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Abstract: This preliminary study investigates the influence of test parameters on the detection and
quantitative assessment of cracks using laser thermography. Cracks pose significant material design
and analysis concerns, compromising the structural strength and durability of structures. Traditional
crack detection methods have limitations, motivating the exploration of laser thermography. A
finite element model (FEM) was developed and validated using finite thickness and surface cracks.
Experimental tests were conducted, and the relative position between the laser spot and crack was
investigated. The results showed the potential influence of the laser spot size and position on the
crack detectability. This research contributes to advancing crack detection using non-destructive laser
thermography techniques.

Keywords: crack detection; flying spot laser thermography; non-destructive technique (NDT); FEM
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1. Introduction

Detecting and evaluating cracks is of great importance to ensure the safety and re-
liability of structures and components. This detection can be achieved through various
methods, among which the most common ones are penetrants testing, magnetic particle
inspection, and X-ray techniques [1]. However, these methods have several disadvantages,
including the need for contact with the component, long inspection times, and difficulties
in automation [1].

Thermography, which has already been widely used for mechanical and thermophysi-
cal characterization [2–5], also finds numerous applications as a non-destructive testing
(NDT) technique for composites and metals [6,7]. Laser flying spot thermography (LFST)
is particularly interesting and promising for crack detection because it allows for rapid
inspection and is suitable for inline production or with relative motion between the source
and the component [8,9]. Several authors investigated this method in the past, confirming
its potential for crack detection [8,9]. A group from Bilbao has conducted several studies
on the related model and quantitative analysis of cracks, evaluating the behavior of an
inclined and finite crack within the thickness [10,11].

The aim of this preliminary study is developing a validated finite element model
(FEM) to investigate the influence of specific test parameters on the detectability of cracks,
considering both finite thickness and surface cracks. This research will further advance the
understanding of crack detection using laser thermography and provide valuable insights
for practical applications in NDT.
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2. Materials and Methods

As previously mentioned, the capability of LFST to detect cracks was evaluated in
the present study. Several studies have investigated this aspect, focusing on an infinite or
semi-infinite crack, often employing FEM models [10,11].

This work aims to analyze the detectability of a finite crack using laser thermography,
considering the relative position between the laser spot and the crack. To accomplish this
evaluation, a FEM model was developed by COMSOL® v 6.0, which was preliminarily
validated with experimental tests. Subsequently, an experimental test was conducted,
followed by the development of the model and a preliminary study on the detectability of
the crack considering the relative position between the spot and the crack.

2.1. Specimens

A Fe 360 B (UNI 7070-72) specimen with the geometry depicted in Figure 1 was
considered for the investigation. The image shows that the specimen contains several open
notches created by electrical discharge machining, simulating known thickness open cracks.
Specifically, the focus was on the crack with dimensions 5 mm × 0.5 mm.
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Figure 1. Experimental set-up adopted. White arrow represents the laser trajectory for the “sound”
area and the yellow one the trajectory of the laser spot for “defected” area.

2.2. Experimental Set-Up and Data Analysis

The described specimen was heated using an Ytterbium laser with a nominal power
of 50 W through a moving spot of diameter ~10 mm at a speed of approximately 0.5 m/s.
To record the temperature distribution on the heated surface (reflection setup), a FLIR LW
thermal camera equipped with a cooled sensor was used. The framerate was 1.92 kHz,
with a spatial resolution of 0.31 mm/pixel and the calibration was of −10 ◦C to 55 ◦C.

The test was carried out in two scenarios: one where the laser does not encounter
cracks and another where it does (sound region).

2.3. FEM Model

A 3D thermal model was developed in COMSOL® v 6.0 to simulate a moving laser
source on the specimen. The discretization was performed using a tetrahedral mesh, as
shown in Figure 2, to achieve a fine mesh in areas with high thermal gradients and a coarser
mesh in less critical regions.
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To simulate the laser spot movement, an incoming surface heat flux with a Gaussian
distribution was considered, moving in a uniform rectilinear motion at a velocity of 0.5 m/s
in the x direction. The nominal power of the laser was considered, with a multiplicative
constant between 0 and 1 to account for absorptivity and emissivity. The thermophysical
properties of material were obtained from literature sources.

The laser heating was then simulated on a region without cracks and on a region
with a crack geometry matching that of the described specimen. The crack modelling
was implemented by considering two contacting surfaces with a thermal resistance (Rth)
modelled as a resistive layer with a thickness equal to the nominal crack size. This type of
modelling, as reported in other studies [10,11], dramatically reduces computational costs
by avoiding excessive refinement of elements near the crack.

For the validation of the numerical model, a comparison was made with experimental
data of the temperature curves obtained in both the inspected regions. The accuracy and
reliability of the numerical model were assessed by comparing the numerical results with
the corresponding experimental data.

Previous studies have shown that detecting defects is related to the temperature
difference observed in the surface temperature distribution at the crack interface [10,11].
As a result, we evaluated the impact of specific parameters on this temperature difference.
We first examined the ratio of the laser spot diameter (a) to the crack length (L). Next,
we assessed the effect of the relative position between the crack and the laser trajectory,
considering whether the laser passes through the center of the crack, half of the length, and
the tip. A summary of all the analyzed cases is presented in Table 1.

Table 1. All the cases considered for the analysis.

1.1 1.2 1.3 2.1 2.2 2.3

a/L <1 1 >1 1 1 1
Position central central central central half tip

3. Results

In Figure 3a, the curves depict the temperature profile detected along a region of
interest (ROI) corresponding to the axis passing through the center of the crack, obtained
for different values of the a/L ratio. It can be observed that there is a drastic decrease
in the local temperature at the crack location, which remains relatively constant for each
investigated ratio.
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distribution at different distance between crack axes and laser direction.

On the other hand, Figure 3b displays the curves obtained with a fixed a/L ratio along
the direction of the laser motion but at different positions relative to the crack. A slight
variation in ∆T can be noticed at the crack location as the distance between the axis passing
through the center of the crack and the laser advancement direction changes.
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4. Discussion

From the results shown in Figure 3a, it can be observed that the a/L ratio does not
significantly influence the ∆T at the crack, at least when considering the central axis. This
result may be attributed to the modelling of the crack as a Rth between the two surfaces. In
this assumption, there may not be significant differences in that direction. However, this
might change for the experimental case, which requires further investigation.

On the other hand, the curves in Figure 3b demonstrate a variation in ∆T depending
on the relative position between the laser advancement direction and the axis passing
through the crack. This variation is due to considering a finite crack, which introduces
lateral flows that affect the ∆T near the crack tips. As a result, the ∆T is lower compared to
the case of an infinite crack along the plane.

5. Conclusions

In conclusion, this work presented a preliminary study on the influence of the laser–
crack relative position and laser spot size on the detectability of the crack, expressed as ∆T
in the spatial temperature profile, using the FSLT.

A FEM model was developed, which was validated through an experimental compari-
son of a LFST test, and the crack was modelled as a Rth.

The preliminary analysis was conducted by varying the a/L ratio to assess its influence
on the ∆T at the crack location on different ROIs parallel to the crack axis. The results
showed little to no influence, possibly due to the crack modelling approach used.

A second preliminary analysis was performed by varying the distance between the
crack axis and the laser advancement direction, which demonstrated the influence of this
parameter on ∆T. Specifically, when the laser advancement direction intersected the crack
plane near the crack tip, the resulting ∆T decreased due to lateral flows.

Further in-depth experimental analysis is needed to verify the independence of ∆T
from the a/L ratio, followed by a structured and comprehensive study on the influence of
the LFST test parameters on the crack detectability. The final aim is to develop a quantitative
procedure for obtaining crack geometry using NDT inspections.
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