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Abstract: Defects in in-service pipelines, including corrosion under insulation (CUI) and thickness
loss, pose significant challenges to asset integrity in the oil and gas industry. These defects are
particularly hazardous as they often remain unnoticed. The automation of defect detection processes
can assist inspectors in reducing analysis time, costs, and human error. However, recent attempts to
adopt machine learning for automated defect detection from thermal images have been hindered
by limited data availability. This paper presents a novel approach to address this issue by utilizing
thermal data augmentation, generating synthetic sub-surface defects via finite element modeling.
The resulting synthetic thermal images, combined with real images, are then used to train a deep
learning model for the automatic detection of potential defects. Additionally, this study explores the
efficacy of synthetic thermal images in enhancing the generalization of the detection model.

Keywords: thermography; deep-learning; defect detection; data augmentation; finite element

1. Introduction

The importance of pipeline integrity for the oil and gas industry is crucial, but the
detection of hidden defects like corrosion under insulation (CUI) and thickness loss is chal-
lenging due to their concealed nature [1]. Automating inspections using machine learning
is limited by the lack of real-world defect data. This study addresses this issue by using
a thermal data augmentation strategy that generates synthetic defects via finite element
modeling and deep learning algorithms. This approach aims to enrich the training dataset,
improve defect detection model performance, and compare different supervised learning
networks for image segmentation. The outcomes of this research could significantly impact
automated pipeline inspection in the oil and gas industry.

2. Background

Thermography, vital in subsurface defect detection, ensures the integrity of critical
infrastructures such as pipelines. Significant advancements, particularly machine learning
techniques, have improved accuracy in defect detection [2]. These techniques of discovering
relationships between thermal data and defect features have yielded promising results
across various applications [3]. However, the laborious and costly nature of data labeling
remains a challenge. Unsupervised learning methods, which discover hidden patterns
within input data, have emerged to address this issue. Semi-supervised learning (SSL),
a compromise between supervised and unsupervised learning, uses a blend of labeled
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and unlabeled data, offering a cost-effective solution, especially when labeled samples are
scarce [4,5].

Data augmentation techniques have been adopted to combat limited datasets. The finite
element method, simulating the thermal process, creates synthetic data that resemble real-
world defects. Generative adversarial networks (GANs) also enhance training datasets by
generating synthetic data, thereby improving model performance [6,7]. This study focuses on
the novel integration of these techniques in a thermal data augmentation approach.

3. Methodology
3.1. Data Augmentation

The scarcity of data, specifically thermal images for training, significantly challenges
the effective implementation of machine learning techniques for defect detection, poten-
tially weakening the model’s predictive power and real-world applicability. In response,
this study proposes a thermal data augmentation method, creating synthetic sub-surface
defects using finite element modeling for a realistic representation of material properties
and defect features. This approach also utilizes DeepSIM [8], a deep learning method that
capitalizes on the strengths of generative adversarial networks and variational autoen-
coders to generate high-fidelity thermal images resembling real-world conditions. The
synthetic images enrich the training dataset, enhancing the variety of defect types, sizes,
and orientations, thereby improving the model’s robustness and generalization capacity.
The dataset size is doubled using the finite element method and further expanded using
the DeepSIM method, with the outcomes subsequently compared and analyzed.

3.2. Supervised Learning for Image Segmentation

To identify and quantify defects, we utilized supervised learning techniques for image
segmentation, a key step in highlighting potential defects in thermal images. Our approach
incorporates various network architectures, namely UNet [9], UNet++ [10], DeeplabV3+,
and FPN, each chosen for their proven prowess in image segmentation tasks and bringing
unique strengths to the defect detection process. UNet and UNet++ provide a balance
between localization and context aggregation, while DeeplabV3+ uses convolution and spatial
pyramid pooling for precise segmentation. The FPN, on the other hand, employs a top-down
architecture with lateral connections for high-quality segmentations at multiple scales.

4. Experiment

The study focused on the non-destructive inspection of steel pipes with diameters
of 2, 3, and 6 inches and insulated with perlite. Infrared (IR) imaging was used to detect
moisture and corrosion under insulation (CUI). A static approach was employed, leveraging
a long-wave infrared (LWIR) camera, specifically the FLIR T650Sc, to observe temperature
variations indicative of potential defects. This camera featured a minimum focus distance
of 0.3 m, an IR resolution of 640 × 480 pixels, a thermal sensitivity of less than 20 mK
at +25 ◦C, and a maximum frame rate of 30 Hz. Artificial defects, ranging in size from
1 to 4 inˆ2 and depths from 0.98 to 2.74 inches, were introduced within the insulation
layer of the samples, which had different thicknesses of 3, 5, and 10 mm. These samples
were then secured with aluminum claddings. A heat transfer system (HTS) was used for
precise fluid temperature (150 ◦C) control and was equipped with multiple thermocouples
for comprehensive thermal behavior monitoring. During the steady-state regime, the
temperature evolution was carefully observed to ensure stability and minimal variations
within the insulation and cladding. Figure 1 illustrates the defect structure and heating
setup for this experiment.
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Figure 1. (a) Artificial defects created in the insulation on the pipe; (b) Heat transfer system. 

5. Results and Discussion 
5.1. Data Augmentation and Defect Detection 

The proposed thermal data augmentation approach, combining finite element mod-
eling and DeepSIM methods to create synthetic sub-surface defects, effectively mitigated 
the issue of data scarcity for defect detection in insulated piping. Following this, the ac-
quired datasets from the experimental, finite element simulation, and DeepSIM genera-
tion stages were subjected to image segmentation through supervised learning. Using net-
works such as UNet, UNet++, DeeplabV3+, and FPN, thermal images were successfully 
segmented based on neighboring thermal patterns, providing clear demarcations of po-
tential defects. 

5.2. Evaluation Metrics 
The effectiveness of our data augmentation and segmentation strategies is evidenced 

by the training and evaluation metrics of our supervised learning approach, including F1 
score, Loss, Mean IoU, and Mean F1, as consolidated in Table 1. These metrics were eval-
uated on the same dataset for comparison. Our multi-tiered data augmentation approach, 
which combines experimental data with finite element or DeepSIM augmented data, 
demonstrated superior defect detection precision and recall compared to using solely ex-
perimental or augmented datasets. The proposed methodology illustrates the potential of 
integrating thermal data augmentation approaches with advanced image segmentation 
networks for accurate and efficient defect detection in insulated piping. Figure 2 shows 
the ability of the UNet ++ network on the dataset to predict the mask for the defects. Future 
efforts aim to further optimize these processes and broaden their applicability across di-
verse industrial contexts. 

Table 1. Evaluation metrics of training and validation process for the segmentation models. 

Dataset UNet-R152 UNet++-R152 DeepLabV3+-R152 FPN-R152 

Experiment 

F1 0.66 F1 0.92 F1 0.91 F1 0.95 
Loss 0.48 Loss 0.46 Loss 0.35 Loss 0.08 

Mean IoU 0.49 Mean IoU 0.83 Mean IoU 0.85 Mean IoU 0.80 
Mean F1 0.65 Mean F1 0.99 Mean F1 0.92 Mean F1 0.87 

Experiment + Finite El-
ement 

F1 0.77 F1 0.96 F1 0.93 F1 0.96 
Loss 0.45 Loss 0.37 Loss 0.30 Loss 0.06 

Mean IoU 0.59 Mean IoU 0.92 Mean IoU 0.85 Mean IoU 0.94 
Mean F1 0.71 Mean F1 0.96 Mean F1 0.92 Mean F1 0.96 

Experiment + Deep 
SIM 

F1 0.95 F1 0.96 F1 0.94 F1 0.65 
Loss 0.47 Loss 0.39 Loss 0.30 Loss 0.07 

Mean IoU 0.94 Mean IoU 0.93 Mean IoU 0.94 Mean IoU 0.58 
Mean F1 0.97 Mean F1 0.96 Mean F1 0.97 Mean F1 0.73 

 

Figure 1. (a) Artificial defects created in the insulation on the pipe; (b) Heat transfer system.

5. Results and Discussion
5.1. Data Augmentation and Defect Detection

The proposed thermal data augmentation approach, combining finite element model-
ing and DeepSIM methods to create synthetic sub-surface defects, effectively mitigated the
issue of data scarcity for defect detection in insulated piping. Following this, the acquired
datasets from the experimental, finite element simulation, and DeepSIM generation stages
were subjected to image segmentation through supervised learning. Using networks such
as UNet, UNet++, DeeplabV3+, and FPN, thermal images were successfully segmented
based on neighboring thermal patterns, providing clear demarcations of potential defects.

5.2. Evaluation Metrics

The effectiveness of our data augmentation and segmentation strategies is evidenced
by the training and evaluation metrics of our supervised learning approach, including
F1 score, Loss, Mean IoU, and Mean F1, as consolidated in Table 1. These metrics were
evaluated on the same dataset for comparison. Our multi-tiered data augmentation ap-
proach, which combines experimental data with finite element or DeepSIM augmented
data, demonstrated superior defect detection precision and recall compared to using solely
experimental or augmented datasets. The proposed methodology illustrates the potential
of integrating thermal data augmentation approaches with advanced image segmentation
networks for accurate and efficient defect detection in insulated piping. Figure 2 shows the
ability of the UNet++ network on the dataset to predict the mask for the defects. Future ef-
forts aim to further optimize these processes and broaden their applicability across diverse
industrial contexts.

Table 1. Evaluation metrics of training and validation process for the segmentation models.

Dataset UNet-R152 UNet++-R152 DeepLabV3+-R152 FPN-R152

Experiment

F1 0.66 F1 0.92 F1 0.91 F1 0.95
Loss 0.48 Loss 0.46 Loss 0.35 Loss 0.08

Mean IoU 0.49 Mean IoU 0.83 Mean IoU 0.85 Mean IoU 0.80
Mean F1 0.65 Mean F1 0.99 Mean F1 0.92 Mean F1 0.87

Experiment
+ Finite
Element

F1 0.77 F1 0.96 F1 0.93 F1 0.96
Loss 0.45 Loss 0.37 Loss 0.30 Loss 0.06

Mean IoU 0.59 Mean IoU 0.92 Mean IoU 0.85 Mean IoU 0.94
Mean F1 0.71 Mean F1 0.96 Mean F1 0.92 Mean F1 0.96

Experiment
+ Deep SIM

F1 0.95 F1 0.96 F1 0.94 F1 0.65
Loss 0.47 Loss 0.39 Loss 0.30 Loss 0.07

Mean IoU 0.94 Mean IoU 0.93 Mean IoU 0.94 Mean IoU 0.58
Mean F1 0.97 Mean F1 0.96 Mean F1 0.97 Mean F1 0.73
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Figure 2. Prediction results of UNet ++ network for the experimental + DeepSIM dataset. (a) Input 
image. (b) Ground truth. (c) Predicted mask. 

6. Conclusion 
In conclusion, this study substantiates the potency of thermal data augmentation 

strategies, in particular, the approach combining experimental data with DeepSIM and 
finite element augmented data for proficient defect detection in insulated pipelines. This 
novel approach has proven to be significantly effective when coupled with advanced im-
age segmentation networks such as UNet, UNet++, DeepLabV3+, and FPN. The results, as 
presented in Table 1, establish that the combination of experimental data and DeepSIM 
augmented data outperforms the other methods, particularly in terms of precision, recall, 
and Mean F1 score. The UNet++ model performed exceptionally well in this context, ex-
hibiting an F1 score of 0.96, a Loss of 0.39, a Mean IoU of 0.93, and an impressive Mean F1 
of 0.96. These encouraging results, along with superior visual outputs, highlight the 
strength and potential of using the DeepSIM augmented approach for defect detection in 
insulated pipelines. This study’s findings carry significant implications for the broader oil 
and gas industry, and future work will focus on further refining these methods and ex-
ploring their applications in diverse industrial settings. 
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Figure 2. Prediction results of UNet++ network for the experimental + DeepSIM dataset. (a) Input
image. (b) Ground truth. (c) Predicted mask.

6. Conclusions

In conclusion, this study substantiates the potency of thermal data augmentation
strategies, in particular, the approach combining experimental data with DeepSIM and
finite element augmented data for proficient defect detection in insulated pipelines. This
novel approach has proven to be significantly effective when coupled with advanced image
segmentation networks such as UNet, UNet++, DeepLabV3+, and FPN. The results, as
presented in Table 1, establish that the combination of experimental data and DeepSIM
augmented data outperforms the other methods, particularly in terms of precision, recall,
and Mean F1 score. The UNet++ model performed exceptionally well in this context,
exhibiting an F1 score of 0.96, a Loss of 0.39, a Mean IoU of 0.93, and an impressive Mean
F1 of 0.96. These encouraging results, along with superior visual outputs, highlight the
strength and potential of using the DeepSIM augmented approach for defect detection in
insulated pipelines. This study’s findings carry significant implications for the broader
oil and gas industry, and future work will focus on further refining these methods and
exploring their applications in diverse industrial settings.

Author Contributions: Conceptualization, P.N., X.M. and C.I.-C.; methodology, R.K.R., K.L. and P.N.;
software, R.K.R. and K.L.; validation, R.K.R.; formal analysis, R.K.R. and K.L.; investigation, R.K.R.,
K.L. and P.N.; resources, X.M. and C.I.-C.; data curation, X.M.; writing—original draft preparation,
R.K.R.; writing—review and editing, R.K.R.; visualization, R.K.R. and K.L.; supervision, X.M. and
C.I.-C.; project administration, X.M.; funding acquisition, X.M. and C.I.-C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Natural Sciences and Engineering Council of Canada
(NSERC), CREATE oNDuTy Program (funding ref. number 496439-2017), the Canada Research Chair
in Multipolar Infrared Vision (MIVIM), Department of Civil Engineering from Université Laval, and
the MITACS Accelerate Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data for this research are available in this link: https://github.com/
reza7293/Thermal-Data-Augmentation-Approach-for-the-Detection-of-Corrosion-In-Pipes-Using-Deep-
Learning (accessed on 26 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cao, Q.; Pojtanabuntoeng, T.; Esmaily, M.; Thomas, S.; Brameld, M.; Amer, A.; Birbilis, N. A Review of Corrosion under Insulation:

A Critical Issue in the Oil and Gas Industry. Metals 2022, 12, 561. [CrossRef]
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