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Abstract: The discussed study presents a new type of opto-electronic color filter designed for op-
tical communication that could revolutionize both the signal processing field and the fiber optic
communication industry. The study proposes a precise structure design for three reflective color
filters based on a tri-layer configuration. This design includes a titanium dioxide layer on top, a
semi-conductor silicon layer in the middle, and a silicon dioxide layer at the bottom, creating a DSD
structure. This design presents three different filters for pure hues, namely magenta, yellow, and
cyan. One of the significant advantages of this tri-layer design is the thickness of each material layer,
which plays a vital role in producing better intensity values and purity of CMY colors. This study
presents the design of the new filters that could potentially have a significant impact on the display
industry, and life-saving medical equipment where fiber optics with multi-layer opto-electronic color
filters are used. The novelty of this study lies in its precise structure design and the potential to
generate superior results compared to existing color filters. This innovative design can potentially be
implemented in various fields, such as display technology and medical equipment, to enhance their
performance and accuracy. Overall, this study’s contribution highlights the potential advantages and
usages of the proposed filters in various fields.

Keywords: dielectric; dielectric semiconductor dielectric (DSD); multi-layer; cyan magenta and
yellow (CMY); reflective color filters; semiconductor

1. Introduction

The telecommunications sector has undergone a revolution thanks to fiber optic trans-
mission, which is now regarded as the fundamental building block of contemporary, global
broadband networks [1]. Ultra-long-haul optical transmission [2], multi-terabit commu-
nication fibers [3], laser neural communication network nodes [4], and intelligent optical
transmission networks [5] are only a few examples of the various fiber optic communication
technologies. Light pulses are employed in all of these varieties of fiber optic communi-
cation, which transmit data from one location to another. A cylindrical structure, often
comprised of a dielectric substance such as silicon [1], is what constitutes an optical fiber.

Since light serves as the medium of transmission in fiber-=optic-based communication,
the purity of the light pulses, also known as light filtering or optical filters, is crucial.
Every material absorbs, transmits, or reflects the incident light depending on its refractive
index values, which is a natural phenomenon known as light filtering [6,7]. As a result,
every material has a built-in capacity to filter particular hues. Transmissive color filtering,
reflecting color filtering, and trans-reflective color filtering are possible classifications for
this phenomenon [8,9]. There are several uses for these categories, including the production
of photovoltaic cells, medical imaging [6,10], plasmonic devices and color filters [11,12],
and many other devices [13]. Opto-electronic color-filter-based photoreaction devices
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frequently make use of the semiconductor thin-film-based devices’ ability to selectively
absorb specific wavelengths of light [9,14].

Specially created nanostructures called spectral color filters are made of various thin-
film materials [15,16]. Different sorts of visible colors are produced at the output when the
thickness of the material is altered in any opto-electronic reflective color filter [17,18]. Time-
and cost-effectiveness are the two key benefits of utilizing multilayer thin-film filters [19].
For thin-film color filters, there are three main design configurations: MDM [20,21], all-
dielectric medium designs, and DSD. The latter produces just one resonance reaction. In
comparison to MDM, it suggests that filters with DSD and an all-dielectric structure have
higher reflective filter efficiency [7]. Based on the number of layers, there are numerous
multilayer thin-film designs [22], such as the tri-layer-based color filter design [23]. Addi-
tionally, bi-layer Etalon color filters [8,24] that display colors in reflection or transmission
are demonstrated.

The primary goal of this research is to develop a multi-layer-based opto-electronic
structure with higher color purity values for efficient fiber optics communication. The
major driving force behind designing this reflective color filter design is that it eliminates
the requirement for an additional layer beyond the one that has been suggested, which
was previously required by works [24] and Fabry-Perot etalons [23]. To obtain the desired
results, extra metal layers were typically added to these works in addition to the designed
filter. The proposed research is expected to yield results that can be applied to optical filter
applications. By utilizing the research findings, these applications will be able to use three
filters that are expected to provide superior results compared to the currently available state-
of-the-art color filters. Specifically, the three filters are expected to improve color purity in
the reflection spectrum, which can save time and effort in producing accurate results. With
the implementation of these filters, optical filter applications can expect to achieve better
color accuracy and quality, resulting in improved performance and greater efficiency.

2. Methodology

In this section, there will be a presentation of three different multi-layer color filter
designs with their complete design processes.

Figure 1 is a flowchart that shows the steps taken to ascertain an optically thin film
stack’s anticipated color. The wavelength dependence of all the relevant parameters is
taken into account, as well as the incident light’s polarization state. This is the detailed
flowchart for the designing process of the multi-layer color filters. According to Table 1, the
refractive index of TiO2 is 2.6142. Light bends toward normal, and some of it is reflected
back when it is incident at a 90-degree angle from the air (a medium with a low refractive
index) to titanium dioxide (a medium with a high refractive index). The silicon layer is
then reached by the light, which has a refractive index of 3.9 values. After that, it bends and
refracts once more, reflecting back a portion of itself. As illustrated in Figure 2a,b, the lowest
layer, silicon dioxide, has a low refractive index value and allows light to pass through.
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Table 1. Design details of the tri-layer reflective color filter.

Materials Placement Name Refractive Index Value (mo) Material Nature Thickness Notation (nm)

1st layer Titanium dioxide 2.6 Dielectric J1
2nd layer Silicon 3.9 Semiconductor J2
3rd layer Titanium dioxide 1.4 Dielectric J3

Eng. Proc. 2023, 32, x 3 of 8 
 

 

Table 1. Design details of the tri-layer reflective color filter. 

Materials Placement  Name  Refractive Index Value 
(mo) 

Material Nature Thickness Notation 
(nm) 

1st layer Titanium dioxide 2.6 Dielectric  J1 
2nd layer Silicon 3.9 Semiconductor  J2 
3rd layer Titanium dioxide 1.4 Dielectric J3 

 

(a) (b) 

Figure 2. (a) Design schematics of a tri-layer-based opto-electronic reflective (CMY) color filter; (b) 
description of how light interacts with incident light from air in proposed tri-layer filter design. 

Derivation of the reflection equation/algorithm used in designing the proposed tri-
layer filter from a TiO2-Si-SiO2 multilayer structure according to Figure 2b: 𝐸 = 𝑡𝑟 𝐸 + 𝑟𝑓 𝐸  (1)

where 𝑏1 = 𝑗𝐹𝑂/𝐵𝐾, therefore 𝐸 / shows electric field j indicated in the medium, and 
FO is forward motion, and BK is backward motion of electric field in the medium. 𝑡𝑟 = 2ℎ 𝑐𝑜𝑠𝜃ℎ 𝑐𝑜𝑠𝜃 + ℎ 𝑐𝑜𝑠𝜃  (2)

Equation (2) indicates the transmissions co-efficient for s-polarization. 𝑡𝑟 = 2ℎ 𝑐𝑜𝑠𝜃ℎ 𝑐𝑜𝑠𝜃 − ℎ 𝑐𝑜𝑠𝜃  (3)

Equation (3) indicates the transmissions co-efficient for p-polarization. 𝑟𝑓 = ℎ 𝑐𝑜𝑠𝜃 − ℎ 𝑐𝑜𝑠𝜃ℎ 𝑐𝑜𝑠𝜃 + ℎ 𝑐𝑜𝑠𝜃  (4)

Equation (4) indicates the reflection co-efficient for s-polarization. 𝑟𝑓 = ℎ 𝑐𝑜𝑠𝜃 − ℎ 𝑐𝑜𝑠𝜃ℎ 𝑐𝑜𝑠𝜃 + ℎ 𝑐𝑜𝑠𝜃  (5)

Equation (5) indicates the reflection co-efficient for p-polarization. ℎ  is the refractive index of medium k. 𝛽 = 2𝜋𝜆 ℎ 𝑑 𝑐𝑜𝑠𝜃  (6)𝑑  is the thickness of material layers. 𝜃  is the incident angle on medium. 

Figure 2. (a) Design schematics of a tri-layer-based opto-electronic reflective (CMY) color filter;
(b) description of how light interacts with incident light from air in proposed tri-layer filter design.

Derivation of the reflection equation/algorithm used in designing the proposed tri-
layer filter from a TiO2-Si-SiO2 multilayer structure according to Figure 2b:

Eb1 = tr01Eb0 + r f10Ea1 (1)

where b1 = jFO/BK, therefore EjFO/BK shows electric field j indicated in the medium, and
FO is forward motion, and BK is backward motion of electric field in the medium.

trkh =
2hkcosθk

hkcosθk + hhcosθh
(2)

Equation (2) indicates the transmissions co-efficient for s-polarization.

trkh =
2hkcosθk

hhcosθk − hkcosθh
(3)

Equation (3) indicates the transmissions co-efficient for p-polarization.

r fkh =
hkcosθk − hhcosθh
hkcosθk + hhcosθh

(4)

Equation (4) indicates the reflection co-efficient for s-polarization.

r fkh =
hhcosθk − hkcosθh
hhcosθk + hkcosθh

(5)

Equation (5) indicates the reflection co-efficient for p-polarization.
hk is the refractive index of medium k.

βk =
2π

λ
hkdkcosθk (6)

dk is the thickness of material layers.



Eng. Proc. 2023, 32, 1 4 of 8

θk is the incident angle on medium.
Applying and rearranging r f10 = −r f01

Eb0 =
1

tr01
× (Eb1 + r f01Ea1) (7)

Ea0 = r f01Eb0 + tr10Ea1 (8)

This equation is also from Figure 2b.

Rearranging and applying tr10 =
1−r f 2

01
tr01

Eb0 =
1

tr01
× (Ea1 + r f01Eb1) (9)

For the other E-field,

Eb1 =
1

tr12
× (Eb2 + r f12Ea2)× e−jβ1 (10)

Eb1 =
1

tr12
× (Eb2 + r f12Ea2)× ejβ1 (11)

Eb2 =
1

tr23
× (Eb3)× e−jβ2 (12)

Eb2 =
r f23

tr23
× (Eb3)× ejβ2 (13)

Back substitution of (12) and (13) into (11) and (10):

Eb1 =
Eb3

tr12tr23
× (e−jβ2 + r f12r f23ejβ2)× e−jβ1 (14)

Ea1 =
Eb3

tr12tr23
× (r f12e−jβ2 + r f23ejβ2)× ejβ1 (15)

Back substitution of (14) and (15) into (5) and (8):

Ea0 =
Eb3

tr01tr12tr23
× ((e−jβ2 + r f12r f23ejβ2)× e−jβ1 + r f01(r f12e−jβ2 + r f23ejβ2)× ejβ1) (16)

After rearranging we have

Tr =
Eb3
Eb0

=
tr01tr12tr23ej(β1+β2)

1 + r f01r f12ejβ2 + (r f12 + r f01ej2β1)r f23ej2β2 (17)

where Tr = Transmittance. Similarly,

Eb0 =
Eb3

tr01tr12tr23
× ((r f01e−jβ2 + r f01r f12r f23ejβ2)× e−jβ1 + ((r f12e−jβ2 + r f23ejβ2)× ejβ1) (18)

Dividing (18) by (16)

R f =
Ea0

Eb0
=

r f01 + r f12ej2β1 + (r f01r f12 + ej2β1)× r f23ej2β2

1 + r f01r f12ej2β1 + (r f12 + r f01ej2β1)r f23ej2β2 (19)

where R f = Reflectance, and
Ab = 1 − R f (20)
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After the implementation of the reflection algorithm, there is a need to have a cross-
check method for the proposed design of the reflective filter. For this purpose, this study
used the standardized CIE 1931, pure color axis values for cyan, yellow, and magenta as
shown in Table 2.

Table 2. CIE 1931 standard CMY color coordinate values.

Reflective Colors x-Axis (Ex) y-Axis (Ey)

Cyan 0.224 0.328
Yellow 0.419 0.505

Magenta 0.320 0.154

These color coordinates will be used as a reference to cross-check the proposed color
filter coordinates.

3. Simulation Results and Discussion

This section covers the filter design parameters and simulation results. The purity
of the three filtered reflected colors—magenta, yellow, and cyan–as well as the efficiency
of each filtered reflected color rely on the optimal layer thickness, as indicated in Table 3.
The color coordinate values for cyan, magenta, and yellow that were obtained using the
reflective color filters are shown in Figure 3 on the CIE 1931 plot. These reflected colors are
depicted by a color triangle on the CIE plot in Figure 3.

RD =
√
(Ex − Fx)

2 + (Ey − Fy)
2 (21)

Table 3. Layer thickness for efficient opto-electronic CMY color filters for fiber optic communication.

Materials Layer Thickness (nm) for
Magenta Color

Layer Thickness (nm) for
Cyan Color

Layer Thickness (nm) for
Yellow Color

Titanium dioxide (J1) 42.6 42.8 147.1
Silicon (J2) 8.06 74.2 88.1

Silicon dioxide (J3) 119.3 22.5 49.4
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Using the coordinate values for the cyan, yellow, and magenta colors from Tables 2 and 4
in Equation (21), the color purity value and relative distance value is 0.0014 for magenta,
0.004 for cyan, and 0.021 for yellow. From Figure 3b the cyan color intensity values are
approximately 55%, while in Figure 3c,d, magenta has a 35% intensity value and yellow
has 50%.

Table 4. Tri-layer reflective color filter design CMY output color coordinate values.

Reflective Colors x-Axis (Fx) y-Axis (Fy)

Cyan 0.220 0.328
Yellow 0.412 0.485

Magenta 0.321 0.153

4. Conclusions

The proposed reflective CMY filter design presented in the study outperformed other
existing designs, as demonstrated in Table 5 by the color purity values obtained using the
coordinate values for cyan, yellow, and magenta colors. The filter design is efficient in
producing pure cyan, magenta, and yellow as reflected colors, which could result in better-
quality light signal transmission and reception through fiber optic communication. One
important observation made during the design process was that the color intensity values
change significantly with an increase in the thickness of the dielectric layers. Low-intensity
values are expected with a relatively thicker layer. Filter layers should be fabricated under
the 150 nm structure of thin films used.
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Table 5. Comparison of color purity/relative distance values of Tri-layer reflective CMY color filters
with previous studies.

Previous
Works

Magenta
Color (x,y)

Relative
Distance

(RD)

Proposed
Tri-Layer

Design (RD)
Value (0.0014)

Cyan
Color (x,y)

Relative
Distance

(RD)

Proposed
Tri-Layer

Design (RD)
Value (0.004)

Yellow
Color (x,y)

Relative
Distance

(RD)

Proposed
Tri-Layer

Design (RD)
Value (0.021)

[21]
Meta materials (0.38,0.27) 0.1399 Improved (0.26,0.36) 0.0558 Improved (0.42,0.42) 0.0759 Improved

[19]
Multi-layer (0.21,0.54) 0.2197 Improved

[7]
Multi-layer (0.32,0.16) 0.0116 Improved (0.22,0.27) 0.0578 Improved (0.46,0.44) 0.0758 Improved

[25]
Meta materials (0.32,0.16) 0.0116 Improved (0.22,0.27) 0.0578 Improved (0.46,0.46) 0.0758 Improved
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