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Abstract: Manganese oxide minerals have a remarkable range of applications. This investigation
delves into their potential utility in energy storage, particularly as supercapacitors. The study
centers on natural manganese oxides sourced from the Drama region (Greece), evaluating their
electrochemical promise and devising strategies for addressing the remediation of mining waste
sites. Samples were collected from abandoned mining sites at Kato Nevrokopi area, Drama region.
Techniques such as X-ray diffraction (XRD) were employed to probe the structural characteristics of
the minerals. Electrochemical studies involved the preparation of electrodes using natural and heat-
treated nsutite (hausmannite). Then, the designed electrodes were subjected to cyclic voltammetry
tests and charge-discharge measurements. Results showed superior electrochemical performance for
the hausmannite-based electrode due to its greater structural homogeneity.

Keywords: manganese oxides; nsutite; hausmannite; electrochemical properties; cyclic voltammetry;
energy storage

1. Introduction

Manganese oxides are well known for a wide range of applications, such as wastewa-
ter treatment [1], metal adsorption ([2,3]), energy storage applications, and rechargeable
lithium batteries [4]. However, the mineral identification of manganese oxide minerals
remains challenging due to their nano-crystallinity and their structural and oxidation-state
diversity from Mn2+ to Mn7+ [5].

Current research endeavors seek to explore the possible applications of various man-
ganese oxides in different battery cell setups. This paper focuses on assessing the electro-
chemical capabilities of naturally occurring manganese oxides sourced from the manganese
ore deposit located in the Drama region of Greece.

There are several modern uses proposed for the manganese mining wastes, mainly as
fillers in cement [6], as pyrolusite mine waste for the chemical preparation of manganese
oxides [7] and recently, the use of final-stage waste from Mn mining for the synthesis of
lithium layered manganese oxide (o-LiMnO2) was proposed [8].

This study examines the potential for the valorization of pyrolusite mine waste from
the waste piles of the Drama mines in Nevrokopi. Utilization of this mining waste for
energy storage applications adds value to low-grade ores by recovery of manganese and
helps the environment by offering a destination to mining waste that is abundant around
the world.

Mater. Proc. 2023, 15, 64. https://doi.org/10.3390/materproc2023015064 https://www.mdpi.com/journal/materproc

https://doi.org/10.3390/materproc2023015064
https://doi.org/10.3390/materproc2023015064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materproc
https://www.mdpi.com
https://orcid.org/0000-0001-9269-1555
https://orcid.org/0000-0002-0172-7362
https://doi.org/10.3390/materproc2023015064
https://www.mdpi.com/journal/materproc
https://www.mdpi.com/article/10.3390/materproc2023015064?type=check_update&version=1


Mater. Proc. 2023, 15, 64 2 of 4

2. Materials and Methods

Samples of manganese oxide ore were collected from abandoned mining sites at Mavro
Xylo and 25th km deposits, in the Drama region, northern Greece. Mineralogical analysis
was conducted by X-ray diffraction (Bruker D8 ADVANCE, Bruker Corporation, Billerica,
MA, USA) at Cu Kα radiation of 40 kV, 25 mA and λ = 1.5406 Å. Mineral phases were
identified using the Joint Committee for Power Diffraction Standards (JCPDS) file and
the software of DIFFRAC.EVA (V6.1, Bruker Corporation, Billerica, MA, USA) provided
by Bruker. Sample powders of natural nsutite and hausmannite, which was prepared
by thermal treatment of natural nsutite, were used separately for electrode preparations.
These electrodes were prepared according to the literature [9]. A VersaSTAT 3 Potentiostat
Galvanostat (Houten, The Netherlands) was used for cyclic voltammetry (CV) measure-
ments. The measurements were extracted using a three-electrode single-compartment cell
including an Ag/AgCl electrode (reference electrode), a Pt wire (counter-electrode), and the
prepared material of hausmannite and nsutite (working electrodes), at room temperature,
under Argon conditions. The electrochemical properties of these working electrodes were
examined in a 0.1 M potassium hydroxide, KOH, solution (potassium hydroxide pellets,
Merck, Saint Louis, MO, USA). All the potentials reported are expressed vs. Ag/AgCl.

3. Results
3.1. Mineralogical and Structural Characterization

Analysis of the XRD patterns of natural manganese oxide shows that the 2θ values
of 22.4◦, 23.7◦, 34.45◦, 36.95◦, 38.61◦, 40.7◦, 42.36◦, 43.68◦, 55.95◦, 57.5◦, and 61.81◦ were
attributed to the mineral phase of nsutite (Figure 1a) or also known as γ-MnO2, which
consists of an intergrowth structure of β-MnO2 type tunnels [1 × 1] as well as ramsdel-
lite type tunnels [2 × 1] ([5,10]). X-ray diffraction analysis of the heat-treated sample
clearly indicates that the primary nsutite successfully transformed into a well-crystallized
hausmannite (Figure 1b).
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Figure 1. X-ray Diffraction Patterns of (a) the natural manganese oxide and (b) the heat-treaded
nsutite.

3.2. Electrochemical Characterization

Figure 2 shows the cyclic voltammograms of MXL3 (natural nsutite) and MXL3HT
(heat-treated nsutite) electrodes with a sweep rate of 50 mV/s in potential windows of
(−1, 0.8) and (−1, 1), respectively. These two electrodes appear to have some noticeable
differences in their diagrams due to the different nature of the minerals. In MXL3 and
MXL3HT voltammograms, the anodic peaks of +0.53 V (MXL3), +0.7 V (MXL3HT), and
the cathodic peaks of +0.31 V (MXL3), +0.13 V (MXL3HT) correspond to the oxygen
evolution and oxygen reduction reactions [8]. Both voltammograms’ remaining anodic
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and cathodic peaks correspond to manganese redox reactions ([11,12]). The electrode of
hausmannite, due to its plethora of redox reactions (Figure 2), is more active than the
electrode of natural nsutite.
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4. Conclusions

This study showcased the structural and electrochemical attributes of certain man-
ganese oxides identified in the Mn oxide deposit in Drama, northern Greece. The production
of hausmannite was achieved by heat treatment of nsutite. Two distinct electrodes were
fabricated, employing nsutite and hausmannite as principal components. The outcome
of the electrochemical experiments conducted on these electrodes indicates that further
research is needed in investigating the structural aspects of hausmannite. This particular
compound holds potential as an electrode, primarily for energy storage applications, while
also warranting exploration for other potential applications that could contribute to the
shift towards green energy solutions. Despite these materials originating from the waste
piles of inactive mines, they have potential for utilization.
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