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Abstract: Regime switching in conjunction with penalized likelihood techniques could be a robust
tool concerning the modelling of dynamic behaviours of consultation rate data. To that end, in this
work we propose a methodology that combines the aforementioned techniques, and its performance
and capabilities are tested through a real application.

Keywords: elastic net; dynamic system; markov switching; penalized likelihood; regimes; regular-
ization methods; two-state modelling; variable selection

1. Introduction

Dynamic behaviours in time events are always quite complex, and their modelling is
often a challenging task. The level of difficulty is accelerated in cases where the dynam-
ics of a system cannot be satisfactorily described by linear models, but more perplexed
non-linear functions are required. Classical time series approaches are not capable of
capturing complex functional behaviours. Even advanced models recently proposed are
not flexible enough and as a result are not easily adjusted to handle more general non-linear
schemes [1–4].

It is also frequently observed that the behaviour changes its general pattern in different
regions of the time space. Such changes may affect either the mean or the variation or both.
A breakthrough in this field took place 40 years ago with the proposal of Markov regime
models and the switching regressions [5]. Such models allow a great degree of flexibility,
and as a result they could be implemented to capture complex dynamic behaviours. The
unobserved state variable associated with such models is an attractive feature directly
related to the switching mechanism of the underlying modelling approach. The resulting
advanced models rely on the Markovian property, which is an easily handled issue in terms
of inferential statistics. Note finally that censoring [6] or semi-Markov approaches [7] may
also be considered in such frameworks.

In this work, within the switching framework, we introduce the classical likelihood
combined with a penalty term controlled by a properly chosen tuning parameter. In
other words, the switching modelling technique is combined with the so-called penalized
likelihood with the parameter estimation being dealt via the Expectation-Maximization
algorithm [8]. Depending on the phenomenon under investigation, a proper switching
model can be used. Two states often suffice to describe the classical dynamic behaviour
of incidence data or epidemics, with one state representing the normal stage of the phe-
nomenon and the other the outbreak stage. In such a case, the frequency (usually of daily
or weekly data) changes (increases) considerably (and in some cases dramatically) when
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the system enters into the second stage. Such a change is considered statistically signifi-
cant, and therefore the unobserved state variable ignites the switch. In addition, possible
covariates may affect the variable of interest, which is denoted by yt and represents either
the frequency or the associated rate.

2. The Modelling

The model used in this work is the 2-state switching model of conditional mean, the
general form of which is given by

xt = µst +
p

∑
i=1

φist xt−i + εt, (1)

where µst is a switching intercept, φist , i = 1, ..., p, are autoregressive (AR) switching
coefficients, st represents the state variable that takes the values 1 (normal or typical state),
and 2 (the extreme or outbreak state) and εt are i.i.d. random variables with zero mean and
variance σ2

ε .
If k covariates are allowed to enter into the model, (1) extends to

xt = µst +
p

∑
i=1

φist xt−i +
k

∑
j=1

θjstWj + εt, (2)

where θjst the coefficient associated with the Wj covariate.
As i is clear from the presentation of the above model, a different set of parameters

is involved for each state considered. It is important to state that the set of covariates
involved in each state may or may not be the same.

3. The Algorithmic Procedure

The approach we choose to follow for modelling phenomena that exhibit a dynamic
switching behaviour consists of three steps, which are briefly discussed in this section.

3.1. Step 1-The Change Point Detection

The detection of a change point in a time series and in general in events over time
constitutes an integral part of time series analysis, since their identification is directly
related to a distributional change. Such changes, even light ones, should cause alarm due
to the fact that they may alter the data generating process in such a way that the process
under investigation may fail to fulfill the purpose for which it is intended. Applications
can be found in most scientific fields from finance and business to engineering, biosciences,
climatology, geosciences etc. [9–11].

The proposed methodology requires a preliminary analysis to identify a set of possible
change points. It should be noted that such analysis involves only the response variable,
and no covariates are involved. The method to be used may be the classical method of
change-point identification [12].

For the change point detection, an offline algorithm is used to examine the entire set of
observations in a single step to recognize where the change occurred. The online approach
could be chosen instead, as long as a certain number of new data are available for the
algorithm to function properly and satisfactorily.

To check the performance of the selected change points, we have used the mean
absolute error (MSE) according to which predicted and actual values are compared. The
general expression is given by

MSE =
1
T

T

∑
i=1

(x̂t − xt)
2.
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3.2. Step 2-The Variable Identification

For the identification of the statistically significant covariates, a kind of model selection
technique can be implemented. In this work, we propose the use of computationally
advanced regularization methods, such as Lasso, Ridge or Elastic-Net with the latter
considered to be a generalization of the former ones that overcomes their disadvantages.
For the interested reader, a number of articles investigate the interrelation of time series
and regularization techniques [13–15].

The generalized regularization method used in this work is given by

SSE + 2Tλ

[
α

( p

∑
i=1

k

∑
j=1

(|φist |+ |θjst |)
)

+

(
1− α

2

)( p

∑
i=1

k

∑
j=1

(φ2
ist

+ θ2
jst
)

)]
, (3)

where SSE is the sum of squared errors or any other loss function chosen by the researcher,
T the sample size, α ∈ [0, 1], and λ the tuning parameters that result the penalty in the loss
function. Note that α balances the amount of emphasis given to minimize the loss function
versus minimizing the sum of squared coefficients and/or the sum of absolute coefficients.

Observe that the above generalized regularization method is reduced to

• The Lasso method for a = 1;
• The Ridge method for a = 0; and
• To Elastic-Net for a ∈ (0, 1).

Note that a proper weighted version of (3) can be used if it is needed, for instance, to
resolve a heteroscedasticity issue. In such a case, (3) takes the general form

SSE + 2Tλ

[
α

( p

∑
i=1

k

∑
j=1

(|wφ
i φist |+ wθ

j |θjst |)
)

+

(
1− α

2

)( p

∑
i=1

k

∑
j=1

(wφ
i φ2

ist
+ wθ

j θ2
jst
)

)]
, (4)

where wφ
i and wθ

j appropriate weights, i = 1, . . . , p and j = 1, . . . , k.

3.3. Step 3—The Switching

The selected model for each state is obtained together with the parameter estimates
and the associated standard errors.

Note that in practice, we do not know and we do not observe the state st, but we could
infer it from the observed data. Indeed, although the state variable st is an unobserved
variable, the process yt is observed. To make an inference about st, we need to make an
assumption about the process st, which usually is assumed to follow a first order Markov
chain. For the 2-state case, the probabilities of transition are also obtained. Thus, the
transition probability to state j at time t, given that the process was in state i at the time
point t− 1, is given by P(st = j|st−1 = i) = pij, i, j = 1, 2.

4. An Application on Epidemiology

Using a data set of 105 weekly influenza-like-illness (ILI) consultation rate data for
Greece for the period 2014–2016, including a series of meteorological and climatological co-
variates such as temperature and wind, we were able to identify an ideal tuning parameter
λ and the best value of the index α in the sense that the minimum mean squared error is
achieved. Figure 1 shows that the ideal value of λ is around one (1), while the best value of
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α is between 0.5 and 1. A more detailed analysis reveals that λ = 1 and α = 0.729, with the
corresponding value of MSE being equal to 0.0734.

Figure 1. Behaviour for various values of a as opposed to different values of log λ and MSE.

Under this setting, the regimes of the data and consequently the form of the selected
models are identified together with the estimates of the parameters involved.

The models obtained with the use of the MSwM R-package [16] are as follows (with
three decimal points):

Regime 1-typical period/state

ŷt = 146.480− 0.375t− 37.488sin
(

2πt
n

)
− 2.682cos

(
2πt

n

)

− 44.002sin
(

4πt
n

)
− 23.945cos

(
4πt

n

)
+ 8.330sin

(
8πt

n

)
− 14.244cos

(
8πt

n

)

+ 0.035T1 + 15.326T2− 11.081T3 + 10.042WF− 0.595ŷt−1.

(5)

Regime 2-Outbreak period/state

ŷt = 19.552− 0.005t + 18.933sin
(

2πt
n

)
− 10.652cos

(
2πt

n

)

− 5.119sin
(

4πt
n

)
− 2.244cos

(
4πt

n

)
+ 0.971sin

(
8πt

n

)
− 0.313cos

(
8πt

n

)

− 0.236T1 + 4.006T2− 4.139T3 + 1.657WF + 0.697ŷt−1.

(6)

It is worth mentioning that the same set of covariances are found to be significant for
both regimes together with a first-order autoregressive, a first degree trend polynomial
(linear trend) and a periodic (seasonal) part. The covariates chosen are the minimum,
mean, and median temperature, denoted, respectively, by T1, T2, and T3 and the mean
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of the wind force denoted by WF, implying that the influenza is closely connected to
meteorological/climatological factors like the temperature and the wind.
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