

Eng. Proc. 2020, 2, 92; doi:10.3390/ecsa-7-08261 www.mdpi.com/journal/engproc

Proceedings

A Proximal Algorithm for Fork-Choice in Distributed
Ledger Technology for Context-Based Clustering on
Edge Computing †
Rahim Rahmani *, Ramin Firouzi and Mahbub Alam

Department of Computer and Systems Sciences, Stockholm University, 16407 Stockholm, Sweden;
ramin@dsv.su.se (R.F.); mahbub@dsv.su.se (M.A.)
* Correspondence: rahim@dsv.su.se
† Presented at the 7th Electronic Conference on Sensors and Applications, 15–30 November 2020; Available

online: https://ecsa-7.sciforum.net/.

Published: 15 November 2020

Abstract: The major challenges of operating data-intensive of Distributed Ledger Technology (DLT)
are (1) to reach consensus on the main chain as a set of validators cast public votes to decide on
which blocks to finalize and (2) scalability on how to increase the number of chains which will be
running in parallel. In this paper, we introduce a new proximal algorithm that scales DLT in a large-
scale Internet of Things (IoT) devices network. We discuss how the algorithm benefits the
integrating DLT in IoT by using edge computing technology, taking the scalability and
heterogeneous capability of IoT devices into consideration. IoT devices are clustered dynamically
into groups based on proximity context information. A cluster head is used to bridge the IoT devices
with the DLT network where a smart contract is deployed. In this way, the security of the IoT is
improved and the scalability and latency are solved. We elaborate on our mechanism and discuss
issues that should be considered and implemented when using the proposed algorithm, we even
show how it behaves with varying parameters like latency or when clustering.

Keywords: distributed ledger technology; blockchain; Internet of Things (IoT); edge computing; IoT
security

1. Introduction

Distributed Ledger Technology (DLT) [1] is a key technology that manages and controls nodes
in peer-to-peer applications that are mainly focused on payments and on record keeping in
blockchain networks. This allows Internet of Things (IoT) applications and edge computing systems
to operate at any point and the IoT application will be able to incorporate heterogeneous context
entities in the heterogeneous domain, this heterogeneity mandates looking into interoperability
reasoning approaches. The existing problems of using DLT for large scale distributed networks such
as the IoT are highlighted by multiple different technologies trying to solve scalability issues while
suffering from growing pains. Regardless of the popularity of the blockchain architecture, most
implementations are limited regarding its practicality. These limitations include the number of
transactions per second (throughput), the size of each block, the size of the chain, and the size of
electronic signatures [2]. In the early implementations of blockchains, these limitations were not seen
as issues but emerged later with the increasing number of nodes in the networks. To summarize the
current situation of blockchains: they cannot scale the number of concurrent transactions with the
users they likely are going to have [2]. There are some approaches suggested to run multiple
blockchains simultaneously for scaling blockchain networks by increasing the number of chains or
the so-called shards running in parallel but the scalability of the network will increase linearly. Those
approaches are vulnerable to attack and identity/signature management challenges. The second

Eng. Proc. 2020, 2, 92 2 of 9

drawback of some of the approaches is relying on proof of work (PoW) to reach a consensus, which
is slow and energy inefficient.

In this paper, we propose a simple method to obtain parallel and distributed context proximal
for reaching consensus and scalability by context-based clustering. Our contribution is a consensus
protocol that requires no PoW mining and the method is based on the Alternative Direction Method
Multiplier (ADDM) [3] algorithm and the key is to split DLT to provide a feeless and scalable DLT
network to support data and value transfer.

2. Related Work

A distributed ledger is a database that is shared and synchronized across network nodes
consensually. Participants at each node of the network can access the recordings shared across the
nodes in the network and can own an identical copy of them. DLT provides a certain level of security
guarantees to the data recorded in the ledger. Therefore, DLT is being used in different IoT areas,
such as intelligent transportation [4–6], Industry 4.0 [7], healthcare [8,9] smart grid [10,11], and supply
chain management [12], etc. For example, to preserve the privacy of patients, [9] introduced an
attribute-based signature scheme, using blockchain technology. The approach in [6] proposes a
blockchain ecosystem model for electric vehicle and charging pile management, which uses elliptic
curve cryptography to calculate hash functions of electric vehicles and charging piles. In the
following sections, we will introduce analyzing work for solving scalability and consensus (both
global and general) issues raised by integrating DLT with IoT work regarding Edge computing,
which is closely related to the mechanism proposed in this paper.

2.1. Context-Based Proximity for Scalability

Among these works, [13] proposed a distributed IoT network architecture called DistBlockNet.
DistBlockNet realized scalability and flexibility with the help of blockchain by not using a central
controller. In DistBlockNet, all controllers in the IoT network are interconnected in a distributed
blockchain network, in this way, each IoT forwarding device in the network can easily and efficiently
communicate. Compared with DistBlockNet, the IoT devices in our mechanism can join the
blockchain network depending on their capability. In addition, context information of the IoT devices
is also considered during the selection of the head of the clusters. Ethereum is also aiming to
introduce a new technology called Sharding, which was made to fight the problem of scaling [14].
Sharding is Ethereum’s solution to one of the scalability problems of DLTs, the fact that every node
needs to store a full, up-to-date copy of the blockchain, which is always growing. This places big
storage requirements on nodes as well as slowing down transaction speeds of the network. By
splitting the blockchain state and history into different shards and delegating them to different nodes,
it is possible to reduce the amount of storage needed in each node [14]. According to the Ethereum
development team, this also makes it possible for certain nodes to only verify transactions regarding
a certain shard instead of the whole blockchain, which in turn allows different nodes to verify
transaction blocks in parallel, speeding up the rate of transactions. The DLT context-based
approaches using sharding will not be able to limit the requirements of PoW and Proof of Stake (PoS)
mining to reach consensus.

2.2. Fog/Edge Computing for DLT Integrating with the IoT

Fog/Edge computing has been widely used in the IoT. Billions of IoT devices upload their data
to the cloud, Fog, or Edge through global or local Internet, and the data are processed and used by
using virtualization technology. In the context of integrating DLT with the IoT, several works have
also been done [15–17]. IOTA [15] proposed a blockchain network using the Directed Acyclic Graph
(DAG) as the ledger data structure to organize transaction data on every IOTA node. IOTA is used
for IoT applications such as in [18] it was used as a marketplace where electricity trading is directly
done by IoT devices as sellers or buyers on the Edge part of the access network. Compared with these

Eng. Proc. 2020, 2, 92 3 of 9

works, our work uses the layered architecture to introduce clustering of IoT devices dynamically into
groups based on proximity context information.

3. Background and Motivation

In this section, we briefly discuss the background and our motivation behind this work. For the
reason of scalability, IoT devices in a cloud-based environment are normally supported in a
hierarchical structure consisting of different layers of equipment performing the computation
functions. In our work, we consider two layers of computations. The Fog layer is the high layer with
distributed computations and the Edge layer is the low layer of distributed computations. The IoT
devices are connected to the Edge layer equipment as shown in Figure 1.

(a) (b)

Figure 1. Layered distributed computation architecture supporting DLT for IoT devices (a) To support
DLT for IoT applications in a scalable way. (b) Illustration of a chain block of transactions with four
forks. The bottom (yellow) node is the genesis block. Red nods represent the finalized Context
Proximity Check Point.

Figure 1a illustrates an example of layered distributed architecture for IoT devices supporting
DLT and will address (1) the Edge computing with DLT (2) DLT for clustered IoT devices. Figure 1b
shows context proximity-based DLT consensus indicating the approval of a single transaction and its
fork-choices.

4. Methods

4.1. System Model of the Proximity Consensus Algorithm

In order to address scalability and be different from existing approaches that are using sharding
[14] to improve scalability, sharding splits the blockchain network into partitions in a way that no all
nodes need to process all incoming transactions. We propose logical proximity spatial distributions
in the DLT-Based IoT-Edge as shown in Figure 1. Our approach limits transaction forwarding and
does not allow any inconsistency in the smart contract changes. As mentioned in the previous section,
a set of IoT devices will be managed as a vertical spatial distribution based on context proximity. The
context in sensor clustering has been discussed before, but in all cases, the definition of context is
specific. Moreover, their solution is limited to neighboring nodes. To the best of our knowledge, the
concept of logical clustering of nodes based on context is new and [19,20] was the first attempt of the
proposed concept. This new concept will allow resources (data, services) to be shared among
different spatial distributed nodes and they can share resources through distributed collaboration.
Once the clustering is done, then each cluster is identified through a context-ID, which is defined
based on context similarity and published on the Internet. In this study, we extended the context-ID
[19,20] to be a relational proximity spatial distribution by assigning different weights to the
connections between nodes to reduce traffic on critical links and besides scalability, the algorithm
also allows different context-based parts to run different combinations of consensus, ledger, and
transaction models. Furthermore, dynamically clustering can easily inter-operate between clusters.

Eng. Proc. 2020, 2, 92 4 of 9

Context proximity of large-scale spatial distributions of IoT devices and the population of wireless
sensors networks (WSN) are discussed in the next section.

Context Proximity Spatial Distributions

A Distributed Ledger can serve as distributed control in Fog and Edge nodes, being able to
negotiate distributed context-based coordination problems to automated DLT for context-based
vertical-distribution analysis by generating in the population of WSN and developing the scenarios
for simulation to inflate the algorithm for co-aggregation analysis of clustered IoT devices at the Edge.
The approach to context proximity provided direct support for such a model, which could enable
users/validators to acquire validations of proximity over spatial distribution thus enabling consensus
and sharing. We deployed the Alternative Direction Method Multiplier (ADMM) [3] based method
to split the genesis block to fork blocks as shown in Figure 1b. The separability of the forks gives the
algorithm the ability to evaluate the proximal operation of the forks to operate in parallel and
distributed.

4.2. Consensus by Sharing within Clustering

The consensus mechanism allows an effective majority of maintainers to decide in the case of
DLT what transactions to include in their ledgers. The majority of maintainers can be expressed in
consensus form by introducing a sequence of decision blocks with included transactions. We
interpreted consensus ADMM based as a method for solving problems in which the blocks and
transactions are distributed across multiple ledgers. Each ledger only has to handle its own blocks
and transactions. The clustering stage involves clustering the nodes that represent a simulated
distributed system and evaluating and comparing the produced clustering to other clustering results
to obtain the best result possible. The ranking and leader election or cluster head stage involves
ranking the nodes in the simulated distributed system, which is done by ranking them according to
their distance to the medoid of the best clustering produced in the clustering stage. Then, simple
leader election or cluster head functions are performed using the ranks as input. In the last stage,
program synthesis, the ranks of the nodes that were produced in the previous stage and their
respective leaders are used as input-output examples to synthesize a program that is consistent with
the provided examples. In the sub-activity, Assess and Select, different machine learning techniques
were investigated for use in the clustering. At one point, reinforcement learning was considered for
the program synthesis stage of the artifact. We used DeepCoder’s [21,22] default implementation of
program synthesis because of time constraints as well as concerns whether reinforcement learning
was appropriate for the problem to be solved. Something that also contributed to this decision was
that the reinforcement learning algorithms that could be used for this purpose were deemed to be
more complicated than DeepCoder’s default implementation.

4.2.1. Context-Based Clustering

Clustering was done as a pre-processing step to generate clusters based on context values for
nodes in a dataset, simulating a distributed system. The algorithm used for clustering is the k-
medoids algorithm as implemented in Python by the pyclustering library [23] (which in turn is an
implementation of PAM), while the k-means++ implementation in the pyclustering library was used
to choose the initial points. The k-medoids algorithm was used because it is more robust to outliers
than k-means and because using an actual data point (medoid) as the representative object of a cluster
facilitates leader election in later stages. There is also no risk that the choice of initial points will
produce incorrect clusters, even though that risk would have been eliminated by the use of k-means++
as an initializer in any case. K-means++ was used as an initializer to ensure a fair distribution of the
initial points and because it can improve the speed and accuracy of the clustering according to [24].
To determine the best clustering for a certain dataset, the k-medoids algorithm was run with different
values of k and each produced clustering was evaluated based on its average Silhouette value. The
average Silhouette value was calculated by a function called sklearn.metrics.silhouette_score from the

Eng. Proc. 2020, 2, 92 5 of 9

scikit-learn module [25] in Python. Scikit-learn is a machine learning module “for medium-scale
supervised and unsupervised problems [26]. Clustering was done on a two-dimensional dataset of
simulated context values, although it is fully possible to perform clustering on a high-dimensional
dataset. There are even algorithms such as subspace clustering that seek to find clusters in different
subspaces within a dataset [27]. However, we chose to instead put the complexity in the generation
of context values that may be based on an aggregation of many different values. The motivation for
this decision is that clustering high-dimensional data is very computationally expensive and would
make it harder to meet the performance requirements imposed on the concept. The clusters were then
passed to the next stage for ranking and leader election or the cluster head to be performed.

4.2.2. Ranking and Cluster Head or Leader Election

The cluster head or leader election algorithm that was to be implemented in this paper is a
variant of the monarchical leader election algorithm (Algorithm 2.6) [28]. The leader election
algorithm requires each process to have a rank associated with it, which was done in a ranking
function that assigns a rank to each node based on its distance to the representative object of its
cluster, the medoid. The distance metric that was used was the Manhattan distance. The ranks were
then passed to the leader election function which elects the highest-ranking node as the leader of each
cluster, for use as an oracle later on. The ranks were then passed to DeepCoder in the next stage as
the input examples and their medoids, or leaders, as the output examples, thus generating the input-
output examples needed for DeepCoder to synthesize a program.

The algorithm defined in (Algorithm 2.6) [29] only allows the election of a new leader if the
current leader has crashed, meaning it must be modified to allow the election of a new leader in other
circumstances as well, for example when new nodes join the system. This was not done in this thesis
because the system is simulated, and a perfect failure detector is assumed but would have to be done
in a real system.

4.2.3. Program Synthesis

A program synthesis consistent with the input-output examples produced by the previous
stages must be synthesized, or in other words, a hierarchical leader election program must be
synthesized. This was done by using DeepCoder’s LIPS [21,22] framework. No reference
implementation of DeepCoder seemed to be available, but several third-party implementations could
be found on GitHub. Since Python is the language used in our simulation, we chose to use the Python
3 implementation of DeepCoder [29]. It required Python 3 as well as machine learning and
mathematical libraries such as Keras [30], Tensorflow [31], NumPy [32], and pandas [33]. Keras is
used as a high-level interface that runs on a Tensorflow backend to facilitate the neural network while
NumPy and pandas are widely used Python libraries for scientific computing and data manipulation
and analysis.

5. Results and Performance Evaluation

In this section, we present the conceptual validation and performance evaluation of our
proposed model with a concise and precise description of our experimental results. The validation
and performance measurements are performed based on five different scenarios. All datasets were
randomly generated by using the Python function random. uniform [34] or manually typed in at
random. Some of the datasets were manually typed in to create natural clusters in the data to illustrate
a more realistic scenario, rather than just a truly random uniform distribution. The randomly
generated datasets are first and foremost used to test the scalability of the concept. These datasets
represent the simulated context information for different nodes in a distributed system as floating-
point numbers. They contain no duplicates but are not necessarily disjoint from each other as some
parts of the smaller datasets are also subsets of the larger datasets (Scenario 2 includes some of the
data in Scenario 1, Scenario 3 includes some of the data in Scenario 2, and Scenario 5 includes all the
data from Scenario 4). All performance measurements were taken with the Python 3 built-in function

Eng. Proc. 2020, 2, 92 6 of 9

time.perf_counter [35] because it uses the highest available clock resolution. For comparison, the
elapsed real-time (commonly called wall time) was also measured with the function time.time [36]
for the same tasks. All plots were created with Matplotlib. To get the best clustering available for each
scenario, clustering was run for k = 2 to 10, for example, nine times.

5.1. K-Medoids Clustering

In Scenario 1, 29 nodes are present in a distributed system. The dataset was manually typed in
at random. A situation that could correspond to a real-world example of this scenario is that one or
several of the previous leaders have crashed or experienced link failures. Subsequently, new leaders
must be elected. The best clustering that was found for Scenario 1 had an average Silhouette of
0.8485671038005586 and was achieved with k = 2. The best available clustering for Scenario 1 is thus
two clusters as shown in Figure 2a. In the Scenario 2 clustering scenario, five new nodes are added
to the system, increasing the total number of nodes to 34. The dataset was manually typed in at
random. A situation that could be a real-world example of this scenario is that new nodes have been
added to the system and the nodes must be clustered according to context for the system to assign a
leader to each group of nodes. The best available clustering for Scenario 2 is three clusters as the best
clustering found had an average Silhouette of 0.5863200762086528 and was achieved with k = 3. The
best clustering for Scenario 2 is shown below in Figure 2b. The Scenario 3 clustering is meant to test
the scalability of the artifact by adding 12 more nodes to the system. The dataset for Scenario 3 was
also manually typed in at random. For Scenario 3, the best clustering had an average Silhouette of
0.8332508360470124 and was achieved with k = 2. Thus, the best available clustering for Scenario 3 is
two clusters as shown in Figure 2c. The Scenario 4 clustering operates on a randomly generated
dataset of 200 nodes in order to further test its generalization ability and scalability. The best available
clustering for Scenario 4 is four clusters as shown below in Figure 2d, as the best Silhouette value of
0.3830742916987218 was achieved with k = 4. The Scenario 5 and final clustering scenario aims to
further test the scalability of the system by adding 800 nodes to the system, for a total of 1000 nodes.
The dataset was generated the same way as in Scenario 4. The Silhouette of the best clustering for
Scenario 5 was 0.363725300745691 which was achieved with k = 7. The best available clustering for
Scenario 5 is seven clusters as shown in Figure 2e. Silhouette analysis of K-medoids clustering on
Scenario 5 sample data with k = 10 is shown in Figure 2f.

5.2. Inductive Program Synthesis (IPS) and Cluster Head or Leader Election

After all the clustering scenarios had finished running, the best clustering was used as the
representative measurement of that scenario. All the representative clusters were then passed to
DeepCoder for program synthesis. The input-output examples for DeepCoder were generated by
ranking all the nodes in each cluster according to the distance to the medoid of the cluster. The
medoid had the highest rank, the object closest to the medoid the next highest rank. Inductive
program synthesis is capable of synthesizing a program consistent with the input-output examples
for a leader election algorithm, and if so, how. Table 1 shows that DeepCoder is in fact able to
synthesize a correct and consistent leader election program for the simple hierarchical leader election
algorithm used in this paper. Both Depth-first search (DFS) and sort and add search techniques
produced the same program, which led to increased confidence in the results. The synthesized
program is of the format INPUT|FUNCTION, ARGUMENT meaning that a list is taken as the input
to the program, which consists of the function MAXIMUM with variable 0 as the argument. As there
is only one variable present in this program, the input, this is argument variable 0, and the function
is applied to the input list. The steps used are how many steps the search technique had to take before
finding a consistent program. Table 2 shows, the performance measurements for synthesizing a
consistent program for the two different search techniques.

Eng. Proc. 2020, 2, 92 7 of 9

(a) (b) (c)

(d) (e) (f)

Figure 2. (a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4 (e) Scenario 5 (f) Silhouette analysis
of Scenario 5 with k = 10.

Table 1. Results for Inductive Program Synthesis (IPS).

Labels Synthesized Program Program Consistent Steps Used
DFS LIST|MAXIMUM,0 Yes 5

Sort and add LIST|MAXIMUM,0 Yes [2–5]

Table 2. Performance measurements for IPS.

Labels DFS Run
Time

DFS Wall
Time

Sort and Add
Run Time

Sort and Add
Wall Time

Minimum 0.874 ms 0.0 ms 1.263 ms 0.997 ms
Maximum 0.964 ms 0.997 ms 1.442 ms 1.995 ms

Mean 0.888 ms 0.764 ms 1.315 ms 1.462 ms

6. Conclusions

The huge deployment of DLT within IoT infrastructure is an ongoing work. In this paper, we
have proposed a novel proximal algorithm for fork-choice in DLT for context-based clustering on
Edge computing. The algorithm was evaluated to determine how the cluster head can be used to
bridge the IoT devices with the DLT network where a smart contract will be deployed. The
verification results in Figure 2 show the algorithm ability and it can indeed be used to solve the
practical problem of clustering nodes in IoT networks by context and cluster head or electing leaders
for the produced clusters using IPS. It fulfills the requirements set upon it well, which brings the
possibility of implementation on limited hardware. In a real system, the clustering stage of the
algorithm should be implemented on a higher level than every node, for example, on Edge nodes in
an IoT environment. The IPS stage is intended to be implemented on every node to facilitate leader
election and the results make this possible.

Eng. Proc. 2020, 2, 92 8 of 9

References

1. Consocenti, M.; Vetro, A.; De Martin, J.C. Blockchain for the Internet of Things: A Systematic Litteratur
review. In Proceedings of the IEEE/ACS 13th International Conference on Computer Systems and
Applications, Agadir, Morocco, 29 November–2 December 2016.

2. Kim, S.; Kwon, Y.; Cho, S. A Survey of Scalability Solutions on Blockchain. In Proceedings of the
International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea South, 17–19 October 2018; pp. 1204–1207.

3. Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Prentice Hall:
Upper Saddle River, NJ, USA, 1989.

4. Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security
and Privacy. IEEE Commun. Mag. 2017, 55, 119–125.

5. Li, L.; Liu, J.; Cheng, L.; Qiu, S.; Wang, W.; Zhang, X.; Zhang, Z. CreditCoin: A Privacy-Preserving
Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 2204–2220.

6. Huang, X.; Xu, C.; Wang, P.; Liu, H. LNSC: A security model for electric vehicle and charging pile
management based on blockchain ecosystem. IEEE Access 2018, 6, 13565–13574.

7. Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in
Industrial Internet of Things. IEEE Trans. Ind. Informa. 2017, 14, 3690–3700.

8. Esposito, C.; de Santis, A.; Tortora, G.; Chang, H.; Choo, K.-K.R. Blockchain: A Panacea for Healthcare
Cloud-Based Data Security and Privacy? IEEE Cloud Comput. 2018, 5, 31–37.

9. Guo, R.; Shi, H.; Zhao, Q.; Zheng, D. Secure Attribute-Based Signature Scheme with Multiple Authorities
for Blockchain in Electronic Health Records Systems. IEEE Access 2018, 6, 11676–11686.

10. Gao, J.; Asamoah, K.O.; Sifah, E.B.; Smahi, A.; Xia, Q.; Xia, H.; Zhang, X.; Dong, G. GridMonitoring: Secured
sovereign blockchain based monitoring on smart grid. IEEE Access 2018, 6, 9917–9925.

11. Liang, G.; Weller, S.R.; Luo, F.; Zhao, J.; Dong, Z.Y. Distributed Blockchain-Based Data Protection
Framework for Modern Power Systems against Cyber Attacks. IEEE Trans. Smart Grid 2018, 10, 3162–3173.

12. Tian, F. An agri-food supply chain traceability system for China based on RFID & blockchain technology.
In Proceedings of the 2016 13th International Conference on Service Systems and Service Management
(ICSSSM), Kunming, China, 24–26 June 2016.

13. Sharma, P.K.; Singh, S.; Jeong, Y.-S.; Park, J.H. DistBlockNet: A Distributed Blockchains-Based Secure SDN
Architecture for IoT Networks. IEEE Commun. Mag. 2017, 55, 78–85.

14. Sharding FAQs. Available online: https://github.com/ethereum/wiki/wiki/Sharding-FAQs (accessed on 10
October 2020).

15. IOTA. Available online: https://www.iota.org/ (accessed on 10 October 2020).
16. Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-Less Medical Data Sharing

Among Cloud Service Providers via Blockchain. IEEE Access 2017, 5, 14757–14767.
17. Sharma, P.K.; Chen, M.-Y.; Park, J.H. A Software Defined Fog Node Based Distributed Blockchain Cloud

Architecture for IoT. IEEE Access 2018, 6, 115–124.
18. Parker, J.; Chitchyan, R.; Angelopoulou, A.; Murkin, J. A block-free distributed ledger for p2p2 energy

trading: Case with iota? In International Conference on Advanced Information Systems Engineering; Springer:
Cham, Switzerland, 2019; pp. 111–125.

19. Rahmani, R.; Rahman, H.; Kanter, T. Context-Based Logical Clustering of Flow-Sensors Exploiting
HyperFlow and Hierarchical DHTs. In Proceedings of the 4th International Conference on Next Generation
Information Technology, Noida, India, 26–27 September 2013.

20. Rahman, H.; Rahmani, R.; Kanter, T. Multi-modal context-aware reasoNer (CAN) at the edge of IoT.
Procedia Comput. Sci. 2017, 109, 335–342.

21. Balog, M.; Gaunt, A.L.; Brockschmidt, M. DeepCoder: Learning to Write Programs. Machine Learn. 2017.
arXiv:1611.01989.

22. Deep-coder. Available online: https://github.com/HiroakiMikami/deep-coder (accessed on 5 September
2020).

23. Pyclustering library. Available online: https://github.com/annoviko/pyclustering (accessed on 6 September
2020).

24. Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding; Stanford InfoLab: Stanford, CA,
USA, 2007.

Eng. Proc. 2020, 2, 92 9 of 9

25. Scikit-Learn Module. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
silhouette_score.html#sklearn-metrics-silhouette-score (accessed on 6 September 2020).

26. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Vanderplas, J. Scikit-learn:
Machine learning in Python. J. Machine Learn. Res. 2011, 12, 2825–2830.

27. Parsons, L.; Haque, E.; Liu, H. Subspace clustering for high dimensional data: A review. Acm Sigkdd
Explorations Newsletter 2004, 6, 90–105.

28. Cachin, C.; Guerraoui, R.; Rodrigues, L. Introduction to Reliable and Secure Distributed Programming, 2nd ed.;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.

29. Pythone DeepCoder. Available online: https://github.com/dkamm/deepcoder (accessed on 5 September
2020).

30. Keras. Available online: https://keras.io/ (accessed on 5 September 2020).
31. Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 5 September 2020).
32. Numpy. Available online: https://numpy.org/ (accessed on 5 September 2020).
33. Pandas. Available online: https://pandas.pydata.org/ (accessed on 10 September 2020).
34. Python Random Function. Available online: https://docs.python.org/3/library/random.html#random.uniform

(accessed on 10 September 2020).
35. Python 3 Built-in Function time.perf_counter. Available online: https://docs.python.org/3/library/time.html#

time.perf_counter (accessed on 10 September 2020).
36. Wall Time with the Function time.time. Available online: https://docs.python.org/3/library/time.html#time.

time (accessed on 10 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

