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Abstract: Picking an appropriate parameter setting (meta-parameters) for visualization and embedding
techniques is a tedious task. However, especially when studying the latent representation generated
by an autoencoder for unsupervised data analysis, it is also an indispensable one. Here we present a
procedure using a cross-correlative take on the meta-parameters. This ansatz allows us to deduce
meaningful meta-parameter limits using OPTICS, DBSCAN, UMAP, t-SNE, and k-MEANS. We
can perform first steps of a meaningful visual analysis in the unsupervised case using a vanilla
autoencoder on the MNIST and DeepVALVE data sets.

Keywords: dimension reduction techniques; multi-dimensional spaces; big data; time series;
autoencoder

1. Introduction

High-dimensional data creates the need for simplification, of which low-dimensional
embeddings as well as data visualization constitute two closely related methodologies.
Their goal is to preserve the main patterns within the data and obtain a less complex
data representation, which for two or three-dimensional embeddings grants also direct
visual access on the data. It is well known that finding a low-dimensional data embedding
is a meticulous, parameter- and data dependent task for which optimization may be
difficult [1]. However, in our approach, we take into account that even the visualization
space for an appropriate embedding is related to a set of visualization parameters, which
we call meta-parameters.These are not directly optimized over, but introduce bias in the
visualization itself when chosen poorly. One example the reader might know is the fact
that DBSCAN suffers from the curse of dimensionality, when the minimal number of
neighboring points nsamples is chosen unfortunately [2,3]. For our investigation, we chose
the challenging setting of data (namely MNIST [4] and DeepVALVE [5]) compressed within
the latency space of an autoencoder.

1.1. Why Are Autoencoders Interesting?

The idea of autoencoders exists for more than 30 years [6] and the applications are
presently widespread. They range from generalization to classification tasks, denoising,
anomaly detection, recommender systems, clustering and dimensionality reduction with
stunning results [7,9–13]. Within this work, we focus on the latter two use cases, wherein
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autoencoders perform unsupervised feature extraction and dimensionality reduction [14,15].
Autoencoders consist of an encoder-decoder structure as explained in Figure 1.

Figure 1. Architecture of an autoencoder. The left side constitutes the encoder while the mirror
image around the middle is called decoder. The exact composition of the layer structure is given in
Appendix A.

To achieve their above-mentioned goal, the data is embedded within a latency space
via the encoder. Usually, the latent dimension is much smaller than the one of the original
data set. This kind of setting is also known as bottleneck architecture. From this embedding,
the original data representation is reconstructed by the decoder. The system is trained by
minimizing the reconstruction error. Conceptually, autoencoders can be seen as a nonlinear
generalization of PCA [16]. Under postulation of the manifold hypothesis [17], in some
settings, they are supposed to learn the intrinsic low-dimensional data manifold embedded
(nonlinearly) into the high-dimensional data observation space. Even more, in this vein
they can be interpreted as a nonlinear embedding approach on their own. In the context
of unlabeled high-dimensional data sets and especially time series, autoencoders have
shown to be powerful tools for unsupervised analysis tasks [15,18]. Yet it has become clear
in several applications that the “classical” loss term might not be enough to capture the
desired behavior [19]. For this reason, some researchers try to ameliorate the reliability and
efficiency of their autoencoder models by introducing additional, task dependent loss-terms
(e.g., Ref. [20] introduced a topological loss term to preserve connected components within
the data; Ref. [21] introduced a perceptual loss to improve image classification; Ref. [22]
introduced a loss term to fix class centroids within a classification task).

1.2. Our Approach

In this work, we approach this problem upside down. We develop methods to
investigate the autoencoder’s capability to conform to the manifold hypothesis in a visual
and qualitative way, which integrates into the general trend of visualization methods
gaining more importance over the last while [23–25]. Our goal is to give data scientists a
non-mathematical and interpretable tool at hand to monitor and supervise the nonlinear
embedding process whose result constitutes the latency space. To do so, we proceed as
follows: First, we must formulate our concepts. To make clear what is new to our approach,
we must distinguish it from classical parameter and hyperparameter tuning models.

Definition 1 (Parameters). Parameters are the quantities that determine the actual shape of the
data manifold.

Intuitively, parameters determine the “physics” of our data under consideration. In
the case of our autoencoder, they are given by the trainable weights.

Definition 2 (Hyperparameters). Hyperparameters are the quantities that determine the perfor-
mance, the setup, and the training of our neural, data driven model in a metrisable way.

A summary of our autoencoder model and the corresponding hyperparameters can
be found in Tables A1 and A2 in Appendix A. The decoder is just a mirror in our case.
(Although sometimes a weight tie is implemented too, we adhere from this technique here).
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Definition 3 (Meta-parameters). Meta-parameters are the quantities that determine the perfor-
mance of our neural, data driven model in a non-metrisable way.

So, it becomes clear why standard (hyper-)parameter optimization methods cannot
be applied to the present purpose: Lacking a metric, there is now quantifiable (stochastic)
optimization procedure to find an optimal embedding. For this reason, we took a step back
on to a qualitative level and performed a cross-correlative study including t-SNE, UMAP,
k-MEANS, DBSCAN and OPTICS.

1.3. Embedding and Visualization Methods

The use of visualization methods to analyze structures of interest for a higher-
dimensional space by a visual inspection of a lower-dimensional embedding has become
a popular approach in recent years, compare [26–35]. Usually, embedding schemes are
classified and distinguished based on their embedding properties, e.g., to discriminate linear
and nonlinear embeddings. Thus, to cover an appropriate set of embedding techniques for
reasons of comparison, our approach covers a comparative study of different embedding
techniques. In the following, a short description of these methods is given. Table A3 in
Appendix B states the meta-parameters and their default values.

1.3.1. t-SNE

The t-SNE algorithm assigns mutual “neighborhood”-probabilities based on a distance
metric (most commonly the Euclidean one) between points, and successively tries to
minimize the Kullback–Leibler divergence. The most important hyperparameter is the
perplexity, which defines the minimum number of neighborhood points. However, the
hyperparameters of the intrinsic optimization algorithm also have crucial impact on the
final 2- or 3-dimensional embedding [36,37].

1.3.2. UMAP

This algorithm represents an advancement with respect to t-SNE by constructing a
“fuzzy simplicial complex” on the data. However, choosing the appropriate radius for
the related Cěch complex is a meticulous task. Additionally, the choice of the metric and
the minimum number of neighboring points determine the resulting 2- or 3-dimensional
embedding. Like t-SNE, UMAP’s dependence on the metrified minimum point distance
makes it prone to the curse of dimensionality [38].

1.3.3. k-MEANS

K-Means minimizes the metric distance of data points to predefined cluster centers.
This also constitutes its major drawback, aside from not being able to identify noise and
imposing complexity on all cluster shapes [39].

1.3.4. DBSCAN

Unlike k-MEANS, DBSCAN is a density-based method able to identify noise and
clusters of all shapes. Its main hyperparameters are ε, the critical value for which points are
seen to belong to the same cluster, and nsamples, the minimum number of points that shall
belong to one cluster. As ε is chosen globally, DBSCAN has its difficulties with clustering
heterogeneous data [40].

1.3.5. OPTICS

OPTICS has many commonalities with DBSCAN. The most substantial difference to
DBSCAN is that ε is chosen from a dendrogrammatic graph called the reachability plot. This
is based on one of its two main parameters: the reachability distance. This expresses the
smallest distance for an object p with respect to another object o, such that p is directly
density-reachable from o if o is a core object. Intuitively, a core object is one that lies in
the ε vicinity of nsamples. The reachability plot depicts the reachability distances for each
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object in the cluster ordering. Clusters within the data set are regions where the reachability
distance between points are small, so they correspond to “valleys” within the reachability
plot. The reachability plot is rather insensitive to ε and nsamples, but if ε is too small, then
too many points will have an undefined reachability distance. In contrast to DBSCAN,
OPTICS has difficulties when clustering homogeneous data [41].

1.4. Organization and Contribution of the Paper

The main part of our work is given by Section 2, where we elaborate on the nature of
our cross-correlative approach before demonstrating how our iterative and interactive cross-
study systematically leads to more stable meta-parameter settings on MNIST in Section 2.1.
Secondly, we apply our procedure to the DeepVALVE time series data in Section 2.2. In
Section 3 we study the visualizations generated by the found meta-parameters. Finally, in
Section 4, we conclude on the range of visualization meta-parameters and their connection
to unsupervised learning. The contributions of this work are

• autoencoder study on DeepVALVE data set
• cross-correlative study of embedding technologies
• procedure to gain manageable meta-parameter ranges
• visual analysis of autoencoder latency spaces

2. Cross-Correlative Study on Meta-Parameters

For our comparative meta study of dimension reduction algorithms, we define the
meta-parameters θm to be

θm B
⋃
i∈I

θmi , (1)

where I is the space of values the individual meta-parameters θmi may take, see Table A3.
A meta-parameter set of a concrete visualization might be a k-dimensional vector embedded
into a k-dimensional meta-parameter space. To elucidate this, considering multi-parameter
visualization such as the radial visualization method introduced by [42], one faces a (meta-)
parameter space k with 2n parameters (k = 2n), n being the number of data dimensions.
Finding a good meta-parameter combination introduces generally an NP-hard issue to
optimize the meta-parameters in k-dimensions (within the single algorithm regime). Thus,
our working hypothesis states insight can be gained about θm by cross-studying θm from a
multi-algorithmic point of view:

θm ≈ θm,A B
⋃

i∈I;A j∈A

θmi,A j , (2)

where A denotes the set of algorithms and θmi,A j denotes the mi-th meta-parameter of
algorithmA j. Doing so saves the trouble of solving the (k-dimensional) meta-parameter
problem for one specific algorithm. Instead, we iter- and interactively tuneθmi,A j mutually to
approach a valuable embedding and visual representation for the data in touch. LetRmethod
be the range for the cardinality of cluster centers with respect to one of the methodologies
as quoted above. Then our evaluation results in a cross-correlative range matrix

R̂ B

t-SNE UMAP k-MEANS DBSCAN OPTICS


t-SNE Rt-SNE δt-SNE,UMAP δt-SNE,k-M δt-SNE,DBS δt-SNE,OPT
UMAP δUMAP,t-SNE RUMAP δUMAP,k-M δUMAP,DBS δUMAP,OPT

k-M δk-M,t-SNE δk-M,UMAP Rk-M δk-M,DBS δk-M,OPT
DBS δDBS,t-SNE δDBS,UMAP δDBS,k-M RDBS δDBS,OPT
OPT δOPT,t-SNE δOPT,UMAP δOPT,k-M δOPT,DBS ROPT

. (3)
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Herein, δi, j denotes the intersection of the range of cluster center cardinalities for two
methods i, j:

δi, j = Ri

⋂
R j . (4)

By definition, the matrix in Equation (3) is symmetric around the diagonal. The goal is
now to find the minimum of the δi, j to come as close to the true intrinsic dimension of the
data manifold as possible.

2.1. MNIST

The MNIST data set is a well-known image data set containing the digitalization of
around 60,000 handwritten digits from zero to nine. Many studies performed with this
data set may be found in the literature [43,44]. Therefore, we omit any additional details of
this data set except the fact that it is labeled, i.e., for each picture we know which digit is
actually depicted. We start our analysis with the reachability plot for the OPTICS algorithm.
For computational reasons we fix ε to 3.5, see Appendix C.1.

As shown on the right-hand side of Figure 2, no meaningful structures can be found
for nsamples < 15 as all points are qualified as noise, which refines the order of magnitude
mentioned in [41] for meaningful nsamples. The general features of the reachability plot
itself are known to be stable under some (meaningful) variations of the meta-parameters ε
and nsamples [41]. Valleys in this plot, as shown on the left-hand side of Figure 2, may be
connected to clustered structures in the studied latency space as explained in Section 1.3.
Tuning ε = 1.85, i.e., the red dashed line in Figure 2, we can identify at least six independent
structures at the same resolution scale. We also show other, rather poorly tuned values for
ε, i.e., ε ∈ (1.50, 1.85, 2.50), indicated by the black dashed lines.

Figure 2. Left: Reachability plot for the OPTICS algorithm on MNIST. This plot is produced using
ε = 3.5 and nsamples = 25. Right: The number of identified noise points as well as the number of found
clusters as function of nsamples for OPTICS. We display different selections with ε ∈ (1.50, 1.85, 2.50)
indicated by the dashed, solid, and dotted line, respectively. The green dashed lines indicate the
limits deduced so far.

To bolster this observation, we study the 2D embeddings as computed by t-SNE and
UMAP in Figure 3. By eye we can see that both methods give a different perspective on
the structure of the latent space. Using t-SNE alone we might identify between six and
eleven structurally independent components. On the other hand, UMAP would provide
us with six or maybe seven independent structures. Especially the derived upper bounds
are very subjective. How should the gaps actually look to be counted as independent? At
this point we see how the cross-correlative nature of our approach adds value. By now
we have clearly established a lower limit of six cluster structures using Figure 2 (left) and
Figure 3 (left and middle). In addition, we have limited nsamples > 15. At the right-hand
side of Figure 2, we show the number of identified clusters as well as the noise ratio for
OPTICS as a function of nsamples for different values of ε. We observe that it actually is the
fine-tuned ε run which yields the best signal-to-noise ratio while simultaneously respecting
the derived lower limits on ncluster. Indicating the so far deduced boundaries by green
dashed lines we can set an upper limit on the number of identified clusters. Again, we
have settled for rather conservative boundaries by working with nsamples > 15. Using the
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best signal-to-noise ratio, both from Figures 2 and 3, yields nsamples = 20 and thus an upper
bound of 13 clusters instead of 18. Using this knowledge, let us study the next embedding
tool on our list: DBSCAN. As OPTICS and DBSCAN are closely related we can use the
already identified values of ε and nsamples as starting points. This greatly reduces the
meta-parameter space to be explored. Indeed, as we can see in Figure 3, DBSCAN favors
slightly higher ε and lower values of nsamples than OPTICS. However, as OPTICS requires
values for ε and nsamples high enough to not fall into the unstable regime, one should also
choose nsamples for DBSCAN not too low. This ”unstable” behavior can be observed also in
Figure 3 for values of nsamples < 15. Hence we transfer the OPTICS limit to DBSCAN here
and arrive at a fine-tuned limit of 11 clusters. So, in total we find

11 < nclusters < 18

1.5 < εOPTICS < 2

15 < nsamples, OPTICS < 25

1.9 < εDBSCAN < 2.2

15 < nsamples, DBSCAN < 20 (5)

Again, we emphasize that wherever necessary we use very conservative heuristics.
Therefore, the suggested limits in Equation (5) capture the full structure of the latent
representation as produced by our autoencoder.

Figure 3. Left and Middle: Structure of the latent space distribution of MNIST as identified by the
t-SNE respectively UMAP embedding. Right: ncluster (blue) and noise ratio (red) as a function of
nsamples with ε = 1.85 (dashdot), ε = 2.0 (dashed), ε = 2.2 (solid), and ε = 2.5 (dotted) for DBSCAN.
The green dashed lines indicate the limits deduced so far.

2.2. DeepVALVE

The DeepVALVE data set consists of a series (in total around 25,000) of random opening
and closing events of an industrial valve as described in [5]. A part of these events is shown
in Figure 4.

Figure 4. Part of the DeepVALVE time series data set: The blue line represents the measured electrical
current driving the engine of the valve.
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The allowed labels are: START, LOSE, LINEAR, STUCK, END. Thus, as in the case
of MNIST, we have a completely labeled data set where we know the cluster cardinality
beforehand, see Appendix D for more examples. As we deal with a time series data set, we
must specify the way we feed our data to the neural network. Denoting our time series
with X0:T, we extract windows at time step t of window size w, i.e., Xt−w:t. A batch is then
created by randomly sampling t. As in this case our latent space is three-dimensional, we are
actually able to plot it. The found structure for w = 10 is shown in Figure 5. We observe an
ellipsoidal structure which is typical for quasi-periodic structures, as indicated in [45]. This is
not surprising regarding the recurring opening and closing events of the valve. Now we want
to apply the investigative pipeline we developed in Section 2.1. Hence again we start with the
OPTICS reachability plot in Figure 6. We can identify several bigger and smaller structures.
The reachability graph yields at least three or even four and more structures.

Figure 5. 3D presentation of the latent space of DeepVALVE dataset as computed by our autoencoder.

Figure 6. Left: Reachability plot for the OPTICS algorithm on DeepVALVE. This plot is produced
using ε = 0.25 and nsamples = 25. Right: Noise ratio and number of found cluster as deduced from
the OPTICS reachability plot as a function of nsamples with ε ∈ [0.009, 0.014].

Adding the knowledge of Figure 7 we can estimate the lower limit of identified
structures as four. Following Section 2.1 one can estimate nsamples > 20 from the signal-to-
noise ratio on the right-hand side of Figure 6. Again, we fine-tune ε using the reachability
graph. We identify ε = 0.02 using this optical procedure. On the right-hand side of Figure 6
we show runs with different fine-tuned ε values. Indeed, the visual tuning turns out to be
not sensitive enough and the actual range for epsilon is rather in the range of 0.01. We use
this figure to estimate the upper limit of identified clusters to be 13.
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Figure 7. Left and Middle: Structure of the latent space distribution of DeepVALVE as identified by
the t-SNE respectively UMAP embedding. Right: The number of identified noise points as well as
the number of found clusters as function of nsamples for DBSCAN. We display different selections
with ε ∈ (0.03, 0.06, 0.1, 0.2, 0.3) indicated by the dashed, dotted and solid line, respectively. The green
dashed lines indicate the limits deduced so far.

In Figure 7 one can observe the (within the context of temporal data emerging) fact
that outliers can be detected with UMAP more easily than with t-SNE [46,47]. In addition
to that, UMAP also preserves global structures better than t-SNE, although there are more
advanced methods such as dynamic t-SNE including a notion of temporal coherence that
allows for better cluster separation [48]. Summing up, from the t-SNE plot, in view of
cluster sizes and distances with no specific meaning, one can identify (conservatively
estimated) 7 clusters. However, the UMAP plot in the middle of Figure 7 indicates around
5 clusters. Using the limits deduced so far we study DBSCAN on the right-hand side of
Figure 7. As with MNIST we observe that DBSCAN prefers slightly different values for ε.
So, in total we find

4 < nclusters < 13

0.009 < εOPTICS < 0.013

20 < nsamples, OPTICS < 50

0.03 < εDBSCAN < 0.3

10 < nsamples, DBSCAN < 20 (6)

3. Visualization of Clustered Data

In Section 2 we estimated the meta-parameters of our benchmark data set MNIST and
our testing case DeepVALVE within Equations (5) and (6) respectively. However, how does
this help us to gain a better visual understanding of the data set under investigation? Using
our set of meta-parameters, we can now study the t-SNE and UMAP embeddings for our
OPTICS, DBSCAN and k-MEANS clustering methods to obtain a first grasp on how well
the data are classified and separated within the latent space. From Equation (5) we chose
settings as disclosed in Table 1.

Table 1. Meta-parameters used for the visualizations in Figure 8–11.

Method MNIST DeepVALVE

OPTICS ε = 1.85, nsamples = 20 ε = 0.012, nsamples = 25
DBSCAN ε = 2.0, nsamples = 20 ε = 0.2, nsamples = 15

K-MEANS nclusters = 11 nclusters = 6

In Figure 8 we show the clusters found by OPTICS, DBSCAN, and k-MEANS pro-
jected onto the t-SNE embedding. We observe that both OPTICS and DBSCAN exhibit
oversimplification as has already been visible in Figure 3. Additional structures are only
indicated, as few points have been assigned to them. K-MEANS, however, though able
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to resolve much more substructure, tends also to split certain structures which the other
methods clearly identified as belonging together. The reason is that the predefiniton of
cluster cardinalities introduces some bias. We observe a similar behavior when using the
UMAP embedding in Figure 9 instead. This provides us with the possibility of a direct
comparison between t-SNE and UMAP embeddings, which is not possible a priori.

Figure 8. T-SNE embedding of the latent space of our MNIST autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

Figure 9. UMAP embedding of the latent space of our MNIST autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

Let us now apply the same procedure to our test data set DeepVALVE. Again, using
the values from Table 1 we project the found clusters onto the t-SNE, respectively the
UMAP embeddings. In Figures 10 and 11 we can see real structural differences of the
DeepVALVE dataset to the MNIST dataset, Figures 8 and 9. Figure 10 (left and middle)
clearly reveals that OPTICS is much more sensitive to heterogeneities within the data.

Figure 10. T-SNE embedding of the latent space of our DeepVALVE autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.
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Figure 11. UMAP embedding of the latent space of our DeepVALVE autoencoder. In color the points
belonging to identified cluster structures. From left to right: OPTICS, DBSCAN, k-MEANS.

This can be an advantage but also a disadvantage: As DeepVALVE is a huge data
set with densely distributed points, density-based clustering methods—and especially
OPTICS—find more clusters for smaller training sets. For DeepVALVE, We observed a
huge difference between 10,000 and 60,000 points (10,000 depicted in Figure 10). The reason
is that larger distributions become “filled in” the more samples are drawn from the true
distribution. k-MEANS, on the other hand, constitutes a biased version of clustering, which
reveals itself for the MNIST as well as for the DeepVALVE data set within the t-SNE as
well as within the UMAP embedding. A comparison of Figures 10 and 11 reveals the main
advantage claimed for UMAP in the literature: That it can depict and preserve (global)
similarities better [49]. This is even more critical for time series than for image data, as
time series segmentation often exhibits not as many labels as classification tasks for image
data. Hence the procedural error by choosing wrong cluster cardinalities rises significantly.
Thus, our pipeline involving the cross-correlative usage of clusterings and embeddings
raises awareness of this fact as well as giving a first hint onto the scale at which cluster
center cardinalities can be expected.

4. Conclusions

Summing up what we have done and learned so far, we can identify four main benefits
of our approach:

(i) We developed a pipeline to obtain a visual grasp on the generalization capacity of
a vanilla autoencoder.

(ii) We use clustering and embedding methods in a cross-correlative way to fine-tune
their observational capabilities.

(iii) This cross-correlative ansatz allows better capture of the interrelation between the
(transformed) data and the visualizations and embeddings.

(iv) Doing so, structural differences between data sets become apparent, which allows
obtaining a first apprehension of an unknown data set without prior knowledge.

4.1. The Generalization Capacity vs. the Manifold Hypothesis

One should keep in mind the reason for investigating the latency space in this detailed
fashion: We want to have a grasp on the generalization assumption. This is connected, but
not identical to the manifold hypothesis as presented in the introduction. For both of our
data sets we know the cluster center cardinalities beforehand and hence we can evaluate the
individual performance of our clustering algorithms on the latent space. However, if this is
not the case—which it should be for unsupervised learning tasks—our cross-correlative
ansatz can give a first hint.
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4.2. Meta-Parameter Fine-Tuning

In Equations (5) and (6) we present the results of our (visual) meta-parameter fine-
tuning. Especially Figures 2 and 6 reveal how visual investigation ameliorates our results.
Although these clustering and embedding methods work well within certain ranges of
parameters, as e.g., Ref. [41] points out and investigates in detail for OPTICS, visual methods
and their consecutive analysis can really suffer from poorly chosen meta-parameters. So,
by working in a cross-correlative way one introduces a level of quantitivity that one would
completely loose when restricting to one method.

4.3. Interrelation between Data and Methodology

In Figure 12 the latent space of the DeepVALVE dataset is investigated using our
three different clustering methods, and one can clearly see that something goes wrong
for OPTICS. So why is this the case? DeepVALVE is a dense temporal data set, and one
would expect the clusters corresponding to the temporal labels to lie at the “edges” of the
quasi-periodic structure depicted in Figure 12. However, unlike DBSCAN, OPTICS uses not
a point value, but a hierarchical scale range for the reachability distance. Thus, if we have a
really dense data set and comparatively few samples to estimate its distribution, it might
identify large parts of the data set as noise. This can happen neither with DBSCAN nor
k-MEANS. Henceforth, we have another demonstration that also visual methods should be
taken with a grain of salt at least in the unsupervised case.

4.4. Structural Differences between Data Sets

In Sections 2.1 and 2.2 we studied two structurally different data sets with the same
analysis pipeline as developed in Section 2. Although MNIST constitutes a 2D image
dataset, DeepVALVE consists of temporal measurements of a physically non-trivial process
and hence exhibits more structure, as depicted in Figure 4. This is clearly visible from the
clustering parameters ε and nsamples, indicating DeepVALVE is a much denser data set than
MNIST, as well as from the respective visualizations. Especially in Figure 8 to Figure 11
this shows itself, as discussed in Section 3.

4.5. Future Outlook and Comparison to Other Work

In [46] a deep convolutional autoencoder was used as a dimensionality reduction
method for the subsequent 2D visualization using PCA, UMAP and t-SNE. They too
developed a pipeline for a quantitative investigation; however, in contrast to our work,
they did not use the visualization and embedding methods in a cross-correlative way.
As our results indicate, e.g., in Figures 2 and 6, this adds value to the inter-correlated
usage of density-based clustering methods. For future investigation, we plan to migrate
our visual meta-parameter selection pipeline (partly) to the hyperparameter learning
level. Especially the qualitative analyses in Figures 2 and 6 would profit from a deeper,
quantitative treatment. Furthermore, we would like to investigate the conjunction between
the cardinality of training samples necessary to obtain a “good” estimate on the data
distribution and data density in a more sophisticated manner. Especially temporal data
sets are prone to heterogeneities that even have physical meaning rather than just being
clustering or embedding artefacts. Having performed this comprehensive study, we are
keen to walk one step further on this road.
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Figure 12. 3D presentation of the latent space of DeepVALVE dataset using OPTICS, DBSCAN,
K-Means clustering, respectively.

Data Availability Statement: MNIST is available from http://yann.lecun.com/exdb/mnist/. DeepValve
is a company-internal IAV dataset. It will be published in an anonymised fashion following
this publication.

Appendix A. Autoencoder Hyperparameters and Architecture for Reproducibility

In Table A1 our choices for the autoencoder hyperparameters are listed. Please note
that if not mentioned otherwise, the default values of PyTorch (Version 1.8.1) are used.

Table A1. The hyperparameters used for training our model.

Hyperparameter Values

Learning Rate 0.001
Optimizer Adam

Random Seed 0
Activation Function of hidden layers ReLU
Activation Function of output layer Sigmoid

Epochs 100
Batch Size 100

Loss Mean Square Error

Table A2 summarizes the encoder-decoder structure of the autoencoder as well as the
final validation loss.

http://yann.lecun.com/exdb/mnist/
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Table A2. Architecture of the encoder chosen for the given data set and achieved validation loss. The
architecture numbers represent the number of neurons per layer.

Data Set Input Size Architecture Lval

MNIST 784 400→ 8 2.16× 10−2

DeepVALVE 10 16→ 8→ 3 2.1× 10−5

Please note that the decoder is a mirror of the encoder. Therefore, we omitted the
numbers in Table A2.

Appendix B. Meta-Parameter Default Values

Table A3. List of meta-parameters used in this study.

Embedding Method Meta-Parameters Used and Their Default Values

t-SNE ncomponents = 2, randomstate = 0
UMAP nneighbors = 15, mindist = 0.1

DBSCAN ε = 0.5, nsamples = 5
OPTICS ε = 2.0, nsamples = 5

K-Means
nclusters = 8, init = ’random’,

ninit = 20, itermax = 300, tol = 1× 10−4,
randomstate = 0

Appendix C. Additional Material for MNIST

Appendix C.1. Reachability Plots

In Figure A1 we show additional plots using different values for nsamples and ε.

Figure A1. OPTICS reachability plot for MNIST using. Left upper: ε = ∞ and nsamples = 25. Right
upper: ε = 3.0 and nsamples = 15. Left lower: ε = 3.0 and nsamples = 20. Right lower: ε = 3.0 and
nsamples = 35.

As stated in [41] the key features of this plot are rather stable against different choices
of the meta-parameters.

Appendix C.2. Reconstructed Digits

For MNIST we can qualitatively check the identified structures. For all three clustering
approaches we construct a cluster center. For k-MEANS this is done automatically by the
algorithm. On the other hand, for OPTICS and DBSCAN we just use the center of mass of
all points belonging to a given cluster. We then reconstruct the images by sending these
points through the decoder.
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In Figure A2 we present the reconstructions corresponding to the right-hand side
of Figure 8, respectively Figure 9 in the main text. We observe that indeed most of the
digits could be identified. However, digit 4 is missing, while digit 1 and 9 are doubled. A
behavior we already observed in Section 2.1.

Figure A2. Reconstructed images of the centroids of the cluster using K-Means clustering with
nclusters = 11.

Once we increase the allowed number of clusters to nclusters = 18, as shown in
Figure A3, we observe that now all digits are present. However, we also have quite some
doubling in digits 0 to 4.

Figure A3. Reconstructed images of the centroids of the cluster using K-Means clustering with
nclusters = 18.

As displayed in Figure A4 a similar behavior emerges when we use DBSCAN instead.
Using the values from Table 1 we recover most digits except 8 and 9. Again for the other
digits we have several clusters they belong to.
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Figure A4. Reconstructed images of the centroids of the cluster using DBSCAN clustering with
ε = 2.0 and nsamples = 20.

Finally in Figure A5 we show the reconstructed digits for OPTICS. Again, we observe
missing digits, 3 and 5 this time, as well as two versions of 4.

Figure A5. Reconstructed images of the centroids of the cluster using OPITCS clustering with ε = 1.85
and nsamples = 20.

Interestingly, k-MEANS has trouble locating different digits when compared to OPTICS
and DBSCAN. The latter two behave rather similar again.
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Appendix D. Additional Material for DeepVALVE

In Figure A6 we show additional labeled data samples from [5].

Figure A6. Additional labeled data samples for DeepVALVE.
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