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Abstract: Nowadays, the aging, deterioration, and failure of civil structures are challenges of
paramount importance, increasingly motivating the search of advanced Structural Health Monitoring
(SHM) tools. In this work, we propose a SHM strategy for online structural damage detection and
localization, combining Deep Learning (DL) and Model-Order Reduction (MOR). The developed
data-based procedure is driven by the analysis of vibration and temperature recordings, shaped
as multivariate time series and collected on the fly through pervasive sensor networks. Damage
detection and localization are treated as a supervised classification task considering a finite number
of predefined damage scenarios. During a preliminary offline phase, for each damage scenario, a
collection of synthetic structural responses and temperature distributions, is numerically generated
through a physics-based model. Several loading and thermal conditions are considered, thanks
to a suitable parametrization of the problem, which controls the dependency of the model on
operational and environmental conditions. Because of the huge amount of model evaluations, MOR
techniques are employed in order to relieve the computational burden that is associated to the dataset
construction. Finally, a deep neural network, featuring a stack of convolutional layers, is trained by
assimilating both vibrational and thermal data. During the online phase, the trained DL network
processes new incoming recordings in order to classify the actual state of the structure, thus providing
information regarding the presence and localization of the damage, if any. Numerical performances
of the proposed approach are assessed on the monitoring of a two-storey frame under low intensity
seismic excitation.

Keywords: structural health monitoring; model order reduction; deep learning; damage localization;
vibration monitoring; environmental effects

1. Introduction

Modern societies are strongly dependent on the use of complex structures. Because an early
detection of structural faults can greatly reduce the maintenance cost over time and prevent catastrophic
events [1], being able to keep civil constructions safe and reliable is fundamental for community
welfare [2]. For these reasons, in the last decades, civil engineering has focused on Structural Health
Monitoring (SHM) [3], which aims at detecting, localizing, and quantifying damage occurrence.
Especially, data-driven approaches [4,5] are becoming increasingly widespread thanks to their capacity
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of easily manage the large amount of data, acquired through pervasive sensor networks. In particular,
by processing raw vibrational signals (e.g., acceleration recordings that are shaped as multivariate
time series), they can extract useful features, in order to determine the damage state of the structure. To
this aim, Deep Learning (DL) algorithms can automatically extract damage-sensitive features [6] and
relate them with the corresponding structural states, by exploiting temporal correlations within and
across time recordings.

When considering a finite number of predefined damage scenarios, the detection and localization
of damage in structures can be treated within a classification framework. By employing a supervised
classifier, the goal is to predict the categorical class (i.e., a label referring to a predefined damage
scenario) of new incoming data, on the basis of past observations. Supervised techniques require
labeled data on the possible damage conditions of the structure, which, however, are hard (if not
impossible) to acquire for civil applications. This drawback calls for a Simulation-Based Classification
(SBC) [1,7,8], in order to numerically simulate the effect of damage on the structural response.
In such hybrid model-data SHM approach, a dataset of synthetic time-signals, accounting for relevant
operational conditions and varying environmental effects, is generated through simulations of a
physics-based model, for the whole set of considered damage scenarios and, thus, assimilated with the
DL algorithm.

In order to replace the expensive numerical models, relying on the Finite Element (FE) method,
a Model Order Reduction (MOR) strategy, such as the Reduced Basis (RB) method [9,10], can be
adopted in order to accelerate the dataset construction.

The proposed methodology exploits an offline-online decomposition. During the preliminary
offline phase, our DL-based classifier is trained on a numerically pre-built dataset of labeled inputs;
during the online phase, the trained classifier processes unseen experimental signals that were acquired
on the fly, returning, as output, the structural state that might have most likely produced them.
Our classifier is based on a Fully Convolutional Network (FCN) architecture, which was already
successfully applied in [8,9].

Additional to damage phenomena, environmental conditions could affect measured signals.
Thermal fluctuations (both daily and seasonal) can influence a wide range of material properties and
induce structural displacements. It is not easy to distinguish these effects from those of damage. For
this reason, the thermal effects are simulated in the numerical model of the structure and temperature
measurements are used together with vibrational ones as inputs to the classifier.

2. SHM Methodology: Dataset Definition and Damage Classifier

Considering an observation windows (0, T), short enough to assume frozen operational,
environmental, and damage conditions, the damage state of the structure is monitored by collecting
vibrational and temperature data through a sensor network featuring Nu vibrational sensors,
with a fixed sampling period ∆t, and Nφ thermometers. The network arrangement has been
designed starting from an initial placement involving a high number of sensors, progressively
reduced evaluating the classifier performances on multiple datasets that were generated according to
different sensor configurations. Vibrational recordings consist of displacement and/or acceleration
measurements un, ün (n = 1, . . . , Nu) of length L = T/∆t (for the sake of simplicity, in this
section we only consider displacement measurements), while each thermometer outputs a single
value φn (n = 1, . . . , Nφ). A single data instance is composed of a set of displacement recordings
Ui(η

i
u, ηi

φ, gi) = [ui
1, . . . , ui

Nu
] ∈ RL×Nu and temperature measurements Φi(η

i
φ) = (φi

1, . . . , φi
Nφ

) ∈ RNφ ,
where: gi labels the damage state that is undergone by the structure in the i-th instances, modeled as
a localized stiffness reduction in pre-designated regions; ηi

u and ηi
φ label the set of parameters that

control the mechanical and the temperature field, respectively. The dataset D is made of I instances
{Ui, Φi}, i = 1, . . . , I; to relieve the computational burden of its generation, the Full-Order Model
(FOM), which relies on the FE method, is replaced by a Reduced-Order Model (ROM).
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According to the adopted classification framework, only a discrete number of damage scenarios
g = 0, . . . , G has to be defined on the basis of the mechanical behavior, load conditions, and aging
processes interesting similar structures [4]. The baseline undamaged state is labeled as g = 0.

A continuous probability density function (pdf) describes the occurrence of each entry of ηi
u and

ηi
φ, while a discrete pdf governs the occurrence of gi. The parameter set ηi

φ, which is sampled from pdfs
that take the locality of interest and the seasonality of temperature fluctuations into account, controls
the temperature profiles that are imposed at the domain edges. The set ηi

u parametrizes the external
loads (e.g., amplitude and frequency of a dynamical load) and the damage level δi, intended as the
intensity of the stiffness reduction involving the subdomain that is related to gi. A suitable sampling
rule (e.g., a Latin Hypercube Sampling) has been adopted in order to explore the parametric space
defined combining ηu, ηφ and g. Each sampling {ηu, ηφ, g}i uniquely identifies the corresponding
dataset instance {Ui, Φi}.

Once built, D is employed to train and validate a classifier G. During the training phase, Itr

instances are employed by G to learn the underlying mapping between the i-th instance {Ui, Φi} and
gi, while Ival instances (with I = Itr + Ival) are used in order to validate the learning process. Once
trained, G should be able to correctly map an unseen instance {Ui, Φi} into the correct damage state gi.
In the absence of experimental data, the generalization capabilities have been assessed on a test set
built through FOM simulations, in this way ensuring better fidelity to the experimental framework.
For sake of clarity, from now on, we disregard specifying the instance index i.

Our FCN architecture, resembling the one that is proposed in [8], processes U by exploiting
a stack of three Convolutional Units (CU), followed by a Global Average Pooling (GAP), whose
output is merged with Φ through a Concatenation Block (CB). These latter support the classifier in
recognizing thermal effects of material contraction/expansion and stiffening/softening within the
observed dynamics, in order to not confuse the environmental variability with damage [11]. Thus,
a dense layer operates a linear mapping, ruled by a weight matrix Θ, allowing a final Softmax layer
to perform the classification task. Each of the three CUs is formed by a Convolutional Layer (CL),
together with Batch Normalization, in order to stem gradient instability issues during training, and
ReLU activation function. In a CL, connection weights Ω can be imagined as filters of kernel size Hj,
with j = 1, 2, 3, to be applied to the output of the previous layer. Each convolutional layer applies Nj
filters to its inputs, yielding an output that is made of Nj feature maps. This composition of nonlinear
transformations makes each damage target class linearly separable and allows for addressing the
temporal pattern recognition, exploiting inter-sensor correlations, by simultaneously analyzing U. The
GAP condenses the resulting feature maps, which elicits a single, yet highly informative, description
of its input channel u1, . . . , uNu .

While training G, the learning algorithm tunes the weights Ω and Θ, by iteratively minimizing
a loss function over the Itr instances. The adopted loss function is the cross entropy, as is usually
done in classification frameworks; Adam, a first-order stochastic gradient descend algorithm, has been
employed in order to perform the iterative minimization process. At each iteration, a certain number of
instances B, called mini-batch, are simultaneously analyzed in order to update the connection weights;
each time all of the Itr instances have been processed is said to be an epoch.

The FCN hyperparameters (Nj, Hj, B, I, n◦epochs), initially set according to [8], have been tuned
through the repeated evaluation of the classification accuracy. Herein, we have adopted: N1 = 16,
N2 = 32, and N3 = 16, as the number of filters; H1 = 8, H2 = 5 and H3 = 3, as kernel sizes; B = 16
as mini-batch size; I = 15000, as number of instances, with the ratio Itr : Ival = 75 : 25; 1000 training
epochs.

3. SHM Methodology: Dataset Population

Adopting a SBC approach, the generation of the I instances has been carried out by evaluating
the physics-based model of the structure, for multiple values of the input parameters ηu and ηφ for
each considered scenario g = 0, . . . , G.
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The thermo-mechanical behavior of the structure has been modeled through the standard linear
thermo-elasticity theory employing a one-way coupling approach; the thermal field is independently
determined from the kinematic one, but it still influences the material deformations. Moreover, having
supposed monitoring windows of fixed duration, being significantly lower than the time that is
required to experience notable temperature excursions, the thermal field has been evaluated while
disregarding its temporal dependence. In order to reflect an oscillation of the material temperature
into the dynamical response, a local dependency of the Young modulus E on temperature has
been introduced. Lastly, damping effects have been disregarded due to the small relevance in the
identification of continuously excited dynamic systems [12,13]; besides, modeling the structural
damage as a selective reduction in stiffness, frozen in (0, T), the mechanical behavior has been treated
as linear [3]. The FOM reads, as follows:

Kϕϕ = fϕ , (1)


Mvv̈(t) + Kvv(t) = Gvϕ+ fv(t) , t ∈ (0, T)

v(0) = v0

v̇(0) = v̇0

, (2)

and results from a Galerkin–FE discretization of a stationary diffusion problem and of a elasto-dynamic
problem with a coupling term, respectively. In particular: t ∈ (0, T) denotes the time coordinate;
ϕ = ϕ(ηφ) ∈ RMϕ is the temperature vector; Kϕ ∈ RMϕ×Mϕ is the thermal conductivity matrix;

fϕ = fϕ(ηφ) ∈ RMϕ is the thermal right hand side vector; v = v(t, ηu,ϕ, g) ∈ RMv is the displacement
vector; Mv ∈ RMv×Mv is the mass matrix; Kv = Kv(ϕ, g) ∈ RMv×Mv is the elastic stiffness matrix;
Gv ∈ RMv×Mϕ is the coupling term; fv = fv(t, ηu) ∈ RMv is the mechanical right hand side vector;
Mϕ and Mv denote, respectively, the number of degrees of freedom (dofs) of the temperature and the
displacement FE spaces.

Pb. (1) is first solved in order to determine the temperature field ϕ. Vector ϕ is transformed into
equivalent nodal forces through Gv. A displacement field, compatible with ϕ, is determined by solving
a static mechanical problem under the coupling action only, and it is assumed as the reference around
which the dynamics that are governed by Pb. (2) oscillates. Discretization in time has been made
according to the sensors sampling rate. For the integration in time of Pb. (2), we have exploited a
generalized-α method.

The FOM relies upon a number of dofs Mv and Mϕ, depending on the adopted (potentially fine)
discretization. The RB method, which is used to construct the dataset D, exploits a Galerkin-Proper
Orthogonal Decomposition (POD) ROM, whose POD basis is built, starting from a set of FOM solutions
(snapshots), which are computed within the prescribed parameters range. The ROM solution is then
sought by solving the reduced-order problem resulting from the Galerkin projection of the FOM onto
the reduced basis.

Displacements and temperatures that are related to the i-th sampling {ηu, ηφ, g} are time

integrated and collected in V = [v1, . . . , vL] ∈ RMv×L and ϕ = (ϕ1, . . . , ϕMϕ)
> ∈ RMϕ , respectively.

The monitored dofs U and Φ, mimicking the sensors recordings, are extracted through two boolean
matrices Tu ∈ RNu×Mv and Tφ ∈ RNφ×Mϕ , as U = (TuV)> and Φ = (Tφϕ)>.

4. Numerical Test Case

The proposed approach has been assessed on the monitoring of the two-dimensional (2D)
frame that is depicted in Figure 1. When considering a structural thickness of 0.1 m, the plane
stresses formulation has been adopted. The bottom edges are assumed perfectly clamped to the
ground. The geometry has been discretized in 2938 constant strain triangle finite elements. The
adopted mechanical and thermal properties are those of an ordinary reinforced concrete: Young
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Figure 1. Two-dimensional (2D) frame configuration, considered damage scenarios, sensor network
arrangement.

modulus E = 30 GPa; Poisson ratio ν = 0.2; density ρ = 2500 kg/m3; thermal expansion coefficient
αL = 12 · 10−6 ◦C−1; stiffness thermal coefficient αE = 4.5 · 10−4 ◦C−1. The last two proprieties allow
for relating the local material temperature to the thermally induced anelastic deformations and the
material stiffening/softening, respectively.

The structure is excited by low intensity seismic loads. To this aim, we have employed the
empirical equations for predicting the attenuation of ground motion proposed in [14] and implemented
in [15]. The main advantage of this tool is the possibility to generate random spectrum-compatible
accelerograms as a function of: local magnitude Q; epicentral distance R; and, site geology. In order
to ensure the structure to behave in elastic regime, those parameters have been limited within the
following ranges: Q ∈ (4.8, 5.3); R ∈ (80, 100) km; rocky conditions. The parameters Q and R have
been described by two uniform pdfs UQ(4.8, 5.3) and UR(80 km, 100 km), respectively.

Nine damage scenarios have been simulated by means of a localized stiffness reduction. Each
structural state g ∈ {1, . . . , 8} identifies a structural damage that occurs in the subdomain Ωs,
s = 1 . . . , 8, respectively; the damage-free baseline is labeled as g = 0. The occurrence of damage
scenarios has been modeled with a (discrete) uniform pdf Ug({0, . . . , 8}) describing g. The damage
level δ, which represents the intensity of the stiffness reduction to be applied, has been modeled by a
uniform pdf Uδ(5%, 25%).

In order to simulate potential thermal distributions, resembling those that are experienced by the
structure, Pb. (1) is solved under the action of thermal profiles that are imposed on all edges. Those
profiles have been modeled by interpolating temperature values at edges midpoints and corners,
which are nothing but the components of the parameter vector ηφ. Temperatures have been assumed
to be constant and equal for the three edges in contact with the ground, while parabolic profiles have
been used elsewhere. In this way, a total of 28 parameters ηl

φ (with l = 1, . . . , 28) are involved. From
the temperature data of the city of Milan, a Gaussian pdf Nm(µm, σm), m = 1, . . . , 12, has been defined
for each month, with µm and σm being the monthly average and standard deviation, respectively. Each
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time Pb. (1) is solved, the month occurrence is sampled from a (discrete) pdf Um({1, . . . , 12}), thus the
ηl

φ are inferred from the corresponding pdf Nm(µm, σm).
The sensor network consists of Nu = 11 sensors, recording structural accelerations ün(t), and of

Nφ = 11 thermometers, recording temperatures φn, with n = 1, . . . , 11, being arranged as depicted in
Figure 1. We have considered dual output sensors, recording both accelerations and temperatures at
the same location. The dynamical response is monitored with a sampling frequency of 20 Hz, so as
to sample the first two structural frequencies, respectively, 2.79 Hz and 7.14 Hz, without incurring in
aliasing.

Thanks to the adoption of the ROM for the dataset construction, the number of dofs decreases from
Mϕ = 1469 to 28 for the stationary diffusion problem and from Mv = 2938 to 63 for the elasto-dynamic
problem. Consequently, the CPU time that is required by each simulation, over the time interval
(0, T = 35 s), passes from 421 s to 4.9 s, entailing a speed-up of about 86 times (computations have
been run on a PC featuring an Intel (R) Core™, i5 CPU @ 2.6 GHz and 8 GB RAM).

The evolution of the loss function and global accuracy of classifier G, obtained during the training,
are respectively reported in Figures 2 and 3. The iteration number accounts for the number of times
the FCN weights have been updated. The greatest gains in terms of classification accuracy (i.e., the
ratio of correctly classified instances over the total) are obtained in the first portion of the graph.

The generalization capabilities of the classifier G have been assessed on a test set made of 108
pseudo-experimental instances that are generated through the FOM. The classifier G carries out the
classification task with a global accuracy of 81.48% and a testing time of 1.08 s, which means roughly
about 0.01 s for each test instance. The obtained results are summarized by the confusion matrix in
Figure 4. Two different sources of error stand out. In particular, a small number of test instances
labeled as g = 3 are misclassified as g = 1 (the same also occurs between g = 6 and g = 3); this might
be due to the similar influence of those scenarios on the mechanical behavior. Moreover, half of the
test instances that are labeled as g = 0 (undamaged) are also misclassified; this might be due to the
variability of δ. Indeed, a low value of δ not only implies an augmented difficulty in distinguishing
between damaged and undamaged conditions, but it also causes the ROM to be less accurate.

Figure 2. Classifier training: loss function evolution on the training and validation sets.
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Figure 3. Classifier training: global accuracy evolution on the training and validation sets.
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Figure 4. Classifier testing: confusion matrix.

5. Conclusions

In this work, we have proposed a computational framework, integrating model-order reduction
and deep learning, for structural health monitoring under varying operational and environmental
conditions. This hybrid model-data strategy enables online damage localization, making use of
vibrational and temperature measurements. In order to overcome the lack of experimental data for
civil applications, a database of synthetic recordings has been built offline, for a set of predefined
damage scenarios, through simulations of a physics-based model, explicitly accounting for varying
operational and environmental conditions. A parametric reduced order model, built through the
reduced basis method, has been exploited in order to accelerate the dataset generation. Finally,
a classifier exploiting a convolutional neural network has been adopted to perform automatic feature
extraction and relate raw sensor data to the corresponding structural health conditions.

In the presented example, the classification outcomes show a global accuracy of about 81%, and
they offer the possibility to identify the nature behind the misclassification errors.

In future works, we aim to couple the classifier with a further neural network branch, playing the
role of first line damage identifier, in order to reduce the possibility of an incorrect classification of
undamaged scenarios. Moreover, a sensor placement according to a Bayesian optimization approach
is going to be envisaged in order to maximize the effectiveness for the damage assessment.
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