to process the biomass so that nutrients are available for
absorption [84]. This statement does not reflect the cyanobacterium Spirulina, because its
cell wall does not contain these polysaccharides [85].

However, microalgae polysaccharides have advantages in terms of animal feed. Due
to increasing regulatory requirements and consumer preference for antibiotic-free meat,
producers are looking for alternatives to maintain animal performance and maximize
profitability. Some microalgae polysaccharides, such as β-glucan, have antibacterial prop-
erties and can be used as antibiotic substitutes in chicken feed. Broiler chickens fed dry
biomass of Euglena gracilis (55% β-glucans content) showed improved protection against
coccidiosis [31].

Feeding with glucans, peptidoglycans, lipopolysaccharides, fucoidan, chitin, or crude
microalgae biomass can improve the immune system in aquatic species. Cell-wall polysac-
charides enhance cytokine, phagocytosis, and proliferation of immune cells in aquatic
species [86]. Chlorella sp., for example, is a source of β-glucan polysaccharide [32] that
present antibacterial and immunostimulant activities for fish [87].

Replacement of fishmeal with Chlorella vulgaris biomass (6–8%) provided a better
immune response of Macrobrachium rosenbergii postlarvae and a high survival rate against
Aeromonas hydrophila infection [88]. The oral administration of the biomass of Tetraselmis
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chuii, Nannochloropsis gaditana, and Phaeodactylum tricornutum increased the defense activity
of the fish Sparus aurata L. [89]. The biomass of Dunaliella salina increased the survival rate
of Penaeus monodon shrimp infected with white spot syndrome. An increase in antioxidant
factors (superoxide dismutase and catalase) was observed in shrimp [90]. Feed containing
biomass of the Parietochloris incisa increased the survival rate of Poecilia reticulata (Guppy
fish) by increasing their lysozyme levels [91]. Leukocyte count, blood count, hemoglobin,
albumin, and total protein levels increased when 10% of Arthrospira platensis was fed to
rainbow trout (Oncorhynchus mykiss) [92].

All the studies cited show the advantages of using microalgae biomass in animal
feed. These advantages were related to polysaccharides composition and their biological
properties, such as antioxidant, antibacterial, and antiviral properties [7].

3.3. Sustainable Agriculture

Agrochemicals such as pesticides and fertilizers contain toxic elements and contam-
inants for food, soil, and water. This contamination can cause several environmental
consequences on global biodiversity. The agricultural systems that aim to replace synthetic
substances such as chemical fertilizers avoid environmental damage and contribute to
sustainable agriculture. In this scenario, agrochemicals of biological origin stand out, such
as biofertilizers, biostimulants, and biopesticides [93,94].

Microalgae play a variety of roles in agriculture. One of the most explored activities of
microalgae in agriculture is its ability to improve plant and soil properties, reducing the
environmental impact generated by chemical fertilizers [95,96]. Microalgae polysaccharides
are potential biostimulants of plants for protection against biotic and abiotic stress [63].
The enrichment of soil and plants through microalgae is related to the release of bioactive
substances (vitamins, amino acids, polypeptides, antibacterial or antifungal substances,
phytohormones, and polysaccharides) [95,96]. The release of polysaccharide material
collaborates to increase the germination rate and biomass accumulation in vascular plants.
EPS from cyanobacteria and microalgae can retain water and maintain soil moisture [66].
Studies have demonstrated the potential of these molecules to stimulate different metabolic
pathways in plants, helping their growth and development (Table 2).

Crude extract of polysaccharides from three microalgae was applied to plant Solanum
lycopersicum by irrigation. Using 1 mg mL−1 of polysaccharides from Arthrospira platensis,
Dunaliella salina, and Porphorydium sp. in tomato plants significantly improved the nodes
number, shoot dry weight, and shoot length by 75%, 46.6%, and 25.26% compared to the
control, respectively. Furthermore, the treatment with crude polysaccharides increased the
concentrations of carotenoids, chlorophyll, and proteins [63]. Guzmán-Murillo et al. [97]
found that EPS extracted from Phaeodactylum tricornutum and Dunaliella salina stimulated
pepper germination under saline stress conditions. Furthermore, EPS from Dunaliella salina
showed the potential to stimulate germination, growth, and tolerance of tomato and wheat
plants under saline stress.

Some polysaccharides may have antifungal activity, acting as a biopesticide in veg-
etable crops [98]. Microalgal polysaccharides, such as alginate, have been shown to induce
plant resistance by increasing the activity of several defense-related enzymes. Sodium
alginate can be applied to improve seed germination, shoot elongation, root growth, and
resistance against plant pathogens. In in vitro experiments, polysaccharide extracts from
Anabaena sp. and Ecklonia sp. inhibited the growth of colonies of the fungus Botrytis cinerea.
Polysaccharides from Anabaena sp., Ecklonia sp., and Jania sp. reduced the area infected by
the fungus in strawberry fruits, suggesting that they can be good crop protection products
when used in pre-harvest treatment [63].

The studies presented demonstrate the high potentiality of microalgae polysaccharides
in agriculture. Polysaccharides help plant growth and protect plant crops against contami-
nants. Therefore, these compounds have a high potential to be applied to replace chemical
fertilizers and pesticides, collaborating with alternatives for sustainable agriculture.
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4. Future Work and Opportunities

Microalgae polysaccharides have applications in several areas, including human
and animal nutrition and agriculture. These macromolecules have been studied and
characterized for several decades. However, compared to other microorganisms such as
bacteria, algae, and macroalgae, its commercial application is limited due to the lower
biomass production [35]. Studies involving different strategies to increase the production
of polysaccharides by microalgae have been carried out [39,99]. However, the production
process faces challenges that prevent the EPS production from being viable for commercial
application. The main limitations of these microorganisms are the high operational costs of
production related to the culture medium, CO2 addition, electrical energy consumption,
and stages of biomass recovery. Another difficulty is increasing the process from laboratory
to industrial scale [9,35]. According to Delattre et al. [35], in 2013, the production cost
of microalgae polysaccharides was around 1000 and 3000 euros per kg of product. New
alternatives can reduce the nutritional costs of the culture medium, such as using effluents
as a source of nutrients in microalgae cultivation [100,101].

In this sense, strategies that aim to increase the biomass yield of microalgae cultures
can balance the costs related to the recovery stage. The microalgal biorefinery enables
the application of microalgae macromolecules in various sectors of the economy (food
and biofuel production, environmental area). In this way, microalgae cultivation for
the production of polysaccharides can become more viable for commercial application.
Besides, it is interesting to investigate microalgae strains that present higher yields of
polysaccharides. The nature of the produced macromolecules also must be known. Using
nanotechnological processes to develop polysaccharide-based products can also leverage
the food, health, and beauty markets [11].

Given the above, further research on microalgae cultivation should be carried out
to improve the production of polysaccharides and make the process more economically
viable. Thus, new approaches are crucial for the development of this process, such as the
optimization of cultivation conditions/design of photobioreactors and the replacement of
culture media with domestic or industrial effluents [9].

5. Conclusions

Microalgae are innovative and alternative sources for obtaining sustainable and func-
tional polysaccharides. These microorganisms present photosynthetic nature and the ability
to use industrial waste as nutrients. The properties responsible for the physiological effects
and/or biological functions of microalgal polysaccharides result from the diversity of
structures and biochemical compositions of these molecules. Potential bioactive proper-
ties of microalgal polysaccharides include antioxidant, anti-inflammatory, antitumor, and
antimicrobial action, among others, which provide their application in several areas. The
potential applications of microalgae-based polysaccharides in the food, packages, and agri-
culture sector are remarkable. However, new strategies and production conditions must be
developed to increase cell growth rate, biomass production, and yield of polysaccharides.
Moreover, biotechnological steps to produce these compounds should be optimized for
large-scale production, expanding market competition. Thus, using microalgae as a source
of functional and sustainable polysaccharides in the food and agriculture sector can pro-
mote health, quality of life, and global food security, mitigating environmental problems
caused by the expansion of agricultural production.
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