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Abstract: Biodegradable films emerge as alternative biomaterials to conventional packaging from fos-
sil sources, which, in addition to offering protection and increasing the shelf life of food products, are
ecologically sustainable. The materials mostly used in their formulation are based on natural polysac-
charides, plasticizing agents, and bioactive components (e.g., antimicrobial agents or antioxidants).
The formulation of biodegradable films from polysaccharides and various plasticizers represents
an alternative for primary packaging that can be assigned to specific food products, which opens
the possibility of having multiple options of biodegradable films for the same product. This review
describes the main characteristics of the most abundant polysaccharides in nature and highlights
their role in the formulation of biodegradable films. The compilation and discussion emphasize
studies that report on the mechanical and barrier properties of biodegradable films when made from
pure polysaccharides and when mixed with other polysaccharides and plasticizing agents.
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1. Introduction

Polysaccharides are the most abundant natural polymer on Earth, which are composed
of 10 or more repeating units of monomeric sugars that are linked by glycosidic bonds [1].
These biological macromolecules have vital functions (e.g., structure and energy production)
in the organisms that possess them; however, their importance for human beings is due to
their functional properties demonstrated, e.g., as antitumor and antioxidant agents, as well
as regulators of intestinal flora [2].

In the industry, polysaccharides are valuable because they are a potential replacement
for petroleum-based polymers; however, it is known that their application has not been
fully exploited, despite their versatility [3]. The study by Souza et al. [4] revealed that the
use and application of these natural materials has grown by 17% in recent years (2017–2021),
which is equivalent to a world market of up to 10 billion USD; in addition, it is expected
that, at the end of this decade (2030), this market will be more than 22 billion USD. In
this sense, there is interest in testing alternative polysaccharide extraction processes that
improve yields or provide purer extractions, as well as alternative sources (e.g., residues)
to extract new polysaccharides [4].

The conventional extraction of soluble polysaccharides is by water extraction, while,
for non-soluble ones, mixtures of different organic solvents are used (e.g., ethanol, methanol,
and acetone) that allow modifying the loads and carrying out the extraction. However, new
methodologies and processes (such as ultrasonic-assisted extraction, microwave extraction,
supercritical fluid extraction, and enzymatic extraction) have been tested, due to the advan-
tages they bring in terms of improvements in extraction yield, time reduction, compound
purity, and even environmental friendliness [2,5].

On the other hand, there is evidence that the extraction method significantly affects
the properties and functionality of polysaccharides, in such a way that the application
options are expanded. For example, polysaccharides with thermal stability can be subjected
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to hydrolysis to obtain molecules with a lower molecular weight, polysaccharides with
biological activity can be used as food supplements, and polysaccharides with high viscosity
are good candidates as food additives or film formers [5].

A biodegradable film is considered a primary packaging made of biodegradable
polymers, particularly polysaccharides, which has advantages over synthetic packaging [6];
specifically, it can preserve of quality and extend the shelf life of the minimally processed
products [7,8] without damaging or altering the environment [9]. Therefore, this review
provides an overview of the current state of the art of biodegradable films, paying special
attention to the polysaccharides used for their formulation. In addition, the characteristics
that biodegradable films must meet to be functional materials are described. The last
section exposes the positive or negative changes that biodegradable films present when
they are made with a mixture of polysaccharides and plasticizing agents.

2. Sources and Characteristics of Polysaccharides

Natural polysaccharides are synthesized to fulfill various biological functions (e.g., en-
ergetic and structural) in the organisms and microorganisms that produce them [1]. Figure 1
shows some examples of natural polysaccharides and their sources. Most natural polysac-
charides are found in plants in the form of energy reserves; they can be synthesized by
algae, bacteria, fungi, and yeasts or extracted from the exoskeleton of arthropods [10].
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2.1. Plant Polysaccharides

Plant polysaccharides are macromolecules composed of identical or different monosac-
charides linked by α or β glycosidic bonds [11]. This class of polysaccharides is divided
into two categories according to their functionality, storage, and structure; the first category
encompasses polymers that are part of the energy reserves of plants, while the second
category encompasses those that are part of the cell walls in such a way that they confer
rigidity and flexibility to the plant [12]. Some plant polysaccharides are described below.

• Starch is a homopolysaccharide made up of glucose units, which form linear amylose
chains linked by α-(1–4) bonds and branched amylopectin chains that are connected
to amylose by α-(1–6) bonds [13]. Starch is the main storage carbohydrate of green
plants, which has been isolated and used as a raw material for the manufacture of
drugs, plastics, paints, and cardboard. Commercially, starch is mainly extracted from
corn; however, there are other grains and tubers (e.g., rice, wheat, cassava, and potato)
that are alternative sources of extraction. The functionality of starch is based on its
properties of viscosity, water retention, and gel formation. However, there is research
showing that these properties are influenced by the physical (e.g., particle size) and
chemical (i.e., proportion of amylopectin and amylose) characteristics of the starch
granules; therefore, it is very common to seek to modify the starch properties natives
through physical, chemical, or enzymatic processes [14]. Starch is the most studied
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natural polymer because it is a promising candidate due to its availability, low price,
and high biodegradability [15].

• Cellulose is the most abundant, economic, and available carbohydrate polymer in
the world because it can be extracted from plants or their waste [16]. Cellulose
is a polysaccharide made up of a linear chain of glucose linked by β-(1–4) bonds.
The hydroxyl groups present in its structure are responsible for the intermolecular
hydrogen bonds that are formed, resulting in a compact and crystalline structure;
however, these links can cause an irregular three-dimensional conformation causing
amorphous regions in the molecule [17]. Cellulose is used in health areas for its
antibacterial activity, however, its main application is in the generation of materials
and matrices [16].

• Pectin is a polysaccharide found in the cell walls of terrestrial plants, mainly in
the skin of fruits and vegetables (e.g., citrus). It is made up of a galacturonic acid
backbone linked by α-(1–4) bonds, which may have substitutions of rhamnose units
by α-(1–2) bonds, with side-chains composed of arabinose, xylose, or galactose [18].
Pectin is soluble in water and has a high viscosity, which is appreciated for generating
gels; particularly in the food industry, these properties allow it to act as a food additive
in the production of jams, jellies, and confectionery [19].

• Gums are highly branched complex carbohydrates composed of various sugars such
as arabinose, galactose, rhamnose, and mannose; however, they can also be mixed with
proteins or resins, characterized by having colloidal properties [20]. Gums are mainly
extracted from plants, seeds, trees, and shrubs (e.g., Arabic, karaya, and cashew gums;
however, they are also produced by bacteria. Gums are gelling, thickening, emulsi-
fying, and stabilizing agents, with applications in the food, textile, pharmaceutical,
cosmetic product, coating, encapsulant, and film industries [21].

2.2. Algal Polysaccharides

Polysaccharides are the most abundant macromolecules in the structure of algae, since
they are found as mucopolysaccharides, i.e., structural and energy storage molecules [22].
Although between 4% and 76% of the dry weight of algae corresponds to polysaccharides,
the content varies depending on the species of algae; for example, green algae have lignin,
cellulose, and hemicellulose, brown algae have only cellulose, and red algae are made of
dietary fiber [23]. Some polysaccharides found in algae are described below.

• Agar is a thermoreversible material composed of a linear chain of galactopyranose
units linked by (1–4) bonds [24]. This gelatinous substance has gelling, thickening,
texturizing, and stabilizing properties, and it is mainly used in the food industry
(e.g., beverages, confectionery, dairy products, and dressings) and in bacteriological
and biotechnological processes (e.g., culture media) [25].

• Carrageenans and galactans are extracted polysaccharides from marine red algae with
very similar characteristics. Galactans are composed of a chain of galactoses linked
by (1–6) bonds with (1–3) branches [26], while carrageenans have their main chain
of galactoses linked by (1–3) bonds and branches with (1–4) links [27]. Both polysac-
charides are used as gelling and thickening agents in the food industry due to their
rheological properties. In addition, they are important in the medical, pharmaceutical,
and cosmetic areas due to their antiviral, antitumor, and anticoagulant activity [28].

• Alginate is a heteropolysaccharide that is extracted mainly from brown algae, consist-
ing of guluronic and mannuronic acids [29]. It is characterized by its resistance and
flexibility, which give it high viscosity and stability, as well as gelling properties [30].
In addition, it is valued for its antibacterial activity, biodegradability, nontoxicity,
and biocompatibility. Its industrial application is directed particularly toward the
generation of particles, matrix materials, encapsulants, or biocontrol agents [29].
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2.3. Animal Polysaccharides

Animal polysaccharides are considered natural biopolymers due to their biodegrad-
ability, biocompatibility, nontoxicity, and non-antigenicity. Furthermore, these biological
macromolecules play a structural and storage role in animals, since they are part of the
tissues and cell matrix, and they are a source of energy. These polysaccharides can be
divided into chitins and glycosaminoglycans [31,32]; the major animal polysaccharides are
described below.

• Chitin is a nitrogenous polysaccharide made up of N-acetyl-D-glucosamine that is
extracted from the external skeletons of crustaceans (e.g., crabs, lobsters, and krill),
invertebrate animals (e.g., octopuses, clams, and snails), insects (e.g., scorpions, ants,
and spiders), and some fungi [33]. This polysaccharide has a crystalline structure;
however, its association with protein molecules produces amorphous zones, which
makes its application extensive. For example, chitin is used as an enzyme immobilizer,
as well as for the generation of biosensors, excipients, and drug vehicles, due to its
gel-forming properties [34].

• When chitin reaches 50% deacetylation it becomes a semicrystalline material called
chitosan. This polymer is the only one with pseudo-natural cationic characteristics [34].
In addition, the structural and chemical change of chitin to chitosan makes it totally
soluble, biodegradable, biocompatible, and antimicrobial; thus, its application varies a
little with respect to chitin. Studies have demonstrated its use as a flocculant, purifier,
gel former, carrier, and microbial biocontrol agent [35].

• Hyaluronic acid is made up of disaccharides of N-acetylglucosamine and glucuronic
acid linked by (1–3) and (1–4) bonds, and it is found in the body tissues and fluids
of vertebrate animals and some bacteria [36]. This polysaccharide is of commercial
interest due to its antigenic potential and viscoelastic properties; in particular, the
pharmaceutical, dermatological, and cosmetic industries use it as a preservative,
healing, and anti-wrinkle agent [37].

2.4. Bacterial Polysaccharides

Bacterial polysaccharides are natural biopolymers made up of monosaccharide chains,
which, depending on the type of chain, have rheological, biological, and physicochemical
properties. These molecules are valued for their viscous, thickening, stabilizing, and
gelling properties, in addition to their antitumor, anti-inflammatory, and antimicrobial
activities [38]. The production of bacterial polysaccharides can be carried out in two ways,
extracellularly and intracellularly, depending on the substrates and requirements of the
bacteria [39]; the most commercially important bacterial polysaccharides are described
below.

• Dextran is an exopolysaccharide generally synthesized by lactic acid bacteria. Its
structure is made up of glucose linked by α-(1–6) bonds and branches with α-(1–2),
α-(1–3), or α-(1–4) links. Commercial dextran is produced by Leuconostoc mesenteroides
(generally recognized as safe, GRAS); therefore, its application is mainly directed
toward food products (e.g., bakery and confectionery) taking advantage of its gelling,
texturizing, and emulsifying properties. However, the properties of dextran are a
function of the producing strain (e.g., Lactococcus, Lactobacillus, and Streptococcus) and
the structural and physicochemical characteristics they possess [40,41].

• Gellan, commercially known as gellan gum, is a polysaccharide with a linear structure
of acetylated tetrasaccharide units synthesized by Sphingomonas elodea. Its rheological
properties give it a gelling action, which is why it is used in the formation of matrices,
tissue engineering, and encapsulation [42,43].

• Xanthan, commercially known as xanthan gum, is a heteropolysaccharide of pentasac-
charide units synthesized by Xanthomonas campestris. It is important for the textile,
medical, and food industries for its stabilizing, thickening, and gelling properties [44].
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It is a gum with wide applications, since its stability and characteristics depend on pH
and temperature; however, its synthesis is limited by high production costs [45].

• Levan is a polymer made up of fructose linked by β-(2–6) bonds and branches with
β-(2–1) links [46]. The structure and molecular weight of the polymer depend on the
producing organism (e.g., Acetobacter, Bacillus, and Pseudomonas) and the fermentation
conditions (e.g., pH, temperature, and sucrose concentration); hence, each type of
levan has its own functional properties, stability, viscosity, and immunogenic activity.
Its application is directed toward the food industry as a texture and flavor enhancer,
prebiotic, and stabilizer; in addition, it is used as a coating for nanoparticles [47].

2.5. Fungal Polysaccharides

Fungal polysaccharides are found in the cell wall or are formed from energetic pro-
cesses in edible fungi and yeasts [48]. They are polymeric molecules with linear and
branched structures that are composed of homo- and heteropolysaccharides that can be
joined by β-(1–3), β-(1–6), or α-(1–3) bonds, resulting in complex structures with different
characteristics. For example, the antitumor activity of these polysaccharides is known to be
influenced by the spatial conformation of the molecule, the degree of branching, and the
molecular mass [49]. Some fungal polysaccharides are described below.

• Elsinan is an extracellular polysaccharide made up of α-(1–3) and α-(1–4) linked
maltotriose and maltotetraose units produced by Elsinoe spp. when exposed to a
medium with maltose, glucose, fructose, sucrose, and starch. Elsinan is soluble in
water and insoluble in organic solvents, and it exhibits high viscosity; thus, its main
function is to form films [50].

• Pullulan is a linear homopolysaccharide synthesized by Aureobasidium pullulans;
it is made up of maltotriose and maltotetraose units with α-(1–3), α-(1–4), and
α-(1–6) bonds, with a three-dimensional structure similar to maltodextrin and amy-
lopectin [50]. In industry, it is used as a substitute for gelatin due to its rheological
characteristics, with the capability of forming gels, coatings, films, and encapsulates;
in addition, it is a dietary prebiotic and a stabilizer [47].

• β-Glucan is a dietary fiber located in the cell wall of algae, bacteria, yeasts, and fungi,
particularly Saccharomyces cerevisiae. Its structure is made up of glucose monomers
linked through β-(1–3) glycosidic bonds in bacteria and algae, β-(1–3) and β-(1–4)
bonds in bacteria, or β-(1–3) and β-(1–6) in yeasts and fungi. This polysaccharide
may be soluble or insoluble in water depending on its structure and molecular weight;
its applications stem from its hypocholesterolemic effect, viscosity, and resistance to
acidic pH [18,51].

• Galactan is a polysaccharide made up of galactoses linked by β-(1–4) and sometimes
β-(1–6) bonds [52], produced not only by fungi, but also by algae, animals, plants, and
other microorganisms. Galactan is important in the pharmaceutical industry due to its
antithrombotic, anticoagulant, anti-inflammatory, and antiviral activities, while the
food industry uses it as a food supplement [53].

3. Biodegradable Films

Biodegradable films and coatings are solid matrices formed by crosslinking between
polymers and additives (e.g., plasticizers and crosslinking agents) [54,55]; however, it is
important to identify the difference between both. Coatings are generated directly on
the product by spraying or immersion techniques, while films are pre-generated before
covering the product [56] by casting, extrusion, or electrospinning techniques [57]. The
main method for the generation of biodegradable films is the casting technique [58], in
which a dispersion between compounds (i.e., polymers and additives) is generated with
a volatile solvent, which is poured into a smooth mold and left to stand until the solvent
evaporates [59].
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Characteristics and Properties of Biodegradable Films

Biodegradable films are an alternative that the packaging industry has targeted, par-
ticularly for food packaging. Therefore, the function of biodegradable films is not to
completely replace synthetic packaging, but to mitigate the environmental impact gener-
ated by solid waste [60] and provide a benefit to food by intervening in its useful life [6,61].
Therefore, biodegradable films must meet the following requirements and characteristics
so that they can be functional [58,62]:

(1) prevent or mitigate mechanical damage,
(2) prevent or reduce lipid oxidation,
(3) prevent or reduce microbial spoilage,
(4) control oxygen absorption,
(5) generate a selective barrier to carbon dioxide and water vapor,
(6) regulate the generation of ethylene to delay senescence,
(7) regulate the release of food additives (e.g., antioxidants, dyes, and flavors).

Biodegradable films require at least one polymeric component, based on lipids (e.g., waxes,
fatty acids, and acylglycerol), proteins (e.g., caseins, whey protein, and zeins), polysaccha-
rides (e.g., cellulose, starch, and gums), or their mixtures [9]. In addition, additives (such
as plasticizers and surfactants) to modify the intermolecular bonds between polymers can
be incorporated, or even bioactive compounds with fungicide, herbicide, and antioxidant
capacity (e.g., natural extracts) to inhibit the development and spread of pathogenic mi-
croorganisms [63–66]. Accordingly, the thickening, gelling, and emulsifying properties of
the dispersion, the texture of the matrix during polymerization, the cohesion and assembly
when dehydrated, and the organoleptic and mechanical characteristics in the final film are
improved [55,67–71]. However, not all polymers have the intrinsic properties suitable for
use in the production of biodegradable films [72].

Polysaccharides are the most used polymers in the formulation of packaging materials
for food preservation, due to their low cost and accessibility; however, the choice of
polysaccharides in the formulation of biodegradable films is preferred due to the easy
modification of nature hydrophilic with additives, which is reflected in its mechanical and
barrier properties [9].

The efficiency of barrier properties such as water vapor permeability (WVP), ethylene
content, and oxygen level maintain control of the transfer of ambient moisture and volatile
components (e.g., aromas and flavors) [73], which influence the food preservation [74],
dehydration of fresh products, hydration of dry products, or oxidation of polyunsaturated
fats in food [9]. On the other hand, mechanical properties such as tensile strength (TS),
elongation at break (EB), and young modulus (E) are related to the integrity and brittleness
of films during handling and storage [75]. Some investigations reported that mechanical
properties improved with the incorporation of hydrophobic additives (e.g., glycerol or sor-
bitol) [76]. Physicochemical characteristics such as color, opacity, luminosity, morphology,
and roughness are directly related to the type and concentration of polysaccharides, as
well as the film-making method [77,78]. However, the need to understand the behavior of
polysaccharides and additives to improve the properties and functionality of biodegradable
films is reflected in the increasing number of reported studies, as shown in the next section.

4. Biodegradable Films Based on Polysaccharides

According to the Scopus database [79], studies on biodegradable films have had
an average annual increase of 13% in the last decade, highlighting a 24% increase in
publications last year (2021). According to published studies [79], polysaccharides are
the most widely used materials for the generation of biodegradable films, due to their
affordable cost, variety of extraction sources, and functional properties. Current studies
that have characterized biodegradable films from different sources (i.e., plants, animals,
bacteria, algae, and fungi) are grouped in Table 1. When analyzing the mechanical and
barrier properties, different results can be observed, apparently without any relationship;
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however, each study followed its own methodology where the type and concentration of
polysaccharides or additives may have varied.

Table 1. Properties of biodegradable films based on polysaccharides.

Polysaccharide(s) or
Derivate(s)

Plasticizer(s) or
Additive(s)

Mechanical Properties Barrier Properties

ReferenceTS
(MPa)

E
(MPa)

EB
(%)

WVP
(10−10 g·m−1·s−1·Pa−1)

Plant polysaccharide(s)

Acid alcohol sorghum starch Glycerol ~1.0–1.4 nr ~5.0–6.0 nr [80]

Acetylated sorghum starch Glycerol ~0.2–2.8 nr ~4.0–19.0 nr [80]

Basil seed gum Glycerol 21.3 nr 25.9 237.0 [81]

Basil seed gum modified Glycerol 26.5–46.4 nr 23.8–36.9 120.0–215.0 [81]

Butylated hemicelluloses nr ~40.0–50.0 ~40.0–55.0 ~9.0–10.0 nr [82]

Cassava starch Glycerol 2.4 51.8 43.8 2.8 [83]

Carboxymethyl cellulose Glycerol 32.3 nr 35.6 861.7 [84]

Carboxymethyl cellulose Glycerol 20.0 nr 30.4 ~2830.0 [85]

Carboxymethyl cellulose nr ~37.5 nr ~26.0 ~3.4 [86]

Carboxymethyl
cellulose/cellulose nanofiber Glycerol 20.2–23.1 nr 22.8–46.6 1083.3–1421.7 [84]

Carboxymethyl
cellulose/inulin Glycerol 7.3–21.9 nr 20.2–37.8 935.0–1125.0 [84]

Carboxymethyl
cellulose/cellulose
nanofiber/inulin

Glycerol 16.4–23.8 nr 34.6–41.3 978.3–1540.0 [84]

Carrot flour nr ~3.0 <0.1 * <0.1 nr [87]

Carrot flour/hydroxypropyl
methylcellulose nr ~3.0–7.0 ~0.4–0.6 * ~1.0–2.0 ~0.4–0.7 [87]

Cellulose regenerated nr ~70.0 ~98.0 ~6.0 nr [82]

Cellulose acetate nr ~80.0 ~80.0 ~22.5 nr [82]

Cellulose carbamate Glycerol ~45.0 ~80.0 ~10.0 nr [82]

Cellulose palmitate nr ~10.0 ~10.0 ~27.5 nr [82]

Cellulose octanoate nr ~10.0 ~10.0 ~117.5 nr [82]

Corn/octenylsuccinated
starch Glycerol 4.4 nr 45.7 2.9 [88]

Guar gum Glycerol 5.3 8.9 64.8 38.6 [89]

Guar gum Tween-20 41.9 * nr 1.8 nr [90]

Guar gum Glycerol 18.0 46.7 * 31.6 nr [91]

Guar gum/potato starch Glycerol 8.3 nr 8.6 <0.1 [92]

Hydrolyzed achira starch Glycerol 9.5 388.1 24.1 2.1 [93]

Hydrolyzed-succinated
achira starch Glycerol 10.5 513.4 42.8 3.2 [93]

Hydrothermal
sorghum starch Glycerol ~0.7–6.5 nr ~7.0–14.0 nr [80]

Hydroxypropyl
methylcellulose nr ~67.0 ~1.8 * ~14.0 ~0.2 [87]
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Table 1. Cont.

Polysaccharide(s) or
Derivate(s)

Plasticizer(s) or
Additive(s)

Mechanical Properties Barrier Properties

ReferenceTS
(MPa)

E
(MPa)

EB
(%)

WVP
(10−10 g·m−1·s−1·Pa−1)

Karaya gum Glycerol 6.5 nr 8.0 58.5 [94]

Lemang bamboo
microcrystalline

cellulose
Glycerol 17.2–41.9 129.0–253.0 8.7–27.1 2.5–4.9 [95]

Methylated guar gum Glycerol 3.4 7.2 * 40.1 nr [96]

Methylcellulose nr ~70.0 ~80.0 ~17.5 nr [82]

Methylated guar gum Glycerol 5.6–11.3 25.0–47.4 * 36.0–49.4 nr [91]

Microcrystalline
cellulose Glycerol 13.7–35.7 116.0–206.0 18.0–23.1 3.0–5.4 [95]

Native achira starch Glycerol 1.1 532.7 5.9 2.7 [93]

Native potato starch Glycerol 3.9 45.1 81.0 2.4 [97]

Native sorghum starch Glycerol ~0.5–4.2 nr ~2.0–10.5 nr [80]

Nanocellulose nr ~110.0 ~115.0 ~12.5 nr [82]

Ozonated potato starch Glycerol 3.3–4.2 61.1–64.1 19.2–28.4 2.6–3.0 [97]

Ozonated cassava
starch Glycerol 3.8–5.5 71.2–82.0 37.4–39.5 3.1–3.5 [83]

Pectin nr 6.8–7.3 27.2–33.6 18.9–21.8 nr [98]

Pectin Glycerol 9.6 nr 14.5 6180.0 [99]

Pectin Sorbitol 50.0 nr 18.0 4020.0 [99]

Pectin Glycerol 14.2–18.4 nr 0.6–1.3 14.5–15.5 [100]

Pectin Natural deep
eutectic solvent 10.7–14.3 nr 0.5–1.2 22.0–24.8 [100]

Pectin Choline
chloride 3.0–10.5 nr 0.5–0.8 18.3–27.1 [100]

Pectin/gelatin Glycerol 16.9 132.4 73.0 nr [101]

Pectin/potato starch nr 22.3 305.4 13.0 2.8 [102]

Persian gum Glycerol <0.1 nr ~45.0–50.0 130.0–150.0 [103]

Persian gum Glycerol ~0.8–16.0 ~5.0–375.0 ~3.0–60.0 nr [104]

Potato waste starch Glycerol ~3.0–17.0 nr ~4.0–12.0 nr [105]

Potato waste starch Sorbitol ~4.0–24.0 nr ~2.0–9.0 nr [105]

Potato starch nr 5.1 nr 33.7 nr [106]

Succinated achira
starch Glycerol 7.5 321.9 82.3 2.6 [93]

Salvia macrosiphon
seed gum Glycerol 4.2 nr 39.1 ~50.0 [107]

Semantan bamboo
microcrystalline

cellulose
Glycerol 25.8–43.1 74.0–152.0 6.6–22.1 2.2–4.6 [95]

Tragacanth gum nr ~11.0 nr ~1.0 nr [108]

Tragacanth gum/
polyvinyl alcohol nr ~12.0–15.0 nr ~5.0–7.5 nr [108]
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Table 1. Cont.

Polysaccharide(s) or
Derivate(s)

Plasticizer(s) or
Additive(s)

Mechanical Properties Barrier Properties

ReferenceTS
(MPa)

E
(MPa)

EB
(%)

WVP
(10−10 g·m−1·s−1·Pa−1)

Algae polysaccharide(s)

Agar nr ~900.0 ~30.0 * ~8.5 nr [109]

Agar Glycerol ~500.0–
650.0 ~16.2–22.5 * ~15.0–19.0 nr [109]

Agar Glycerol 22.0 1.0 * 8.3 3.17 [110]

Agar Glycerol 34.9 1.2 * 12.0 10.7 [111]

Agar Glycerol 34.8 1.2 * 11.8 11.6 [112]

Agar Glycerol 28.0–55.5 nr 13.0–27.5 0.8–0.9 [113]

Agar Glycerol 47.3 nr 14.0 nr [114]

Agar Polyglycerol 0.4 278.5 18.3 nr [115]

Agar Glycerol 18.7 361.7 29.9 93.6 [116]

Agar Glycerol 40.3 1.4 * 19.4 19.9 [117]

Agar/alginate Glycerol 45.2 nr 33.0 ~0.9 [118]

Agar/carboxymethyl
cellulose Glycerol 60.4 2.0 * 14.7 22.1 [119]

Agar/carboxymethyl
cellulose Glycerol 44.9 1.6 * 16.0 7.1 [120]

Agar/k-carrageenan Glycerol 45.4 3.0 * 2.5 6.6 [121]

Agar/carboxymethyl
cellulose/cellulose

nanocrystals
Glycerol 57.5 2.6 * 10.0 8.1 [120]

Agar/chitosan Glycerol ~35.0–48.0 nr ~15.0–21.0 nr [122]

Agar/gellan gum Glycerol 29.9 nr 29.5 19.0 [123]

Agar/gellan
gum/montmorillonite Glycerol 35.3–44.0 nr 19.9–24.1 16.6–18.1 [123]

Agar/gelatin Glycerol 3.7–13.6 21.6–186.8 38.9–45.17 145.5–201.0 [116]

Agar/konjac
glucomannan Glycerol ~35.0–47.0 nr ~20.0–38.0 nr [124]

Agar/lignin Glycerol 44.1 1.5 * 16.1 18.5 [117]

Agar/pectin Glycerol 50.3 2.3 * 4.7 4.8 [125]

Agar/pullulan Glycerol 23.8 nr 37.2 31.7 [126]

Agar/pullulan/
montmorillonite Glycerol 31.4–37.1 nr 28.2–35.2 27.2–30.4 [126]

Agar/pullulan/
montmorillonite/quaternary

ammonium silane
Glycerol 39.7 nr 26.9 22.0 [126]

Agar/nano cellulose Glycerol 22.1 nr 10.8 0.9 [113]

k-Carrageenan Glycerol 44.6 1.5 * 11.0 16.2 [127]

k-Carrageenan Glycerol 65.9 2.9 * 4.4 18.0 [128]

k-Carrageenan Glycerol 54.9 2.7 * 8.1 16.7 [129]

k-Carrageenan Glycerol 17.0–19.1 nr 29.5–63.8 1.2–2.8 [130]
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Table 1. Cont.

Polysaccharide(s) or
Derivate(s)

Plasticizer(s) or
Additive(s)

Mechanical Properties Barrier Properties

ReferenceTS
(MPa)

E
(MPa)

EB
(%)

WVP
(10−10 g·m−1·s−1·Pa−1)

k-Carrageenan Glycerol 19.2 59.6 4.4 382.0 [131]

k-Carrageenan Glycerol 43.3 1.5 * 11.2 16.6 [132]

k-Carrageenan Glycerol 10.0 nr 29.8 0.4 [133]

k-Carrageenan Glycerol 11.8 40.5 29.2 0.7 [134]

k-Carrageenan Glycerol 57.0 3.3 * 4.4 17.2 [135]

k-Carrageenan Glycerol 38.3 nr 21.5 0.9 [136]

k-Carrageenan Glycerol 22.6 nr 14.5 0.8 [137]

k-Carrageenan Glycerol ~49.0 ~1.5 * ~85.0 nr [138]

k-Carrageenan Glycerol 57.0 3.3 * 4.4 17.2 [139]

k-Carrageenan Glycerol 7.4 nr 32.0 1.5 [140]

k-Carrageenan Glycerol/
Tween-20 7.4–11.5 nr 19.1–43.6 1.3–1.5 [140]

k-Carrageenan Glycerol/
Tween-40 4.0–9.4 nr 37.4–49.8 1.6–2.1 [140]

k-Carrageenan Glycerol/
Tween-80 8.5–12.6 nr 23.5–40.6 1.3–1.5 [140]

k-Carrageenan Glycerol 37.7–54.4 nr 56.9–80.7 120.1–142.1 [141]

k-Carrageenan/cassava
starch Glycerol 12.2–25.9 4.8–27.0 8.4–26.4 301.0–448.0 [131]

k-Carrageenan/cellulose
nanocrystals Glycerol 38.4–52.7 nr 22.9–28.3 0.5–0.9 [136]

k-Carrageenan/cellulose
nanocrystals Glycerol ~59.0–85.0 ~1.7–2.7 * ~67.0–77.0 nr [138]

k-Carrageenan/pullulan Glycerol 54.0 3.4 * 2.7 10.0 [142]

k-Carrageenan/nanoclay Glycerol ~16.0 nr ~20.0 4.0 [143]

Gelatin Glycerol 6.17 15.0 40.9 121.8 [144]

Gelatin Glycerol 1.9 nr 91.7 6.4 [99]

Gelatin Sorbitol 5.8 nr 93.3 2.1 [99]

Gelatin Glycerol 18.7 103.1 117.1 ~5.5 [145]

Gelatin Glycerol 1.8 9.1 76.7 248.3 [116]

Gelatin/agar Glycerol 69.1 2.4 * 8.6 5.9 [146]

Gelatin/k-carrageenan Glycerol 43.9 3.5 * 3.2 6.1 [147]

Gelatin/cress seed
gum/chitosan nanoparticles Glycerol 7.8–9.4 23.2–45.5 19.7–34.1 109.0–179.3 [144]

Animal, bacterial, and fungal polysaccharide(s)

Chitosan Glycerol/Calcium
chloride 1.1 2.8 38.5 601.7 [148]

Chitosan/dextran Glycerol/Calcium
chloride 1.5–2−5 1.7–6.5 36.2–87.7 655.0–993.3 [148]
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Table 1. Cont.

Polysaccharide(s) or
Derivate(s)

Plasticizer(s) or
Additive(s)

Mechanical Properties Barrier Properties

ReferenceTS
(MPa)

E
(MPa)

EB
(%)

WVP
(10−10 g·m−1·s−1·Pa−1)

Chitosan Glycerol ~17.5 ~775.0 * ~5.0 nr [149]

Chitosan Glycerol 23.5 nr 33.4 1.7 [150]

Chitosan Glycerol/
Tween-80 14.2–37.7 nr 15.2–59.2 2.2–3.1 [150]

Dextran Sorbitol 0.7–7.5 9.1–1755.0 1.0–134.5 <0.2 [151]

Gellan gum Glycerol nr ~6.5 * ~1.0 nr [152]

Gellan gum Glycerol 2.5 * nr 55.8 <0.1 [153]

Gellan gum/cassava starch Glycerol 24.0–40.0 1.3 * 2.1–4.9 17.2–18.6 [154]

Gellan gum/guar gum Glycerol 2.9–3.0 * nr 61.2–68.0 <0.1 [153]

Gellan gum/pectin Glycerol 27.0 0.3 * 41.3 1.6 [155]

Gellan gum/
poly(γ-glutamic acid) Glycerol ~5.5–13.0 ~10.0–

50.0 ~1.0–2.5 nr [152]

Gellan gum/xanthan gum Glycerol 22.1 nr 30.0 38.3 [156]

Hyaluronic acid/corn starch Glycerol 6.3 nr 41.7 nr [157]

Xanthan gum Glycerol ~17.0 nr ~20.0 nr [153]

Xanthan gum Glycerol 7.4–8.7 54.3–68.7 6.3–14.6 2.6–3.7 [158]

Xanthan gum/cassava starch Glycerol 14.0 0.7 * 3.0 31.7 [159]

Xanthan gum/cassava starch Glycerol 4.0–10.0 36.0–160.0 12.0–34.0 7.1–14.0 [160]

Xanthan gum/curdlan gum Glycerol 27.8 nr 12.9 nr [161]

Xanthan gum/curdlan
gum/gelatin Glycerol 30.3–38.2 nr 14.4–18.9 nr [161]

Xanthan gum/curdlan gum Glycerol ~18.0–
27.5 nr ~2.5–17.5 nr [153]

Xanthan gum/maize starch Glycerol 9.0 0.5 * 11.0 37.2 [159]

nr: not reported. * Data represented in units of GPa.

4.1. Biodegradable Films Based on Starches

Starch-based biodegradable films are the most studied because they are considered
isotropic, colorless, tasteless, odorless, nontoxic, and biologically degradable [162]; however,
the hydrophilic nature of starch requires proper formulation to generate functional films
(i.e., mechanical strength) with control over water content and WVP [15]. However, the
source of production has an influence on the mechanical and barrier properties, due to the
fact that, by their nature, starch films have good WVP, but mechanical properties depend
on the crystallinity of the starch used [9].

For example, La Fuente et al. [83], Shrestha and Dhungana [80], and Sama and Yu-
liasih [106] evaluated biodegradable films based on cassava, sorghum, and potato starch,
respectively. Although the results did not show a trend in TS, E, EB, and WVP, the cassava
starch-based films had the highest E and EB results, while the potato starch films stood out
for presenting higher values of TS. This variation can be seen more clearly in the studies by
Cabrera Canales et al. [93] and La Fuente et al. [97], who evaluated native starch from two
sources (achira and potato, respectively), and the results showed significantly differences
in the mechanical properties; however, the barrier properties were numerically similar.
According to Horstmann et al. [163], the composition of starch was varied in terms of pro-
portion of amylose and amylopectin and their branches, proteins, lipids, ash, and moisture
content; this approach generated variations in morphology, granule size, solubility, and
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functional properties (e.g., gelatinization and pasting). Therefore, any variation in the
composition of the starch positively or negatively affects its properties.

The source from which the starch is obtained is not the only variable that influences the
mechanical and barrier properties. There are studies [164,165] showing that the addition of
plasticizers and surfactants such as glycerol, sorbitol, and Tween generates changes in the
three-dimensional networks that allow the formation of biodegradable films, affecting their
hydrophobicity, permeability, and mechanical resistance. The study by Karki et al. [105]
evaluated biodegradable films of potato waste starch with glycerol and sorbitol, and they
reported significant variation in the mechanical properties; sorbitol improved the TS of the
films, while glycerol benefited EB. Previous studies conducted comprehensive evaluations
of plasticizers and their effect on biodegradable films. For example, Sanyang et al. [166]
noted that the mechanical properties in sugar palm starch films varied according to the
type of plasticizer (i.e., glycerol, sorbitol, or mixture of both). For example, films plasticized
with sorbitol presented higher TS and films plasticized with glycerol presented higher EB
percentage; however, both plasticizers had an anti-plasticizer effect, which was previously
reported when used in high concentrations, particularly in starch films [167]. While the
biodegradable films plasticized with glycerol and a glycerol–sorbitol mixture presented
similar WVP results, films plasticized with sorbitol presented the lowest WVP of the three,
in direct relation to concentration [166]. Specifically, a lower concentration of sorbitol led to
a lower WVP due to the interactions generated because of the structure and compactness
of the polymer matrix [168].

It has been shown that starches can be physically or chemically modified to improve
their film-forming properties [83], in such a way that the acetylation, acid–alcohol hydrol-
ysis, ozone, or hydrothermal methods can be used to reorganize the molecular structure,
modify the gelatinization temperature, or improve the solubility of starches [169,170].
Shrestha et al. [80] evaluated biodegradable films of native and modified sorghum starch in
three different ways (i.e., hydrothermal treatment, acetylation, and acid–alcohol hydrolysis).
In general terms, the hydrothermal and acetylated films improved the mechanical proper-
ties of the native starch films; that is, the hydrothermal film had the highest TS values, while
the acetylated film had the highest EB percentage of all films. These results were related to
the alterations suffered by the starches when they were modified; the improvement of the
acetylated films was related to the increase in the degree of solubility and swelling power,
whereas the hydrothermal treatment increased the water binding capacity [80].

Cabrera Canales et al. [93] used other types of treatments such as hydrolyzation, succi-
nation, or a mixture of both to modify achira starch and generate different biodegradable
films. The study showed that the modified starch films improved the TS and the EB com-
pared to the native starch film, which was related to the increase in crystalline areas due
to the effect of chemical modifications of starches that caused greater matrix mobility [93].
However, in the modified films, a decrease in E was observed as a consequence of the
generation of short chains (by hydrolysis), the remaining granules (by succination), or
the little interaction with hydroxyl groups (both processes) between each starch [171–173].
Furthermore, the WVP had significant variations since the hydrolyzed films presented
lower values and the hydrolyzed–succinated films had higher values, since the water
adsorption, crystallinity, and interstitial spaces depended on the interactions generated
between the modified chains of each starch and the plasticizing agent [174,175].

4.2. Biodegradable Films Based on Celluloses and Derivates

Celluloses are used in various food packaging materials because they are versatile, low-
cost, and nontoxic, and they have excellent mechanical properties. For example, cellophane
is the most widely used cellulose derivative in packaging; however, its formulation with
synthetic materials classifies it as a highly polluting material [176]. There are other natural
derivatives of cellulose that are used in the formulation of biodegradable films, such as
carboxymethyl cellulose, cellulose regenerate, and some cellulose esters (e.g., cellulose
acetate, palmitate, and octanoate). Films generated with cellulose or their derivatives
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are flexible and moderately resistant, with efficient WVP; however, these properties vary
depending on the hydrophobicity and crystallinity modification caused by the incorporated
additives [9].

For example, Leppänen et al. [82] evaluated different types of celluloses in the for-
mation of biodegradable films and found that the mechanical properties varied greatly.
In general, regenerated cellulose films had the highest E values but the lowest EB values,
while cellulose octanoate films had the highest EB values and the lowest E values. These
results showed the great influence of the methodologies used to generate biodegradable
films, since each one was made in a different way; however, it was also shown that the
addition of a plasticizer such as glycerol did not improve the mechanical properties.

Zabihollahi et al. [84], Peighambardoust et al. [85], and Rincón et al. [86] evaluated
biodegradable films of carboxymethyl cellulose. Analyzing the WVP results, it is evident
that the Peighambardoust et al. [85] presented the highest value, while the biodegradable
films of Rincón et al. [86] presented the lowest value; however, it can be noted that the
results of the mechanical properties were similar, despite the fact that the methodologies,
proportion of polysaccharide, and addition of plasticizer were totally different. These
findings suggest that none of these variables is totally influential with respect to the
resistance and versatility of the biodegradable cellulose films; even the films with glycerol
resulted in lower TS and higher EB than the films that did not contain the plasticizer.
This effect was reported by Hidayati et al. [177], who evaluated the effect of glycerol
on carboxymethyl cellulose films and noted that, as the concentration increased, the TS
decreased while the EB increased. The authors [177] established that the hydrophilic
properties of glycerol decreased the intermolecular force of the carboxymethyl cellulose
molecules, which allowed the matrix to elongate (higher EB) but, as a result, become
more susceptible to rupture by an external force (TS). It has been reported [178,179] that
the combination of carboxymethyl cellulose with other polysaccharides (e.g., chitosan
and starch) can increase the TS of biodegradable films by increasing their concentration;
however, EB and WVP tend to decrease. This is justified by the modification of the
crystallinity of the pure matrix (a single polysaccharide), which, when mixed, increases
its amorphous zones due to the disorganization of the chains, making them resistant, due
to the increase in the interaction between functional groups (e.g., hydroxyl and carboxyl
groups), but not very flexible, due to the lack of mobility of the chains [178].

4.3. Biodegradable Films Based on Pectins

Pectin-based biodegradable films are the natural material proposals that have pre-
sented the most disadvantages, due to their fragile nature and poor WVP and mechanical
properties; however, these films have a positive influence with the addition of plasticizing
agents [100]. For example, Shafie et al. [98] and Gouveia et al. [100] generated biodegrad-
able pectin films; in the first study, no plasticizer was used, while, in the second study.
glycerol was evaluated. The films with glycerol showed an evident increase in ST, but
a decrease in EB. Such an effect is contrary to what happens to cellulose films with the
addition of glycerol (Section 4.2); however, it is not a recurrent result in pectin films. In
previous studies [180], the effect of increasing glycerol concentration in pectin films was
evaluated, and the results were consistent with a decrease in TS and an increase in EB (as
in cellulose-based biodegradable films).

In addition, the studies by Aitboulahsen et al. [99] and Gouveia et al. [100] tested
various plasticizers to evaluate the variation in mechanical and permeability properties.
The results showed that sorbitol was able to increase the TS and GE of the biodegradable
pectin films, compared to glycerol, natural deep eutectic solvent, and choline chloride;
however, the positive effect of sorbitol on the mechanical properties is not specific to
biodegradable pectin films, as the study by Ballesteros-Mártinez et al. [181] also reported
the highest TS values in sweet potato starch films. The authors [181] suggested that, in the
first instance, any plasticizer can modify the density of the film; that is, as the plasticizer is
incorporated, the matrix becomes less dense, which causes an increase in the movement of
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the chains and, therefore, their elasticity (EB). On the other hand, the results of the ST are
related to the interaction of the plasticizer with the polymeric chains; glycerol, having a
smaller molecular size, more easily establishes itself in the intermolecular spaces, whereas
sorbitol maintains bonds with the polysaccharide surface while avoiding interference with
the hydrogen bonds that must be formed to generate resistance [182].

The studies by Jovanović et al. [101] Dash et al. [102] showed that the incorporation of
a second polysaccharide in the formulation of pectin-based films also had a positive effect
on the mechanical properties and the WVP; in addition, the incorporation of a plasticizer
into the mixture improved the TS and the E, which, as in cellulose films, was due to the
increase in the amorphous zones of the polymer matrix and the intermolecular interaction
between glycerol and this matrix [178].

4.4. Biodegradable Films Based on Gums

Gums are defined as hydrocolloids due to their properties as emulsifiers, stabiliz-
ers, texturizers, thickeners, coating agents, and film generators; however, their potential
application depends on the type of gum and its source [183]. The gums most used as
film-forming agents are guar, gellan, xanthan, Persian, konjac glucomannan, and Arabic
gums; however, the study carried out by Pedreiro et al. [184] established that their main
application is as a coating (see Section 3) applied directly (by immersion or dipping) on
the surface of foods (e.g., tomatoes, guavas, mangoes, and mushrooms) Because they are
GRAS, they can perfectly incorporate bioactive compounds (e.g., extracts or antimicrobial
agents) and extend the shelf life of products [184].

When comparing the studies that reported the use of gums in the formulation of
biodegradable films shown in Table 1, the values of some mechanical properties were lower
compared to those reported for biodegradable films of starches and cellulose. Reports have
suggested that, for the WVP and mechanical properties to be improved in gum-based films,
additives must be incorporated [9].

Kirtil et al. [89] reported lower values of TS, E, and EB in their biodegradable guar gum
films compared to the values reported by Leppänen et al. [82] for their cellulose octanoate-
based films. However, the variation in the plasticizing agents or the incorporation of a
second polysaccharide in the formulation considerably improved the mechanical properties;
for example, the biodegradable films of tragacanth gum reported by Janani et al. [108] had
increased TS values up to 36% and increased EB values up to 650% upon adding polyvinyl
alcohol as a second film former. Mohsin et al. [153] elaborated composite films of guar and
gellan gums, while Gao et al. [90] varied the plasticizing agent (Tween-20) in their guar
gum films; in both studies, the TS results were reported higher than any starch film in
Table 1. In addition, the study by Zhu et al. [161] showed that the incorporation of gelatin
as a third polysaccharide in films of xanthan gum–curdlan gum increased TS and EB by up
to 43%, however, to obtain a significant improvement, the proportion of gelatin had to be
up to 90%.

On the other hand, the studies in Table 1 also showed that gum-based biodegradable
films generally maintain the lowest WVP values, which is important for the application of
the films in food models. During the respiration processes of natural foods such as fruits
and vegetables, sugars undergo an oxidation process in the presence of oxygen, resulting in
the release of carbon dioxide, water, and, in some cases, ethylene [185]. In the application
of biodegradable films, a WVP is sought (depending on the respiration rate of the product)
that ensures that water vapor will be released to delay the maturation of the product [186].

4.5. Biodegradable Films Based on Agars

Agar is easy to extract, safe, and cheap, making it a profitable polysaccharide for
biodegradable film formation [187]. The formation of the agar matrix results from the
intermolecular interaction of hydrogens of agarose with water molecules; in addition,
its properties allow it to interact with bioactive substances such as antimicrobials [188].
According to Mostafavi and Zaeim [189], the greatest limitations of biodegradable agar films
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are their fragility, low elasticity, high solubility, low thermal stability, and high permeability;
therefore, one solution is to incorporate other polysaccharides and plasticizing agents.
However, the studies in Table 1 showed that, in general, the mechanical (i.e., TS and
EB) and barrier properties are relatively low (compared to starch films). Furthermore, the
incorporation of plasticizers does not significantly increase the values. For example, Campa-
Siqueiros et al. [109] developed agar films with high TS and E values but low E values;
however, upon adding glycerol in the formulation, the values of TS and E decreased.

It is important to highlight that the studies reported the highest values of E; however, the
addition of glycerol, polyglycol, or different polysaccharides (e.g., alginate, carboxymethyl
cellulose, and gellan gum) did not generate a linear variation in the values. Therefore, the
results depended on the interactions generated during the formation of the matrix.

5. Concluding Remarks

Packaging made from biodegradable materials or obtained from renewable sources,
such as biodegradable films, have become a viable alternative in product packaging.
Biodegradable films based on polysaccharides and plasticizers can assume the role of
a primary container and even act as a bioactive container if some antioxidant and antimi-
crobial components or extracts with some functional activities are incorporated. The initial
idea of the knowledge of the mechanical and barrier properties results in the application to
biodegradable films. Ideally, the film should be resistant enough for handling during the
packaging processes; in addition, the WVP defines the product to which it can be applied.
For example, in products with a high respiration rate, it is required that the WVP be high
so that the steam generated by the post-harvest metabolism of the food is released into the
environment to delay maturation. On the other hand, the characteristics of polysaccha-
rides influence their availability to interact with bioactive components, in such a way that
the generated biodegradable films can serve as antimicrobial barriers while delaying the
degradation of highly perishable products.

Lastly, it can be said that biodegradable polysaccharide-based films have unique
characteristics depending on the polymeric materials, plasticizers, bioactive agents, con-
centrations, and formation techniques; therefore, the incorporation or mixture of these
variables results in multiple options that can serve as packaging even for the same food.
However, although some polysaccharide-based films are marketed, packaging based on
synthetic or hybrid materials (mixtures of synthetic and biodegradable materials) continue
to lead the market; therefore, biodegradable films continue to be an attractive area for
further exploration and contribution.
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