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Abstract: Utilising molten salt as coolant instead of carbon dioxide in traditional advanced gas-
cooled reactors (AGRs) can potentially increase their core power density, simplify the safety case and
shorten the time needed for the development of the fluoride-salt-cooled high-temperature reactor
(FHR). However, the change of coolant has a strong impact on the system behaviour. Therefore,
a new type of fuel assembly is required. However, the design of a new assembly is affected by a
wide range of parameters. Systematic search through all the potential configurations is prohibitively
computationally expensive. In this work, a multi objective particle swarm optimisation (MOPSO)
algorithm is utilised to identify the most attractive candidate configurations for the hybrid AGR-
like FHR assembly. The first optimisation step targets basic design parameters such as radius and
enrichment of the fuel pins, their number and arrangement. MOPSO is based on the concept of Pareto
dominance, which is used to determine the flight direction of the simulated particles. The outcome
of the optimisation process provides insight on families of possible solutions, which described by the
Pareto front.
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1. Introduction

It is expected that the next generation of nuclear power reactors (Gen-IV) must surpass
the current reactors in operation (Gen-III/III+), in terms of safety, economy, generated waste
and proliferation [1]. However, the development effort for Gen-IV reactors is substantial
and slow, with the latest assessments predicting the deployment of these reactors no
earlier than 2030 [1]. Some argue that, realistically, this might actually be closer to 2050 [2].
Currently, there are five commercial Gen-IV reactors in operation in Russia, India and
China. However, judging by the latest world tendencies, the near future of Gen-IV reactors
is not bright (e.g., ASTRID project termination [3]). Thus, the near future of nuclear power
generation will likely be based on light water reactors (LWRs), as advanced systems are yet
to reach technological maturity and address all the open technological issues they face.

To speed up the development of Gen-IV reactors and shorten the time for their
commercialisation, a study is underway at the University of Cambridge—the Advanced
Gas-cooled Reactor (AGR) Technologies for Enabling Molten Salt-cooled Reactors Designs
(AGRESR). The project aims to take of-the-shelf technologies available from the UK AGRs to
speed up the development of the fluoride-salt-cooled high-temperature reactors (FHRs) [4].
The FHRs are a type of molten salt reactors (MSR) where a salt is used as coolant while
the fuel remains in a solid form. The FHR concept presents several advantages over
traditional LWRs. First, the reactor operates at lower pressure as the coolant never reaches
it boiling temperature, even in an accident situation, no forced removal of material (on-line
processing) from the core is required, and low-pressure operation relaxes many constraints
on structural integrity for high pressure operation, effectively implying that the system
does not require an expensive pressure vessel and high-pressure piping. Second, in case of
an accident, the reactor can rely on natural convection to provide the decay heat removal
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from the fuel to an external heat sink. Finally, the FHR can be viewed as an incremental
step between the current generation of reactors and the Gen-IV MSRs with molten fuel.

The FHR core is graphite-moderated, operates at high temperatures (about 700 ◦C)
and low pressure. Some variations of FHR design feature pin-type fuel compacts TRISO
particles in graphite matrix [4]. Many of these characteristics resemble the design of British
AGRs, making them attractive candidates for technological adaptation. Although, AGRs
deployment was a long and difficult process, all issues were eventually resolved and the
current fleet of 14 reactors has a remarkable operating and safety record [5,6]. Thus, years
of expertise of AGR construction and operation, in high temperature operation (outlet
temperature is about 630 ◦C), manufacturing and construction of large concrete pressure
vessel for relevant temperature range, and online refuelling, can be adapted for the design
of and AGR-like FHR.

Replacing the AGR CO2 coolant with a typical MSR salt—a mix of lithium fluoride
(LiF) and beryllium fluoride (BeF2) known as FLiBe with 7Li enrichment of 99.996% to
reduce tritium build-up in the system, as it also has a strong impact on the system’s neu-
tronics [7]. The higher density of the salt (about 1000 times higher than CO2) and relatively
light isotopes in the salt make the coolant temperature coefficient an important safety
parameter for optimisation because the salt contributes significantly to the neutron modera-
tion. First analysis of AGR-like FHR [8,9] identified several possible design configurations.
Unlike previous studies, which were based on an exhaustive search through the design
space, the current study presents a more systematic approach based on a multi-objective
particle swarm optimisation (MOPSO) [10]. The first results presented in this paper aim at
optimising two parameters: first, maximising the beginning of cycle (BOC) infinite medium
multiplication factor, second, minimising the coolant temperature coefficient.

2. Methodology
2.1. AGR Reference Geometry

AGRs use slightly enriched UO2 fuel. The enrichment varies between approximately
1.16 and 2.1 w/o of 235U. The fuel is encased in a stainless steel (type ATI 20–25+ Nb)
cladding and bound together in a graphite double sleeve (Figure 1) the fuel element
contains 36 fuel pins with a central tie-bar, which is used to pull the fuel assembly out of
the core. The element dimensions are summarised in Table 1.
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Table 1. Main geometrical dimensions of AGR fuel element [5,6].

Reference Configuration Parameters Value

Fuel pin outer diameter [mm] 14.5
Cladding thickness [mm] 0.38

Fuel length (1 section out of 8) [mm] 955
Radius of first (6) fuel pins ring [cm] 2.4

Radius of second (12) fuel pins ring [cm] 5.1
Radius of Third (18) fuel pins ring [cm] 7.6

Inner sleeve, inner diameter [cm] 19
Inner sleeve, outer diameter [cm] 22.2

Between sleeves gap thickness [mm] 2
Outer sleeve, inner diameter [cm] 20.6
Outer sleeve, outer diameter [cm] 23.8

Moderator block, inner diameter [cm] 27.0
Moderator block, outer diameter [cm] 46.0

2.2. Multi-Objective Particle Swarm Optimisation

Particle swarm optimisation (PSO) [11] is a Nature-inspired algorithm based on the
schooling pattern of a swarm. The PSO algorithm basis is the evolution of swarm members
(known as particles), which investigate an n-dimensional space in search of the best global
solution. The particle position is determined by evaluation of the target function, while the
evolution made by adjusting the particle velocity in respect to the best personal position
and the best swarm known position. PSO shown to deal well optimising non-linear and
discrete single objective problems. PSO presents several advantages over more traditional
approaches such as genetic algorithms (GAs) [12,13]. GAs rely on some genetic operators
like crossover, mutation, selection, etc. with many user-defined parameters, while in PSO,
only a few parameters are adjustable. It also generally requires a lower computational
effort than GA, because the PSO structure allows one to check simultaneously for local and
global best values, while a GA evaluates only the current state. Finally, the PSO algorithm
particles have memory of previous fitness values. The mentioned advantages make PSO
an attractive candidate for multi-objective optimisation.

Thus, extending the PSO to treat multi-objective problems has a potential to benefit
from the advantages mentioned above. The approach chosen in this study is to use a
traditional PSO to identify Pareto front of non-dominant solutions [14] and it is rather
straightforward. The historical record of best solutions found by a particle could be used
to store non-dominated evaluation of the optimisation function generated in previous
iterations. The use of the global attraction mechanism combined with previous solutions
memory of previously found non-dominant population would motivate convergence to-
wards Pareto front of non-dominating solutions. The MOPSO algorithm summarised in
Algorithm 1, where the target function for this study is maximising the BOL infinite multi-
plication factor, while minimising the coolant temperature coefficient. The optimisation
parameters and their boundaries summarised in Table 2.

VEL(i)t+1 = W· VEL(i)t + R1·C1·(PBEST(i)− POP(i)) + R2·C2·(REP(h)− POP(i)) (1)

where W is the inertia weight (usually 0.4); R1 and R2 are random numbers in the range
[0..1]; C1 and C2 are the personal and the global learning coefficient; PBEST(i) is the best
position that particle i remembers; REP(h) is a value taken from the repository; POP(i)
is the current value of particle i. The selection of h is made as following—the nD cubes
containing more than a single particle are assigned a fitness equal to the result of dividing
any number greater than 1 (in this work assumed 7) by the number of particles that they
contain. This aims to reduce the fitness of those nD cubes that contain large number of
particles (i.e., fitness sharing [15]). Then, a roulette-wheel selection applied to identify the
nD cube from which the particle will be selected. Once the cube was selected, a particle
from within it is obtained randomly. In the current analysis, 50 particles are sampled over
100 iteration, with a repository size of 50.
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Algorithm 1: MOPSO algorithm [10]

1: Initialise the population POP and initial velocity:
1a: FOR I = 0 to MAX % MAX = number of particles
1b: Initialize POP(i)
1c: VEL(i) = 0
2: Evaluate each of the particles if POP

3:
Store the positions of the particles that represent non-dominated vectors in the repository
REP

4:
Generate n-dimensional (nD) cubes of the search space explored, and locate the particles
using the nD cubes as coordinate system where each particle’s coordinates are defined
according to the values of its objective functions.

5: Initialise the memory of each particle
5a: FOR I = 0 to MAX
5b: PBEST(i) = pop(i)
6. WHILE itr < itrMAX DO % itrMAX = maximum number of iterations
6a: Compute the velocity, VEL(i), of each particle using expression in Equation (1)
6b: Compute new particle position POP(i) = POP(i) + VEL(i)
6c: Apply boundary condition of new particle positions
6d: Evaluate each particle in POP

6e:
Update the contents of REP together with the geographical representation of the particles
within the nD cubes. This update consists of inserting all the non-dominated locations
into the repository. Any dominated locations in the repository is eliminated.

6f: IF current position is better than personal best, then PBEST(i) = POP(i)
6g: itr = itr + 1
7 END WHILE

Table 2. Optimisation parameters for different test cases.

Test Case Optimisation Parameter
Boundary

Lower Upper

1
Fuel enrichment [w/o U5] 0.5 20
Pin outer diameter [cm] 0.6 1.0

2

Fuel enrichment [w/o U5] 0.5 20
Pin outer diameter [cm] 0.6 1.0

Moderator inner radius [cm] 8.5 13.5
Number of fuel rings 3 8

Number of pins in the inner circle 2 6

3

Fuel enrichment [w/o U5] 0.5 20
Pin outer diameter [cm] 0.6 1.0

Moderator inner radius [cm] 8.5 18.25
Number of fuel rings 3 8

Number of pins in the inner circle 2 6

4

Fuel enrichment [w/o U5] 0.5 20
Pin outer diameter [cm] 0.6 1.0

Moderator inner radius [cm] 8.5 21.0
Number of fuel rings 3 8

Number of pins in the inner circle 2 6

2.3. WIMS Transport Code

The Winfrith improved multi-group scheme (WIMS) is a general-purpose code for
reactor for 2D lattice and 3D full core calculations, using the 172-energy group JEFF-3.1.2
library [16]. The code is capable of performing calculations for any type of nuclear system
using deterministic transport. Therefore, utilising WIMS as the neutronic solver in the
current work reduces the computation time required to obtain the results for a single
MOPSO generation, in comparison to previous AGR-like FHR analysis [8] where the
objective functions evaluations were performed with a Monte Carlo code. The AGR-like
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FHR solutions obtained though collision probabilities modules PIJ, a module to evaluate
first flight collision probabilities, and PIP, which provides the solution to the transport
equation for an eigenvalue problem. It should be noted that WIMS nuclear data library
currently lacks temperature dependency for FLiBe isotopes. Therefore, the system is
treated at 300 K for the current study. The temperature effect is accounted for through the
thermal expansion effect using the following relationship for the salt density as a function
of temperature (where T is in Kelvin) [17]:

ρ(t) = 2.2787 − 4.884 × 10−4·T [g/cc] (2)

3. Results and Discussions

As mentioned previously, the objective of the optimisation is to maximise the infinite
multiplication factor and minimise the coolant temperature coefficient. The simulations
results are summarised in Figure 2. Each figure shows the relationship between the two-
optimisation parameters, where the red lines represent the converged Pareto front. The
first notable trend is that the lower the infinite multiplication factor, the higher the salt
reactivity feedback. In test cases 1 and 2, where the main moderator block maintains the
same dimension as the reference AGR (test case 1 is subcase of test case 2), none of the
examined configurations have a negative coolant temperature coefficient (CTC). However,
when the graphite block size is decreased (test case 3 and 4), negative CTC values start
to appear (Figure 2c,d). The size of the block increases the appearances of cases with low
CTC and k-inf, observed by the shift of the inflection point in the Pareto front (Figure 2).
For small graphite blocks, moderation mainly occurs in the salt and, for low enrichment
cases, the reduction in moderation shifts the spectrum to higher energies, which leads
to an increase in 238U absorption. On the other hand, a higher enrichment is required
to overcome the parasitic absorption in the salt, for example, case 4 exhibits lower k-inf
values in comparison to case 3 for the same enrichment levels (Figure 3ai,bi). In the case
with the original block size (Figure 2b), the governing mechanism is the reduction of
absorption in the salt, which increases the number of neutrons escaping and thermalizing
in the graphite, consequently leading to positive CTC. Therefore, the size of the graphite
block has a significant impact on the configuration behaviour, which shifts the Pareto front
denoted by ‘2’ downwards.

It should be noted that case 4 appears to have a smaller number of particles (realisa-
tions). However, this is just an artefact of overlapping points. The main reason for this
phenomenon was a not particularly successful sample of the initial population, which
could be addressed by sampling more particles from this region of the search space.

All the results presented in Figure 2 converge on a similar Pareto front, which is
divided into two distinct zones. In test cases 1 and 2 (Figure 2a,b), it is seen that it would be
worthwhile allowing a higher enrichment, which will allow configurations to reach higher
k-inf values. On the other hand, when the block becomes smaller, the second trend of the
front reverses. The second observed trend in test cases 3 and 4 (Figure 2c,d) is showing
an increase rather than decrease observed in previous cases. Thus, unlike in the previous
cases, an increase of reactivity will not be desirable. The zoomed-in plots in Figure 2c,d
show the region from which an optimal case can be selected, with negative CTC values
and k-inf greater than unity to ensure a feasible cycle length.
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Figure 2. MOPSO results and Parte front for the different test cases (a) Test case 1. (b) Test case 2. (c) Test case 3. (d) Test
case 4.

The swarm cloud presented in Figure 2 does not provide an understanding on how
each one of the optimisation parameters influences the objective function. The multi-
dimensionality of the problem requires to breakdown the relationships into sets of two
creating a correlation matrix. The correlation between different parameters of test cases 3
and 4 are shown in Figure 3. Configuration that satisfy the optimisation target, in those
cases, have higher enrichment (above 8%), thick pins (r~1 cm), and more importantly, bigger
fuel cluster (smaller moderator block). It can be seen that the most influential parameter is
the size of the moderator block. Furthermore, none of the viable configurations is similar
to that of a typical AGR (Figure 1); the configurations require large number of pins with
higher diameter and smaller graphite block.

Based on the presented results, the best-suited (k-inf higher than unity and negative
CTC) configuration for the AGR-like FHR has somewhat different core lattice geometry
from that of a typical AGR. The best-suited configuration has a smaller moderator block,
higher enrichment (above 4 o/w), with pin radius of above 0.8 cm, large number of pins in
the outer assembly ring (above 10), and with the largest numbers of pins on the innermost
ring (4 or 6).
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4. Conclusions

This paper summarises the first step in the optimisation of a new AGR-like FHR
assembly configuration. The optimisation process proposed is based on the MOPSO
algorithm. The objective was selected to be the infinite multiplication factor, as a surrogate
measure for cycle length, and CTC, as a measure of safety. Thus, the objective was to
simultaneously maximise k-inf and minimise CTC. The results obtained show that in order
to reach a viable configuration, one should consider reducing the size of the graphite
block. The original block size configuration did not meet the expected negative CTC value
criterion for the fresh configuration. However, the obtained Pareto front indicates that an
increase in the excess reactivity would reduce the CTC making it negative as desired. In
the smaller block configuration, the Pareto front changed its shape, so that an increase in
reactivity will lead to a positive CTC. The results showed the capability of MOPSO process
to identify possible configuration candidates. However, a more detailed analysis including
thermal-hydraulic feedback, to estimate the maximum possible power uprate, and burnup
calculation, to estimate the cycle length, are needed to show the benefits of the AGR-like
FHR over a typical AGR.
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