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Abstract: Artificial neural networks (ANNs) for performing spectroscopic gamma-ray source identi-
fication have been previously introduced, primarily for applications in controlled laboratory settings.
To understand the utility of these methods in scenarios and environments more relevant to nuclear
safety and security, this work examines the use of ANNs for mobile detection, which involves highly
variable gamma-ray background, low signal-to-noise ratio measurements, and low false alarm rates.
Simulated data from a 2” × 4” × 16” NaI(Tl) detector are used in this work for demonstrating these
concepts, and the minimum detectable activity (MDA) is used as a performance metric in assess-
ing model performance.In addition to examining simultaneous detection and identification, binary
spectral anomaly detection using autoencoders is introduced in this work, and benchmarked using
detection methods based on Non-negative Matrix Factorization (NMF) and Principal Component
Analysis (PCA). On average, the autoencoder provides a 12% and 23% improvement over NMF-
and PCA-based detection methods, respectively. Additionally, source identification using ANNs is
extended to leverage temporal dynamics by means of recurrent neural networks, and these time-
dependent models outperform their time-independent counterparts by 17% for the analysis examined
here. The paper concludes with a discussion on tradeoffs between the ANN-based approaches and
the benchmark methods examined here.

Keywords: gamma-ray source identification; gamma-ray spectroscopy; neural networks; machine
learning; classification

1. Introduction

Two key elements of nuclear safety and security are the ability to detect the pres-
ence of radioactive sources and to correctly identify radionuclides. Data-driven methods
for discerning between background radiation and anomalous radiological sources using
spectroscopic gamma-ray measurements have long been used to meet these needs [1].
Artificial neural networks (ANNs) [2,3] are one class of methods previously introduced for
gamma-ray source identification. To perform identification, ANNs, also referred to simply
as neural networks, are used to determine a function which maps a given gamma-ray
spectrum to the types of radionuclides, or lack thereof, that are observed in the spectrum.

ANNs are of particular interest for detection and identification due to their ability
to leverage information across the entire gamma-ray spectrum. Previous studies (e.g.,
refs. [4–6]) have demonstrated benefits to using full-spectrum techniques, namely, increased
detection sensitivity over methods that only consider regions of the gamma-ray spectrum.
Specifically, methods that incorporate information from the entire gamma-ray spectrum
are capable of building more accurate models of gamma-ray sources and background.
Additionally, ANNs have the advantage of being modular computational tools, allowing
for flexibility in network design. The variety of network architectures resulting from this
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flexibility is one element to the success of ANNs in fields such as computer vision. This is
in contrast to other methods for spectral analysis, such as non-negative matrix factorization
(NMF), which generally take a limited, but well-defined, functional form.

Despite several previous research efforts, most ANN-based source identification in
the literature has not been studied for one common use case: mobile radiological source
search. In this application, vehicles equipped with radiation detection sensors are used to
detect and identify radiological sources, often times in urban areas with highly variable
background radiation. While the objective in mobile detection is inherently the same as
laboratory-based applications of ANNs, there are operational challenges that must be taken
into account for an algorithm to be used effectively on a mobile system. In particular, these
systems are intended to detect weak gamma-ray sources using medium-energy-resolution
gamma-ray detectors (e.g., NaI(Tl)) moving through environments that vary greatly in
gamma-ray count rate and energy distributions, while operating at a relatively low false
alarm rate (FAR) (e.g., 1/8 hr−1). Previous applications using ANNs for identification,
however, have generally been developed for applications with different requirements
than mobile detection. For example, ref. [3] used a stationary detector configuration (i.e.,
constant background) in a laboratory, high signal-to-noise ratio (SNR) measurements, and
a relatively high FAR of 5%. Knowing this, the intentions of this paper are:

1. Introduce the use of ANN-based spectral anomaly detection and show improvements
over simpler linear models.

2. Evaluate current state-of-the-art identification networks under operationally relevant
conditions, and benchmark against a non-ANN method.

3. Improve upon state-of-the-art identification networks by introducing the use of recur-
rent neural networks.

4. Provide a comprehensive description of neural networks for detection and identifica-
tion that, when accompanied with quantitative results, better inform practitioners of
current tradeoffs.

The remainder of this paper is outlined as follows. Section 2 provides a review of
related research, a detailed overview of the networks studied in this work, and a description
of the data and metrics used in analyzing their performance. Section 3 quantifies the
performance of various models, including benchmark methods. Lastly, Section 4 concludes
with a discussion o considerations when choosing between methods to use in practice,
along with additional directions of research to consider.

2. Methods
2.1. Artificial Neural Networks

The objective of spectral radionuclide identification is to produce a function f (x) ∈
{0, 1}N which maps a gamma-ray spectrum x ∈ Rd

+ to an output vector corresponding to
the presence or absence of N different sources of interest. In spectral anomaly detection, the
procedure simply outputs a binary value f (x) ∈ {0, 1} indicating the presence or absence
of an anomalous source, without attempting to identify sources. Neural networks are a
general data-driven method for performing function approximation, and are capable of
producing functions for performing detection and identification.

The first applications of neural networks for source identification were examined
between the early 1990s and 2000s [2,7–10], with networks that mapped input spectra to
the relative amount of known background and sources contained within the spectrum.
More recently, modern approaches to perform identification using neural networks have
been developed [3,11–15], using methods similar to those seen since the deep learning
boom of the early 2010s (e.g., ref. [16]). Recent research in the area (e.g., refs. [12–14])
has emphasized methodologies that are more applicable to nuclear safety and security,
however, due to a lack of a characterization of these methods under operationally-relevant
conditions, compared to a known benchmark method, the utility of these methods remains
unclear. Additionally, the use of neural networks for spectral anomaly detection has not
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been previously studied, and this work begins by briefly introducing networks that can be
used to accomplish this.

Neural networks are used to form a function f which operates on an input x (e.g., an
image or gamma-ray spectrum), producing an output ŷ = f (x). The function f consists of
a series of relatively simple operations, which are parameterized by a set of learned model
parameters P . Neural networks can generally be considered a composition of l different
functions, that is,

f (x) = fl( fl−1(. . . ( f2( f1(x))))), (1)

where the output of composed function up to fi is referred to as the ith layer, denoted by h(i).
Equation (1) specifically defines a feedforward neural network, which can be represented as
a directed acyclic graph. This is in contrast to a recurrent neural network (RNN), which
contains cycles and is used for modeling sequential data. Section 2.3 introduces the use of
RNNs for performing spectral identification using temporal sequences of spectra.

For a defined functional form of f , the parameters P are estimated from examples of
pairs of inputs x and corresponding target values of output y, such that ŷ = f (x) ≈ y. The
functional form of commonly-used layer types are provided in Appendix A. The following
sections provide functional forms of f for accomplishing both detection and identification,
as well as the procedure for estimating P .

2.2. Spectral Anomaly Detection using Autoencoders

Generally speaking, spectral anomaly detection can be performed by generating an
estimate x̂ of the background in an input spectrum x, and computing an error measure
D(x, x̂) between the two. D(x, x̂) is chosen to measure differences between the two inputs,
and a threshold T is set, either empirically or analytically using statistical principles,
to alarm on spectra that exceed this threshold. Autoencoders [17,18] are a type of neural
network suitable for performing the background estimation required for anomaly detection.
Autoencoders are used to produce an output that is approximately equal to the input,
meaning a function f is learned such that

x̂ = f (x) ≈ x ∈ Rd
+. (2)

Undercomplete autoencoders, which perform dimensionality reduction to learn salient
features about the input data, are examined in this work. Note that it is not expected for an
undercomplete autoencoder to reproduce the input exactly, but instead that it returns a
denoised copy of the input. The general architecture for an undercomplete autoencoder is
to reduce the dimensionality using an encoder, then increase to the input dimensionality
using a decoder. For anomaly detection, the parameters P of f are learned from background
spectra, and ideally, spectra containing anomalous sources are reconstructed less accurately,
resulting in higher detection metrics.

Counts in the input spectra are assumed to be Poisson-distributed, leading to the use
of a Poisson negative log-likelihood loss function of the form

− ln p(X|X̂) =
n

∑
i=1

d

∑
j=1

x̂ij − xij ln x̂ij + ln xij!, (3)

for a mini-batch X ∈ Rn×d of n d-dimensional spectra and corresponding autoencoder
output X̂. By minimizing the loss function in Equation (3), the network seeks a solution
X̂ that is the Poisson mean of the input X (i.e., X ∼ Poisson(X̂)), meaning that X̂ provides
a denoised version of the input. Deviance [19] is used here as a goodness-of-fit measure
between input spectra and their corresponding autoencoder reconstructions. In essence,
deviance gives a measure of the difference between an ideal model where each parameter
is known exactly (i.e., p(x|x)), and the model determined from maximum likelihood
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estimation (i.e., p(x|x̂)). For a spectrum x and associated reconstruction x̂, the Poisson
deviance is computed as

D(x, x̂) = 2
d

∑
i=1

x̂i − xi + xi ln
xi
x̂i

(4)

and used as a detection metric. The detection threshold is produced empirically from
known background data. Specifically, D(x, x̂) is computed on background spectra, giving
a distribution of test statistics, and for a given FAR, a threshold is empirically set using
this distribution.

Encoders and decoders can be built from arbitrary combinations of dense and convo-
lutional layers. Both dense autoencoders (DAE) and convolutional autoencoders were seen
to perform comparably during experimentation, but only DAEs are examined here due to
their relative simplicity. In this work, only symmetric DAEs (i.e., decoders that mirror the
encoders) are considered here, as it reduces the hyperparameter search space. A DAE with
five hidden layers (seven layers total when including the input and output), each using a
rectified linear unit (ReLU) activation function, is used to demonstrate spectral anomaly
detection. This particular configuration was seen to perform sufficiently well for this initial
assessment and the hyperparameter space explored. The number of neurons in each dense
layer is found via a random optimization, described further below.

Figure 1 shows a diagram of an example dense autoencoder, along with a sample input
spectrum x and its corresponding reconstructed spectrum x̂. By training the autoencoder
using the Poisson loss in Equation (3), x can be seen as a sample from a Poisson distribution
with mean rate x̂. As a result, x̂ contains smoothened spectral features corresponding to
background peaks (e.g., 40K at 1460 keV) and the associated downscattering continuum,
seen in Figure 1.
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Figure 1. (Left panel) Diagram showing the dimensionality of features h(i) at each layer i for an example dense autoencoder
architecture with five hidden layers. A 128-bin spectrum is input into the autoencoder, and dense layers are computed by
performing nonlinear transformations on each preceding layer. The inverse of each operation is then performed to decode
the latent features, resulting in a smoothened spectrum. (Right panel) An input background spectrum x and corresponding
autoencoder reconstruction x̂ are shown. When trained on background, the autoencoder learns spectral features such as
background peaks and the associated downscattering continuum. Both the input and output spectra shown here contain
128 bins with widths that scale with the square root of energy. Note that any apparent deviations between the input and
output spectra (e.g., at the 1460 keV peak) are due to low-statistics, as the bins of the measured spectrum x are discrete
random samples of the mean Poisson rate x̂.
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2.3. Source Identification

In performing identification, an input spectrum x is mapped to an output vector ŷ
indicating the presence or absence of a source. In many common applications of neural
networks for classification, the mapping from x to ŷ involves encoding one or more classes
of instances present in x as ŷ (e.g., an image x containing a dog, encoded in ŷ). In gamma-
ray spectroscopy, however, background contributions will always be present in a given
spectrum, and sources will appear in different proportions, or sources could potentially be
shielded by attenuating material. As a result, the standard method of directly predicting a
vector ŷ ∈ {0, 1}N , with a 1 at element i indicating the presence of class i, is generally not
performed. Instead, the output ŷ is treated as the proportion of each source and background
to the spectrum, such that ∑i ŷi = 1, meaning the network is performing regression. To
achieve this behavior, the output of the network f (x) is passed to the softmax function,
defined as

softmax(zi) =
exp(zi)

∑j exp(zj)
, (5)

for each network output zi ∈ R, which outputs values between 0 and 1.
A common approach to such classification problems (e.g., in the form of AlexNet [16])

is to use a series of convolutional layers followed by dense layers. Specifically, one or
more convolutional layers are used to produce convolutional feature maps, and these
feature maps are flattened into a 1-dimensional vector, as done in refs. [12,13], which is then
transformed using dense layers. This work makes use of a network with one convolutional
layer followed by a max pooling layer and two dense layers, shown in Figure 2. Additional
layers did not enhance performance for the experiments performed and hyperparameter
search space used in this work. Identification networks are trained using mini-batches of
spectra X containing known proportions of source and background Y. The cross-entropy
loss function is used in optimizing network parameters, having the form

L(Y, Ŷ) = − 1
n

n

∑
i=1

N+1

∑
j=1

yij ln ŷij, (6)

where yij and ŷij are the elements of Y and Ŷ, respectively. Minimizing cross-entropy loss
is equivalent to minimizing the Kullback-Leibler (KL) divergence, which is a measure
between two probability distributions y and ŷ. The KL divergence, and thus cross-entropy,
is appropriate in this case since the true value of fractional source and background con-
tributions y and the corresponding estimate ŷ can be treated as probability distributions
(i.e., yi ∈ [0, 1] and ∑ yi = 1). Cross-entropy is used here over the KL divergence, however,
simply because it is more common for network-based applications.

Feedforward networks, which include the ANN-based identification methods from
previous studies, treat sequential measurements as independent—no information from
one measurement is passed to the following. In mobile detection, however, there is
generally a relationship between sequential measurements—both background and source
contributions to spectra generally do not vary abruptly. As a result, recent measurements
can potentially be used to inform the current measurement being processed. For example, if
source si was present in a spectrum at time t, it is more likely that the spectrum at t + 1 also
contains source si than another source sj. In other words, leveraging temporal information
has the potential to improve classification, and thus the ability to accurately detect weaker
sources.

RNNs are capable of sharing information contained in hidden states between sequen-
tial inputs, or in this case, sequences of spectra. This work makes use of Elman layers [20],
which are an extension of fully-connected layers. In addition to transforming the state h(i)

to h(i+1), as done in dense feedforward layers, Elman layers also feed the output at time t,
h(i+1)

t , as an input at time t + 1:
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h(i+1)
t+1 = σ(Wh(i)

t+1 + Uh(i+1)
t + b), (7)

where W, U, and b are learned parameters, and σ is a nonlinear activation function,
described further in Appendix A. There are additional types of recurrent layers, such as
long short-term memory modules [21] and gated recurrent units [22], and these more
sophisticated modules generally excel at modeling long time sequences where salient
information is spread through the sequence. Due to the simple time dependence of
the source models examined in this work, this paper only examines Elman layers for
relating sequential spectra. In this work, the first dense layer following the flattening of
convolutional features is replaced with an Elman layer, allowing for information from
previous spectra h(i)

t+1 to be used in performing inference on new spectra (i.e., computing

h(i+1)
t+1 ).

Figure 2. Example architecture of a convolutional identification network, in a similar fashion to
refs. [12,13]. A 2-dimensional feature map resulting from convolutional operations is flattened
into a single feature vector of length 1024, and this is reduced down to the output size of 18 (17
sources, 1 background channel). A max-pooling operation is applied to the features resulting from
the convolutional operation, reducing feature size from 128 to 64. In the case of an RNN, the dense
layer with size (1, 128) at time t is fed back to combine with the previous layer at time t + 1. Not
shown here is a softmax function that the output is fed into.

In training feedforward networks, mini-batches of spectra are used, where each spec-
trum contains a random radionuclide with a source activity randomly sampled uniformly
from a predefined range. To provide additional variability in training data, a random
source-detector angle θ (see Appendix B) is used for each spectrum, but a fixed standoff
distance of 10 m is used since the activity sampling provides variability in SNR. Addition-
ally, pure background is included for the model to appropriately learn background features
in the absence of source. RNNs, however, need to learn the temporal dynamics of sources,
meaning that mini-batches cannot simply contain random samples of spectra with different
physical parameters—the data must include series of spectral measurements of the detector
moving past the source. Instead of training the network on random mini-batches of spectra
in the form of a matrix Xi ∈ Rn×d, 3-dimensional tensors Xi ∈ Rr×n×d are used, where r
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refers to a number of runs of data which model the kinematics of a detector moving past a
source. With this approach, the network simultaneously learns the mapping between input
spectra and relative source contributions and also the temporal behavior of the detector
past sources.

2.4. Performance Evaluation and Data

The performance of each method discussed in this work is evaluated by injecting
sources with known properties (e.g., activity, distance to detector, etc.) into sequences of
background spectra. Source spectra, generated to model the effect of a detector system
moving past a stationary source, are added to the background spectra, and algorithms
are evaluated on these injection spectra. The outputs of the detection and identification
methods are then used to compute the probability of detection, which is the fraction of runs
in which the source was successfully detected or identified. The probability of detection is
computed as a function of source activity, and the minimum detectable activity (MDA) [5,6]
is computed, giving a single measure for how well a given method performs at a particular
FAR. Suppose a source with activity A is injected into R different runs, resulting in D
detections. The probability of detection is simply p = D/R, and as a function of activity,
this ratio is modeled with a sigmoid function q of the form

q(A; µ, σ) =
1

1 + e−(A−µ)/σ
, (8)

where µ and σ are estimated empirically from p using least squares. Figures illustrating
the sigmoid behavior of the probability of detection as a function of activity are omitted
here for brevity, and we refer the reader to refs. [5,6] for examples. Using these estimated
parameters, the MDA is computed as

MDA(p0) = µ− σ ln(p−1
0 − 1) (9)

for some target detection probability p0. In this work, p0 = 0.95 is used. Note that
theoretical lower bounds for MDA can be estimated for each method [6], which can be
useful in assessing potential performance improvements for a given algorithm.

The runs of sequential background spectra are generated from simulations of a detector
system moving through an urban environment, originating from a dataset produced as
part of a public data competition [23,24]. List-mode gamma-ray events were produced
from a 2” × 4” × 16” NaI(Tl) detector moving through a simulated urban environment.
Only runs that do not contain anomalous sources, 4900 in total, are used in this work to
produce data for training and evaluation. Runs are then divided into training and testing
data using a 90–10% split; 4410 runs of training spectra are used as background for learning
and validating models parameters, and the 490 testing runs are used for quantifying
performance via source injection. Note that the test set only refers to a background dataset
that are neither used in training nor validation, and that sources are injected into this
background. Figure 3 shows the background count rate as a function of time for the first 60
s of three randomly-sampled runs, highlighting the variability in background rates within
the dataset.

Spectra are formed by binning events between 30 and 3000 keV using 128 bins with
widths that increase as the square root of energy and with a 1-s integration time. Note that
square root binning is used both in attempt to put full-energy peaks on a similar scale (i.e.,
span a similar number of bins independent of gamma-ray energy), and to reduce sparsity in
spectra, particularly at higher energies where there are fewer counts. Neither the temporal
nor spectral binning schemes are optimized, and results can potentially improve by tuning
these values. Experimenting with binning schemes commonly reported by fielded systems
(e.g., 1024 linearly-spaced bins) is worth examining from a practical standpoint, however,
it is beyond the scope of this work.
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Figure 3. Counts per second as a function of time for the first 60 s of three randomly-sampled runs of
background data, illustrating variability in count rates and temporal signatures.

Source data are generated separately from background, using Geant4 [25] to produce
list mode data. Appendix B provides a detailed description of the procedure used for
generating source spectra. Seventeen source types are generated using this procedure:
198Au, 133Ba, 82Br, 57Co, 60Co, 137Cs, 152Eu, 123I, 131I, 111In, 192Ir, 54Mn, 124Sb, 46Sc, 75Se,
113Sn, and 201Tl. Figure 4 gives examples of spectra from low-activity 60Co and 137Cs
sources compared to randomly-sampled background spectra. Note that the injected sources
are simulated independently in vacuum, meaning the effects of environmental scattering
or occlusions are not contained in the resulting spectra. In modeling the kinematics of the
detector past the source, a vehicle speed of v = 5 m/s, along a straight line, and a standoff
distance r0 = 10 m are used. According to information provided as part of the competition,
the detector speed used in generating a given background run was a constant value ranging
between 1 m/s and 13.1 m/s. However, the detector speed for each run was not provided
as part of the original data competition, meaning the speed v used in modeling the source
kinematics is not necessarily the same. While not ideal, this discrepancy is not believed to
affect the conclusions drawn from these analyses, as the speed used here (5 m/s) is in the
range of values used to produce the background data.
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Figure 4. Comparison of two injection spectra. The left pane shows a random background spectrum and a random Poisson
sample of a 50-µCi 60Co source at a 5 m standoff, each having a 1-s integration time. The right pane shows a different
random background spectrum and a Poisson sample of a 137Cs source with the same parameters as the previous. The ratio
of source-to-total counts is 0.11 for 60Co and 0.04 for 137Cs. Due to having few counts, these spectra do not contain the
familiar peak behavior, and instead show small clusters of counts appearing at the characteristic energies of the sources (i.e.,
1173 and 1332 kev for 60Co and 662 keV for 137Cs).
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2.5. Model Optimization

In this context, optimization refers to the process of using a dataset X , split into
training and validation subsets, to update model parametersP , generally by some variation
of stochastic gradient descent, such that the loss evaluated on X decreases with number of
training iterations, or epochs. The elements of optimization, as they pertain to the current
analyses, are briefly discussed in this section.

2.5.1. Training, Validation, and Early Stopping

First, the training set is subdivided into a set used for updating model parameters,
also referred to as training data, and a validation set used for assessing model performance
during optimization. During each epoch, the model parameters are updated based on each
mini-batch of training data, and following these parameter updates, the error is computed
on the validation data, giving a sense for how accurately the model is performing on
data that was not used to update model parameters. The validation set is used to assess
the generalization capabilities of the model, and in particular, it is used to indicate when
the optimization procedure should cease. Initially, the loss from both the training and
validation sets will decrease, however, there will often be a point at which the training
loss continues to decrease, while the validation loss increases—a sign of overfitting. Early
stopping is the method of stopping the training process once the validation loss begins
to increase for some number of iterations, referred to as the patience. In this work, early
stopping with a patience of 10 iterations is used in training each network.

2.5.2. Data Preprocessing and Batch Normalization

Models often converge faster when performing input data preprocessing and feature
rescaling within the network [26]. During the experimentation for this work, a linear rescal-
ing based on the mean and standard deviation of training data, referred to as standardization,
was found to perform well for both detection and identification networks. Standardization
transforms an input spectrum x to x′ as

x′ =
x− µ

σ + ε
, (10)

where µ and σ are the mean spectrum and standard deviation, respectively, and ε is a small
positive constant to avoid division by 0. Furthermore, features in the network’s hidden
layers can be standardized, referred to as batch normalization [27] which additionally has a
regularizing effect. In this work, DAEs and feedforward identification networks use batch
normalization.

2.5.3. Optimizer and Regularization

This work uses the Adam optimizer [28] with an initial learning rate of 10−3 for
performing parameter optimization. The learning rate is reduced by a factor of 10 when
the validation loss does not decrease for 5 trials, reducing the maximum step size, as the
model is presumably near a local minimum. To reduce overfitting, an L2 penalty is used,
controlled by a coefficient λ. Additionally, dropout [29], in which neurons are randomly set
to 0 with some probability p (p = 0.5 here), is used in the identification networks following
the convolutional layer and after the first dense layer. Note that the initial learning rate and
dropout probability were deemed to work sufficiently well during manual experimentation
and are not optimized further.

2.5.4. Hyperparameter Optimization

The optimization procedure is performed for a given model architecture, dataset, and
hyperparameter configuration. Hyperparameters refer to parameters that are not learned
(i.e., they are configured prior to training), and generally determine a network’s modeling
capacity. In the discussion so far, some hyperparameters include the number of neurons in
a layer, number of convolutional kernels in a layer, and the L2 regularization coefficient
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λ. Because of the impact that hyperparameters have on model performance, care must
be taken to choose optimal values. Common methods for performing hyperparameter
optimization include grid search, random search, and Bayesian optimization. A joint
optimization of all hyperparameters is beyond the scope of this work, and instead, this
work does a partial optimization: a subset of hyperparameters for a model are fixed,
determined from manual experimentation, and a random search [30] is performed with
remaining hyperparameters.

To perform the random optimization, the following procedure is used. First, the
variable hyperparameters are randomly sampled from a predefined space, and the model is
trained and validated using the procedure previously described. Once a model has finished
training, source injection is performed on background data from the validation set, giving
an initial MDA for each source. Many models are trained using this procedure, and the
model resulting in the lowest mean MDA across all sources is used to evaluate the final test
set, as the model has shown the greatest generalization capabilities on unseen data. This
optimal model is then evaluated on the test set and compared to benchmark algorithms.
The specific hyperparameters tuned for each model are described in the following section
with the results.

2.6. Benchmarking

The methods discussed in this work are benchmarked against approaches from re-
cent literature. In particular, anomaly detection methods based on Principal Component
Analysis (PCA) and Non-negative Matrix Factorization (NMF) are used to benchmark
the autoencoder methods [6]. Both methods are linear models that operate similar to
the autoencoders, in that the models are used to provide approximations of background
spectra, and detection metrics are computed between the inputs and approximations. To
perform the approximation, both methods can be thought of as performing a matrix de-
composition X = AV, where X is a matrix of training data, and A and V are generally
low-rank matrices with k degrees of freedom, or components. The NMF-based method also
uses the Poisson deviance as a detection metric, whereas the PCA-based method, based on
previous literature [31], uses the following detection metric:

D(x, x̂) =
‖x− x̂‖2√
‖x‖1

, (11)

where the subscripts 1 and 2 denote the L1 and L2 norms, respectively.
An identification method, also based on NMF, is used to benchmark the identification

networks. The components V, learned from background data, are augmented with tem-
plates for each source of interest, allowing for reconstructions of spectra containing both
background and sources. A likelihood ratio test is performed, providing a detection metric
for each source of interest. Both the detection and identification methods set thresholds
based on distributions of metrics produced from evaluating on background data. See
ref. [6] and the references therein for additional details about the benchmarking methods.

3. Results
3.1. Anomaly Detection

Values of λ are randomly sampled between 1 and 100 using a uniform distribution.
The number of neurons in each hidden layer (three values in total for a symmetric DAE with
five hidden layers), are randomly sampled under the constraint that each value decreased
to center of the network. The number of neurons in the outermost values is sampled
uniformly between 3 and 24. An example random configuration is (11, 7, 4), which means
the number of features for all hidden layers in the network is (11, 7, 4, 7, 11). A total of 40
DAEs are trained using mini-batches of 512 randomly-sampled spectra. For each model, a
threshold on the deviance test statistic is set using a FAR of 1/8 h−1.
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Figure 5 shows a histogram of the mean MDA across all sources injected into the
validation background set for the 40 different models. From this optimization, a model
corresponding to λ = 55.53 and number of neurons per layer (7, 3, 2, 3, 7) is used for
evaluation on the test set. Both the PCA- and NMF-based models are evaluated on the
validation dataset, each indicating that a k = 1 component model was sufficient. Note that
using a single component to represent either linear models reflects a lack of true variability
in the background data for the number of spectral bins used, as many real-world datasets
have been seen to yield higher numbers of components.
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Figure 5. Histogram of mean MDA for autoencoders evaluated on the validation set. Each model,
40 models in total, was trained using a random value of the L2 regularization coefficient λ, and
random configuration of number of neurons in the dense layers of the network. This figure shows
that despite being trained with different parameters, initial weights, and mini-batches, most were
able to yield similar performance. The model corresponding to the lowest mean MDA from this
figure is examined further on the test set.

Figure 6 shows a comparison of the optimized DAE and linear models evaluated on
each source injected into the background test set. These results show that the autoencoder-
based detection method generally outperform both the NMF- and the PCA-based methods.
On average, the autoencoder provides a 12% and 23% improvement over NMF- and
PCA-based detection methods, respectively. The discrepancy between the PCA-based
detection method and the others is likely due to the detection metric used for the PCA-
based approach, which comes from previous literature [31].

To assess timing performance, the average runtime per spectrum is computed for each
method. Specifically, 100 background runs are randomly sampled, and the average runtime
on a per-spectrum basis is computed over each run. The averages from all 100 runs are
then averaged and presented here. The reason for averaging over runs is to provide a
direct comparison with the RNN-based method in the next section, which is evaluated on
series of spectra. The average per-spectrum runtime for the NMF-, PCA-, and DAE-based
detection methods are 0.37 ms, 0.05 ms, and 0.02 ms, respectively, when evaluated on a
3.50 GHz Intel i7-5930K CPU.
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Figure 6. Comparison of MDA for the three detection methods across all 17 sources at a 1/8 h−1

FAR. Sources are sorted in ascending order MDA for the baseline NMF method. Each model was
evaluated by injecting each source type across activities into each run of the background test set and
computing the MDA. The background used, the test set, was separate from the training and validation
background, and thus gives a sense of how well each model generalizes to unseen background data.
Note that the discrepancy between the PCA-based method and the other two is likely due to the
detection metric used for the PCA-based approach, which comes from the literature. The error bars
shown were computed by propagating uncertainties of µ and σ from Equation (8), estimated from
the least squares fitting routine. Note that there is an overlap between DAE and PCA for 111In and
between NMF and PCA for 75Se.

3.2. Identification

Values of λ for both feedforward and recurrent identification networks are randomly
sampled between 10−3 and 10 using a log-uniform distribution. For the single convolu-
tional layer used, the number of kernels is sampled between 8 and 64, and the number of
output neurons of the first dense layer, or the recurrent layer in the case of RNNs, is sam-
pled uniformly between 32 and 256. Feedforward models are trained using mini-batches
of 256 spectra, and recurrent models are trained with mini-batches of 32 runs of spectra.
For a given model, thresholds for each source are set using empirical values of outputs
generated from background data to achieve an overall FAR of approximately 1/8 hr−1.
Due to simultaneously testing for multiple sources, a Bonferroni correction [32] is used to
achieve the target FAR, resulting in an effective FAR for each source which is simply the
target FAR divided by the number of sources (i.e., 1/(8 × 17) h−1).

The optimization procedure is repeated 40 times for both types of models, resulting in
the values (λ, nkernels, nneurons) of (0.49, 64, 66) for the feedforward networks, and (0.0013,
32, 115) for the RNNs. The distribution of MDA over the validation set for all of the 40 trials
in the optimization routine is shown for both feedforward and recurrent models in Figure 7.
This shows that, while there are outliers, the distribution of MDA for RNNs is generally
lower than that for feedforward networks, indicating that RNNs often perform better at the
same FAR. Figure 8 shows a comparison of the mean MDA for optimized feedforward and
recurrent identification networks compared to the NMF-based identification benchmark.
This figure indicates that the NMF-based detection method and feedforward network
perform roughly the same at the same FAR, while the RNN-based identification method
often provides an improvement, as expected. Specifically, the RNN is seen to provide a 17%
improvement over the feedforward network. As with the detection methods, the average
per-spectrum runtime is computed for the NMF-based identification, feedforward network,
and recurrent network, yielding 9.54 ms, 0.07 ms, and 0.05 ms, respectively.
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Figure 7. Histogram of mean MDA for RNN and feedforward (FF) ID networks evaluated on the
validation set. Each model, 40 in total, is trained using a random value of the L2 regularization
coefficient λ, number of kernels in the convolutional layer, and number of neurons in the first dense
layer. This distribution shows a general trend of improvement when using recurrent layers. The
models corresponding to the lowest mean MDA for both feedforward and recurrent networks are
examined further on the test set.
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Figure 8. Comparison of the three methods evaluated on the test set: NMF-based identification, a
feedforward network (FF), and an RNN-based identification method. Sources are sorted in ascending
order MDA for the baseline NMF method. A total FAR of approximately 1/8 h−1 across all sources
is achieved by setting a threshold for each source individually set based on an effective FAR of
1/(8 × 17) h−1. The RNN is seen to generally provide an improvement over its feedforward
counterpart, though there are a few notable examples, such as 133Ba. Note that there is an overlap of
points between NMF and FF for 60Co, 123I, 131I, and 192Ir.

4. Conclusions

The goals of this work were to introduce spectral anomaly detection using autoen-
coders, establish a baseline of current state-of-the-art identification networks relative to
simpler methods, and improve upon the current state-of-the-art using recurrent neural
networks. In doing so, ANN-based detection showed a 12% and 23% improvement over
the NMF- and PCA-based detection models, respectively, while the current state-of-the-
art ANN-based identification was on par with the NMF-based identification method.
Furthermore, the ANN-based methods showed a reduction in computational time. The
improvement in detection performance and reduction in computation time make ANN-
based detection a compelling candidate. Regarding identification, the reduction in runtime
while achieving similar performance to NMF, an established benchmark method, makes
ANN-based identification worth considering for practical applications as well. Lastly,
ANN-based identification was seen to improve, on average, with the use of recurrent lay-
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ers, meaning that computationally-inexpensive performance improvements can be made
by including temporal modeling.

Despite the encouraging results, the use of neural networks over linear models in-
volves tradeoffs. Networks require significantly more overhead in the form of data prepara-
tion, model design, optimization, etc. Meanwhile, methods such as NMF generally require
significantly less in this regard—NMF simply needs to be performed on a matrix of input
spectra using a single hyperparameter k, the number of components. However, much of
the overhead with networks comes at a fixed cost; the computational burden of networks
at runtime is generally significantly lower than iterative methods (e.g., NMF). For this
reason, the networks examined here may be more practical than NMF-based detection
or identification in scenarios with limited computational resources, for example, in low-
power applications.

Though the intention here was to evaluate network-based approaches in operationally-
relevant conditions, the performance in many realistic scenarios remains unclear. For one,
models must be able to generalize to new environments, meaning these methods should
be assessed on real-world data with higher spectral variability. While efforts were made
to provide variable background in generating the original simulated data, effects such as
elevated radon levels following rain and gain drift were not included. Additionally, other
scenarios of practical interest include having multiple sources in a run, either at the same
location or at various points in a run, and examining the effect of shielding sources. Future
efforts should then assess the impact of shielding and combinations of sources, similar to
that of ref. [3], under operationally-relevant conditions.

Due to the number of parameters and operations, neural networks are generally not
as interpretable as other methods such as NMF [6,33], though this is an active area of
research [34]. The nature of nuclear safety and security, the primary application of such
algorithms, warrants tools and methods for introspection of networks to better assess
behavior. For example, in the case of NMF, an alarm for a 137Cs source corresponds to an
excess of counts associated with the 137Cs template, which an operator can interpret and
act on. However, it is not clear how identification networks could be interpreted, due to
the number of interconnected parameters involved in making a decision—the operator
must simply trust that the network is behaving correctly. Additional research is needed in
the area of interpretability of spectral models, for example, understanding convolutional
kernels as with ref. [13], or generating saliency maps which relate the most significant input
features in determining a given network output.
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Appendix A. Basic Neural Network Elements

Appendix A.1. Fully-Connected Layers

A fully-connected or dense layer connects each element, or neuron, in a given layer
to each element in the following layer. Suppose the ith layer of a network consists of k
elements, denoted by h(i) ∈ Rk, and suppose the following layer has m elements, denoted
by h(i+1) ∈ Rm. A fully-connected operation provides a mapping Rk → Rm using a matrix
Wi ∈ Rm×k. A bias term bi can be added, resulting in the linear transformation Wih(i) + bi.
Since the composition of linear operations will result in a linear model, nonlinearities are
added in the form of an activation function σ(·) to increase modeling capacity. One common
activation function, used in much of this work, is the Rectified Linear Unit (ReLU) function,
which is defined as

ReLU(z) = max(0, z). (A1)

In summary, a fully-connected operation from a layer i with state h(i) to layer i + 1 is
given by

h(i+1) = σ(Wh(i) + b), (A2)

where the matrix Wi and vector bi are learned from data. As noted in Section 2.3, Elman
layers are an extension of Equation (A2), in which the value of a given layer i + 1 at time t,
h(i+1)

t , is used as an input to the layer at the following time step.

Appendix A.2. Convolutional Layers

For data in which salient features are localized (e.g., images), a good approximation of
f can often be made using far fewer connections between layers than in dense connections.
This behavior can be accomplished by means of convolutional layers, forming a convolu-
tional neural network (CNN). Convolutional layers relate local features in data by means
of applying the convolution operation to input data for a given convolutional kernel (i.e.,
a function over a limited domain). CNNs have led to significant advances in the field of
computer vision and are at the core of many state-of-the-art approaches to tasks such as
classification, detection, and semantic segmentation [35]. As originally noted in ref. [12],
gamma-ray spectra also contain local features (e.g., peaks and continua), as do images, and
CNNs are an appropriate choice for this application.

In convolutional layers, one or more convolutional kernels, or filters, are applied
to a given layer, yielding a new set of features. The form of the convolution operation
varies slightly with the number of dimensions used, and in this work, only 1-dimensional
convolutions are considered, treating a gamma-ray spectrum as features along a single axis.
Suppose that the ith layer contains n feature maps (i.e., n sets of elements resulting from
n different convolutional kernels from the previous layer), each of length d, represented
with a 2-dimensional tensor h(i) ∈ Rn×d. Also suppose that the convolutional operation to
be applied to h(i) consists of k different convolutional kernels, each with size l (typically a
small number), represented by a 3-dimensional tensor K ∈ Rk×n×l . The mth element of the
jth feature map of layer h(i+1) resulting from convolving h(i) with kernels K is given by

h(i+1)
j,m =

n

∑
x=0

l

∑
y=0

h(i)
x,m+yKj,x,y. (A3)

In addition to the number of kernels used and the size of the kernels, there are
additional hyperparameters used in configuring the convolution operation, including
padding, stride, and dilation, which affect the resulting feature map. See ref. [17] for a
detailed discussion on each of these. In this work, a stride of 1 is used, and a size padding
is used such that the resulting feature maps have the same dimension as the input feature
maps.

As with dense layers, a nonlinear function is generally applied following a convolution
operation. In addition, pooling operations are typically performed, which reduce the spatial
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dimension of the features by summarizing a group of features with a single value. For
example, a feature map of size 128 passed through a max pooling function of size 2 will
result in a feature map of size 64, where sequential groups of 2 features are replaced by the
maximum of the two.

Appendix B. Source Data Preparation

Simulations are used to generate spectra for source injection. Spectra are formed from
blurred list-mode data from a 2” × 4” × 16” NaI(Tl) detector produced in Geant4 [25].
Energy blurring is performed by Gaussian-sampling the detector energy resolution function
defined in ref. [36], corresponding to that used in generating the original data produced for
the competition. A detector spectral response function η(E, θ) ∈ Rd

+ at gamma-ray energy
E and source-detector angle θ is computed from the simulated interactions, and η(E, θ) is
used to generate source spectra. For a radionuclide type s which emits gamma rays with
energies Ei at intensities Bi, the source template ψs(θ) is computed as:

ψs(θ) = ∑
i

Biη(Ei, θ). (A4)

These source templates can then be scaled to generate a Poisson mean rate

λs(θ) =
A∆t

4π‖r‖2 ψs(θ) ∈ Rd
+ (A5)

for a source activity A, detector integration time ∆t, and source-detector distance vector r.
A source spectrum xs is then generated as xs ∼ Poisson(λs(θ)).

In modeling series of spectra (i.e., for training RNNs and for computing probability of
detection), source spectra are injected in such a way as to simulate the movement of the
detector past the source. In particular, a time of closest approach t0 is randomly sampled,
and for a fixed standoff distance r0 and vehicle speed v, the squared source-detector
distance as a function of time is computed as

‖r(t)‖2 = v2(t− t0)
2 + r2

0. (A6)

The source-detector distance at each time step is then used to update the mean rate in
Equation (A5), which is then sampled to produce a series of spectra.
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