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Abstract: Recent developments based on lead (Pb) halide perovskites have inspired extensive re-
search into low-cost solar cells in attempt to overcome the primary issues such as stability and
toxicity that occur in this area. Solar cell simulation of lead-free perovskite (CH3NH3SnBr3) as
an absorber-based solar cell was performed using SCAPS-1D simulation tool in this work. An
impact of absorber layer thickness and working temperature on photovoltaic characteristics of
CH3NH3SnBr3-based perovskite solar cells was investigated using numerical modeling techniques.
The thickness was varied from 1.0 µm to 3.0 µm, and working temperature was varied from
290 K to 330 K, and their effect was examined on the photovoltaic parameters of proposed “Back
Contact/CH3NH3SnBr3/CdS/ZnO/Front Contact” solar cell. The improvement in the efficiency
of solar cell by optimization of CH3NH3SnBr3 absorber layer thickness and working temperature
was observed.

Keywords: perovskite; absorber layer; efficiency; simulation; SCAPS-1D

1. Introduction

Perovskite solar cells are becoming more important, because they have quickly in-
creased in efficiency from 3.90% to 22.70% in recent years [1–5]. PCE has increased dra-
matically due to superior optoelectronic characteristics such as a high absorption coeffi-
cient (105 cm−1), low exciton binding energy (20 meV), and a comparatively long carrier
diffusion lifetime (>1 m). Furthermore, perovskite structural engineering from the ba-
sic methyl ammonium lead iodide (CH3NH3PbI3) perovskite to novel mixed-cation and
mixed-anion halide perovskite materials yields excellent efficiency [6–9]. Despite the
tremendous progress, the total PCE of perovskite-based solar cells is still far from the
Shockley–Queisser limit (SQL), which is 30.50 percent PCE for a single methyl ammonium
lead iodide (MAPbI3)-based junction cell. Again, it has been claimed that a NiO-based
inverted structure device can outperform a planner structure in terms of stability [10].

Despite this, there are still a number of issues that prevent the manufacture of Sn-
based PVSC with bromine (Br) as the cation. This paper suggests a novel absorber layer
using perovskite-CH3NH3SnBr3 to build a non-toxic, highly efficient, and stable PVSC. We
simulated a lead-free perovskite solar cell, using tin (Sn) instead of lead (Pb), as lead is a
toxic material. We used SCAPS-1D simulator to validate the lead-free, Sn-based perovskite
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solar cell under dark and illuminated conditions. After that, the effects of absorber layer
thickness and working temperature were investigated.

2. Numerical Modeling and Simulation

SCAPS was used to model and simulate the thin film solar cell. The basic idea behind
this software is to use numerical differentiation and Gummel type iteration approach in
order to resolve the continuous differential equations as well as Poisson’s differential equa-
tion [11,12]. The purposed solar cell structure is “Back Contact/Perovskite/CdS/ZnO/Front
Contact/Glass” here, where CH3NH3SnBr3 Perovskites material is being used as an ab-
sorber layer, CdS as a buffer layer, and ZnO as a window layer. For the back and front
contact, we used the SCAPS data by default. The value of absorption coefficient of each
layer is taken from the SCAPS default value. All simulation settings for each layer in the
structure are obtained from the literature [13–15].

3. Results and Discussion

Using SCAPS-1D simulator, simulation was carried out at 300 K working temper-
ature under AM 1.5 G 1 sun illumination [16–18]. The effect of defects is not consid-
ered for this simulation and has been left for the researcher to check its effect. En-
ergy band diagram taken from SCAPS-1D software is of proposed solar model “Back
Contact/CH3NH3SnBr3/CdS/ZnO/Front Contact” shown in Figure 1a. The energy bad
diagram is used to discuss the optical properties of solar cell [19]. The band gap of CdS
buffer layer is adjusted with CH3NH3SnBr3 absorber and ZnO window layers. More or
equal to 1.30 eV is the band gap level for incident light photons that is best for absorbing
the majority of the light for maximum power conversion efficiency [20]. Here, in our case,
the band gap of CH3NH3SnBr3 absorber layer is 1.30 eV. Similarly, the band gaps of CdS
and ZnO are 2.2 and 3.3 eV of these buffer and window layers, respectively.
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we plotted is represented in Figure 1c. We obtained an open circuit voltage (𝑉௢௖) of 0.797 
V, and a short circuit current density (𝐽௦௖) of 35.5 mA/cm2 was recorded. In the case of fill 
factor and efficiency, they were 68.24% and 19.34%, respectively. To observe the effect of 
thickness of perovskite absorber layer on the performance of the solar cell, the thickness 
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Figure 1. Proposed Solar Cell’s (a) Energy Band Diagram (b) J–V Curve under dark and sun (c) Initial
J–V curve.

A photovoltaic cell’s principal function is to convert light energy into electrical energy.
A PV cell is a large flat diode that creates an exponential J–V curve in dark. A PV device
produces a very low current value due to minority carriers in the dark. The solar cell starts
to work when it is exposed to light, causing generation of charge carriers. Figure 1b is
representing the J–V curve of our proposed solar cell under dark and suns both conditions.
The simulation was run without any variation; an initial J–V curve that we plotted is
represented in Figure 1c. We obtained an open circuit voltage (Voc) of 0.797 V, and a short
circuit current density (Jsc) of 35.5 mA/cm2 was recorded. In the case of fill factor and
efficiency, they were 68.24% and 19.34%, respectively. To observe the effect of thickness of
perovskite absorber layer on the performance of the solar cell, the thickness was varied
from 1.0 µm to 3.0 µm. By increasing the thickness from 1.0 µm to 3.0 µm, we observe that
the J–V characteristics curve moves away from the origin as represented in Figure 2a. The
effect of thickness on the P–V characteristics curves is also clear in Figure 2b. From this
figure, we note that, by increasing the thickness of the absorber layer, the power density of
a cell improves, because by increasing a thickness of absorber layer, the chance of photons
capturing increases; hence, more sun power is converted into electrical power density.
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At 1.0 µm thickness of CH3NH3SnBr3, Voc was 0.79 V, and Jsc was 35.2 mA/cm2, and
the fill factor of 57.45% and eta was recorded up to 16.17%, but when the thickness was
increased from 1.0 µm to 1.5 µm, the characteristics parameters were changed to 0.795 V,
35.43 mA/cm2, 63.79%, and 17.98%, respectively. Here, we observe that there is a major
improvement in the efficiency, increasing by approximately 2% by increasing the thickness
from 1.0 to 1.5 µm.
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Figure 2. (a) J–V characteristics curve (b) P–V characteristic curve affected by absorber layer thickness.

Working temperature has a significant impact on photovoltaic device performance.
The photovoltaic panels were set up outside in the open. The performance of photovoltaic
cells was reduced as a result of the increased heating in a solar cell due to sunshine. The
temperature of solar cell panels was over 300 K. An impact of the proposed cell’s operating
temperature is also studied. We choose a temperature range of 290 to 330 K for our study.
Figure 3a,b illustrate the simulation results of J–V and P–V characteristics curves affected
by the working temperature.
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Voc is directly influenced by temperature, which has an impact on the overall per-
formance of solar cells. As temperature rises, efficiency of solar cells decreases. Higher
temperatures affect the material carrier concentration, band gaps, and electron and hole
motilities, causing low efficiency [21].

Saturation current in reverse J0 is temperature dependent, and as a result, Voc drops as
the temperature rises. As the temperature rises, the reverse saturation current decreases,
and this drop in current is the primary source of the fall in Voc, as seen in Equation (1) [22,23].
The greater working temperature provides more energy to electrons. Due to the increased
temperature, these electrons are more likely to recombine with the holes before reaching
the depletion area. The PCE of a cell diminishes as temperature rises; similarly, FF and Voc
both drop as the temperature rises; hence, the Jsc also decreases, as shown in Figure 4a,b.

Je(V) = J0

[
exp

(
qVoc

kBT

)
− 1

]
(1)



Eng. Proc. 2021, 12, 92 4 of 5

Here, in Table 1, we compare the results of the initial cell simulated with the optimized
thickness and temperature operated purposed perovskite based solar cell.
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Table 1. Comparison of characteristics parameters of purposed device at first and last optimized
conations.

Simulation
Voc, Jsc, FF Eta

V mA/cm2 % %

Initial 0.797 35.51 68.25 19.33
Optimized 0.813 35.58 73.17 21.16

We observed in Table 1 that, initially, the values of Voc, Jsc, FF, and Eta were improved
with optimized thickness and working temperature as shown in Table 1.

4. Conclusions

In this simulation study, we used a lead-free perovskite solar cell with model “Back
Contact/CH3NH3SnBr3/CdS/ZnO/Front Contact”. We increased the thickness of buffer
layer from 1.0 µm to 3.0 µm, and then efficiency increased from 16.17% to 20.81%. Here,
we also observed the effect of temperature. The temperature was increased from 290 K
to 330 K; hence, efficiency was reduced from 19.99% to 17.31%. Considering both the
optimization parameters, CH3NH3SnBr3 based perovskite solar cell exhibits the highest
power conversion efficiency of 21.16% with the Voc 0.813 V, Jsc 35.58 mA/cm2, and FF
73.176%. The creation of an ecofriendly methyl ammonium tin bromide perovskite solar
cell is shown by these results. This increment in efficiency is very remarkable and will be
very helpful for the researchers and the scientist to develop the lead-free perovskite solar
cell on an experimental scale.
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