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Abstract: In this paper, we present an arbitrary-order discontinuous Galerkin finite element dis-
cretization of the SN transport equation on 3D extruded polygonal prisms. Basis functions are formed
by the tensor product of 2D polygonal Bernstein–Bézier functions and 1D Lagrange polynomials.
For a polynomial degree p, these functions span {xayb}(a+b)≤p ⊗ {zc}c∈(0,p) with a dimension of
np(p + 1) + (p + 1)(p− 1)(p− 2)/2 on an extruded n-gon. Numerical tests confirm that the func-
tions capture exactly monomial solutions, achieve expected convergence rates, and provide full
resolution in the thick diffusion limit.

Keywords: radiation transport; arbitrary polygonal prisms; discontinuous finite element; polygonal
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1. Introduction

The linear Boltzmann transport equation, which we will simply call the transport
equation, describes the transport of neutral particles (i.e., neutrons and photons) through
background and multiplying media [1]. Some of the most prevalent discretization schemes
are the discrete ordinates (SN) in angle and multigroup in energy. Given an angular
quadrature set, {wm, ~Ωm}M

m=1, the multigroup, SN transport equation for the angular flux
of group g traveling in direction ~Ωm, denoted as ψm,g(~r) ≡ ψg(~r, ~Ωm), with isotropic
scattering within an open, convex spatial domain D, with boundary, ∂D, is written as

~Ωm · ~∇ψm,g(~r) + σt,g(~r)ψm,g(~r) =
1

4π

G

∑
g′=1

σ
g′→g
s (~r)φg′(~r) + qm,g(~r), (1)

where the source term is given by

qm,g(~r) =


1

4π
Sg(~r), Fixed-Source

χg

4πk

G
∑

g′=1
νσf ,g′(~r)φg′(~r). Eigenvalue

(2)

σt,g is the total cross section of group g, σ
g′→g
s is the scattering cross section from group g′

to group g, νσf ,g is the fission neutron production term of group g, χg is the neutron fission
spectrum of group g, Sg is a distributed source, and the scalar flux of group g, is given by

φg(~r) ≡
∫

4π

dΩ ψg(~r, ~Ω) ≈
M

∑
m=1

wmψm,g(~r). (3)

The discontinuous Galerkin finite element method (DGFEM) is a popular spatial
discretization for Equation (1) [2–4]. Besides 1D, the use of DGFEM for transport has
typically been reserved for meshes employing simplicial or tensor mesh cells. Stone and
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Adams [5] developed a discretization with linear precision for unstructured polygonal
cells, which Bailey [6] later extended to unstructured polyhedral cells. Hackemack and
Ragusa [7] analyzed quadratic serendipity functions on polygonal grids, which was further
extended to extruded polygonal prisms [8]. Recently, utilizing the framework of Floater and
Lai [9], Hackemack [10,11] analyzed arbitrary-order DGFEM SN and diffusion solutions on
2D polygonal grids using reduced-space polygonal Bernstein–Bézier functions. This work
extends [10] to form arbitrary-order tensor-based functions on extruded polygonal prisms.

The remainder of this paper is as follows. In Section 2, we present the DGFEM discretiza-
tion of the SN transport equation, followed by the employed 3D extruded basis functions in
Section 3. Then, Section 4 presents numerical results demonstrating the expected precision
and convergence properties of our DGFEM discretization. Finally, conclusions are presented
in Section 5.

2. The DGFEM Transport Equation

In this section, we review the DGFEM discretization of the SN transport equation. First,
we lay down an unstructured mesh, Th ∈ R3, over the spatial domain consisting of non-
overlapping spatial elements to form a complete union over the spatial domain: D =

⋃
K∈Th

K.
The angular flux unknown of Equation (1) is expanded using discontinuous functions over
each mesh cell K:

ψm,g(~r) ≈
NK

∑
j=1

ψm,g,jum,g,j(~r), ~r ∈ K, (4)

where NK is the number of basis functions on element K, and the functions are nonzero
over a single element and discontinuous across the element interfaces. The scalar flux and
source term can be expanded analogously. Multiplying Equation (1) by a test function
u, integrating over element K, applying the divergence theorem, and using the standard
upwind technique yields the following weak form over element K:〈

(~Ωm ·~n) u, ψm,g

〉
∂K+
−
(
~Ωm · ~∇u, ψm,g

)
K
+
(

σt,gu, ψm,g

)
K

=
1

4π

G

∑
g′=1

(
σ

g′→g
s u, φg′

)
K
+
(

u, qm,g

)
K
−
〈
(~Ωm ·~n) u, ψ↑m,g

〉
∂K−

.
(5)

In Equation (5), ∂K± represents the outflow/inflow boundary, ∂K± =
{
~r ∈ ∂K | ~Ωm ·~nK(~r) ≷ 0

}
;

with~nK(~r) the outward unit normal, ψ↑m are the angular flux values on an inflow face taken
from the upwind neighbor element, and the inner products(

v, w
)

K
≡
∫

K
v w dr and

〈
v, w

〉
∂K
≡
∫

∂K
v w ds (6)

correspond to integrations over the cell volume and faces, respectively, where dr ∈ R3 is
within the cell and ds ∈ R2 is along the cell boundary.

The error of the discretized flux solution φhp ∈ Whp
D with polynomial degree p, under

the L2-norm, can be written as

||φ− φhp||L2 ≤ C
hmin(p+1,r)

(p + 1)r , (7)

where h is the maximum diameter of all mesh elements, r is the regularity of the transport
solution, and C is a constant independent of the mesh. Therefore, the convergence rates are
limited by the solution regularity [3].

3. 3D Extruded Polygonal Basis Functions

In Section 2, we gave the DGFEM discretization of the SN transport equation but no
definition to the test and trial functions. Now, we provide some details on the employed
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polygonal prism basis functions. Our extruded polygonal functions are formed from the
tensor product of the 2D polygonal Bernstein–Bézier functions (we will refer to them as the
(x, y) radial functions) and the 1D Lagrange polynomials (we will refer to them as the z
axial functions).

3.1. Brief Overview of 2D Polygonal Functions

We now provide a brief overview of the radial polygonal functions. In the interest
of brevity, full details are not provided, and the interested reader should see the previous
works of Floater and Lai [9] and Hackemack [10]. On a polygonal element, the reduced-
space polygonal Bernstein–Bézier functions, {~Bp}, are formed by a set of functions with
support points on vertices, along edges, and within the interior. They reduce to the
Lagrange fundamental polynomials on triangles. For a n-gon and a finite element space
of degree p, there are n vertex functions, p− 1 functions along each edge, and (p−1)(p−2)

2

interior functions for a total of pn + (p−1)(p−2)
2 functions. They span the {xayb}(a+b)≤p

space of functions. Figure 1 gives the distribution of the degrees of freedom on an example
pentagon for polynomial degrees p = 1, 2, 3, 4.

(a) p = 1 (b) p = 2 (c) p = 3 (d) p = 4

Figure 1. Degrees of freedom of the 2D radial functions on a polygonal element. Black, blue, and red nodes correspond to
vertex, edge, and interior functions, respectively.

3.2. Extrusion to Polygonal Prisms

With the radial functions given, we can now provide details on converting them into
an arbitrary-order functional space compatible with extruded polygonal prisms. For poly-
nomial degree p, the extruded 3D functions, {~Ep}, are formed from the tensor product of
the radial functions {~Bp} and the (p + 1) 1D Lagrange polynomials (denoted as {~Lp}):

~Ep(x, y, z) = ~Bp(x, y)⊗ ~Lp(z). (8)

For a polygonal prism with lower and upper bounds of zB and zT , respectively, the axial
functions have evenly-spaced support points given by

zi = zB +
i
p
(zT − zB), i = 0, ..., p, (9)

and the i-th axial function is given by

Lp,i(z) =
p

∏
j=0
j 6=i

z− zj

zi − zj
, i = 0, ..., p. (10)

Since these extruded functions are taken as the tensor product of our radial and axial
functions, their functional space is given by span(~Ep) = {xayb} ⊗ {zc}, where dim(~Ep) =
np(p + 1) + (p + 1)(p− 1)(p− 2)/2 (n still represents the number of vertices of the 2D
polygon). The support points of the degrees of freedom are given in Figure 2 for an example
pentagonal prism for polynomial degrees p = 1, 2, 3. An analogous p = 4 case compared
to Figure 1 was not provided due to the excessive cluttering of the nodes.
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 2. Degrees of freedom on an extruded polygonal element. Black, blue, green, and red nodes
correspond to vertex, edge, face, and interior functions, respectively.

4. Numerical Results
4.1. Basis Function Verification

We first provide numerical experiments that verify properties of our extruded basis
functions and the corresponding DGFEM transport solutions. We test three properties:
(1) verify the DGFEM captures the proper interpolation space, (2) verify the DGFEM
achieves proper convergence rates in h-type and p-type refinement, and (3) verify that the
solutions maintain full resolution in the thick diffusion limit (TDL) [12].

We first test the interpolation properties and convergence rates of the SN solutions
using the method of manufactured solutions (MMS). Our domain is [0, 1]3, with σt = 1,
σs = 0, S8 quadrature, and all vacuum boundaries. We define two functional forms to test
interpolation, ψp, and convergence, ψs, properties given by

ψp(x, y, z) =
p

∑
c=0

∑
(a+b)≤p

xaybzc,

ψs(x, y, z) = sin(kxπx) sin(kyπy) sin(kzπz),

(11)

with kx = 1, ky = 2, and kz = 3. Three extruded mesh types are utilized: Cartesian (hexahedra),
triangular, and polygonal. The 2D polygonal meshes were generated with the PolyMesher
software [13] before extrusion. Table 1 gives the L2-norm of the error for DGFEM orders
of p = 1, ..., 6. From the machine precision results, we can clearly see that the transport
solutions fully-live within the functional space of the polygonal Bernstein–Bézier functions.
The loss of exact precision is due to the magnitude of the functions to grow past unity
with increasing polynomial degree. Next, Figures 3 and 4 provide the convergence of the
sinusoidal solution, ψs, under uniform h-refinement and p-refinement, respectively. Since
Ndo f ∝ h−3 in 3D, the slopes in Figure 3 approach −(p + 1)/3 as expected. Additionally,
since ψs is analytic within~r ∈ D, the exponential convergence of p-refinement in Figure 4
is expected.

Table 1. L2-norm of the error in the monomial solutions on the different mesh types.

p Cartesian Triangular Polygonal

1 8.97 × 10−16 8.10 × 10−16 8.81 × 10−16

2 3.86 × 10−15 2.66 × 10−15 5.36 × 10−15

3 7.52 × 10−15 5.71 × 10−15 9.24 × 10−15

4 1.33 × 10−14 9.89 × 10−15 5.50 × 10−14

5 5.74 × 10−14 4.97 × 10−14 8.88 × 10−14

6 1.04 × 10−13 8.80 × 10−14 2.19 × 10−13
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Figure 3. L2-norm of the error under uniform h-refinement for the sinusoidal problem.
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Figure 4. L2-norm of the error under uniform p-refinement for the sinusoidal problem.

Having verified the interpolation and convergence properties of our DGFEM scheme,
we now confirm that our DGFEM transport solutions retain full resolution in the thick
diffusion limit. From the work of Adams [12], it is known that a poor discretization of
the SN transport equation (with full upwinding) leads to ‘locking’ into absurd transport
solutions. Adams states that two properties of the DGFEM functions are needed for full
resolution: (1) locality of the functions and (2) surface-matching (see Adams work for
further details). The extruded polygonal prism functions of this work do possess these
properties, and as such we expect full resolution.

In the TDL, the domain mean free path approaches infinity. If we fix the physical
dimensions of the problem, we can then scale the cross sections and source to reflect the
properties of the TDL. Introducing a scaling parameter, ε, we scale σt as 1/ε and σa and
Q as ε. This leads to a scaled transport equation and corresponding diffusion equation
given by

~Ω · ~∇ψ +
1
ε

ψ =

(
1
ε
− ε

)
φ

4π
+

ε

4π
and − ε

3
∇2φ + εφ = ε, (12)

respectively. The diffusion equation is discretized using a conforming Galerkin finite
element method (CGFEM) with strongly-enforced homogeneous Dirichlet boundary con-
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ditions. As ε → 0, the discretized transport solution, φT , will approach the discretized
diffusion solution, φD, at a rate of ε under the L2-norm (||φD − φT ||L2). This is confirmed
in Figure 5.
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Figure 5. Convergence rates for the thick diffusion limit problem in terms of ε.

4.2. Multigroup Pincell Problem

Our final numerical example is a 7 group pincell problem (with reflecting radial bound-
ary conditions) that utilizes the geometry and cross sections of the UO2 pincells from the
C5G7 benchmark problem [14]. The fuel region is formed from a 16-sided regular polygon
where the fine mesh cells are formed by square tiling until the pin boundary is intersected.
The convergence history of the error in k (given in units of pcm) are given in Figure 6. Supe-
rior convergence is realized for increasing polynomial degree but with diminishing returns.
A significant reduction in error is realized going from linear to quadratic FEM.
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Figure 6. Convergence rates in ke f f for the pincell problem.

5. Conclusions

In this paper, we have presented an arbitrary-order DGFEM discretization of the
SN transport equation compatible with extruded polygonal grids. The basis functions
are formed by a tensor product of 2D radial (xy) polygonal Bernstein–Bézier functions
and 1D axial (z) Lagrange polynomials. On an extruded n-gon with polynomial degree
p, there are np + (p− 1)(p− 2)/2 radial functions and p + 1 axial functions, with their



J. Nucl. Eng. 2021, 2 245

tensor product resulting in np(p + 1) + (p + 1)(p− 1)(p− 2)/2 total functions. These
functions can exactly interpolate the {xayb} ⊗ {zc} space of functions, where a + b ≤ p
and c = 0, . . . , p. Due to the locality and surface matching properties of the functions
across edges, these functions allow for transport solutions to maintain full resolution in
the thick diffusion limit. Numerical testing also demonstrated the functions’ interpolation
properties and appropriate convergence rates were observed. The methodology presented
in this work can thus be used to compute SN solutions on 3D extruded polygonal prisms
(e.g., reactor analysis calculations).
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