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Abstract: Canada’s oil sands mining activity produces large volumes of oil sands process-affected
water (OSPW), and there have been increasing concerns regarding the potential environmental
impacts associated with this material. Developing an understanding of the toxicity of OSPW is
critical to anticipating and mitigating the potential risks and effects of the oil sands industry on
surrounding ecosystems. The composition of OSPW is highly variable and is influenced by a range
of factors. While numerous research projects have been conducted on the toxicity of OSPW, much
remains unknown about its impact on various biota. Freshwater gastropods (snails and slugs) are an
ecologically crucial aquatic group, and members of this taxa have been used as bioindicators in a
range of ecological settings. The literature suggests freshwater snails could be used as an indicator of
toxicity in monitoring programs associated with oil sands development. This mini-review explores
the use of snails as bioindicators in aquatic systems affected by oil sands development, focusing on
how snails may respond to potential constituents of concern in systems exposed to OSPW.
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1. Introduction

Oil sands process-affected water (OSPW) is a term used to denote those waters whose
composition has been altered by bitumen extraction or material transport processes [1].
OSPW is produced in considerable quantities by the oil sands industry [2] and represents
a complex mixture of chemical compounds and elements. Several substances in OSPW,
including naphthenic acids (NAs), polycyclic aromatic hydrocarbons (PAHs), metals, and
ions [3], may contribute to acute and chronic toxicity in aquatic environments. Although no
releases of any OSPW into the aquatic environment have been approved to date, seepage
from tailing ponds is still an ongoing concern [4]. Considering the increasing inventories
of OSPW from the oil sands industry, sustainable water management practices may require
returning treated water to the environment, even in the short-term [5]. Therefore, it is
important to determine the potential environmental impact of OSPW on aquatic systems in
the oil sands region to inform better risk assessment and management practices related to
oil sands extraction and processing [6]. While the specific toxicological effects of OSPW on
aquatic organisms are not well understood [7], it is possible that a bioindicator approach
may be used to address environmental concerns associated with oil sands development.
Bioindicator species can effectively reflect the nature and/or magnitude of environmental
changes [8]. Bioindicators can be used to monitor the overall adverse effects of OSPW
without needing to know the combined impacts of individual components and how they
interact (e.g., synergetic or antagonistic), though it can be challenging to select and identify
appropriate bioindicators based on their sensitivity to individual constituents of concern [9].

Freshwater gastropods (Mollusca: Gastropoda; snails and slugs) are broadly dis-
tributed in various aquatic environments and represent significant biomass in freshwater
ecosystems, such as small streams and springs [10]. Snails are crucial to many food webs,
both as decomposers and as consumers [11]. Freshwater snails are regularly utilized as
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ecotoxicological models for laboratory and in situ studies [12] since they can be easily
accommodated within relatively little space and are easy to manipulate/breed [13]. In
addition, freshwater snails have a relatively short life cycle, which minimizes the time
required to complete testing procedures. For example, the great or common pond snail
(Lymnaea stagnalis), has a lifespan of only 2 to 2.5 years. The objective of this mini-review is
to explore the potential utility of snails as bioindicators of OSPW toxicity.

2. Bioindicator

Ecotoxicological bioindicators can warn of potential impacts to the survival of indi-
vidual species and act as part of an early warning system [14]. The risk associated with
OSPW, because it is a complex mixture, cannot be adequately evaluated using those toxicity
tests traditionally employed for risk assessment [15]. The compositional complexity of
OSPW, combined with the high cost associated with traditional toxicity assays, suggests
the utilization of bioindicators as a means of assessing ecological status. Bioindicators can
also be combined with other assessments of toxicity (e.g., rainbow trout toxicity assays) to
estimate the risks of OSPW to freshwater ecosystems. For example, potential bioindicators
could be incorporated into ecotoxicological analysis for water quality assessment.

A bioindicator is any living organism or community that reflects an important char-
acteristic of the surrounding environment [16]. Bioindicators are an essential tool for
detecting the environmental impact of industrial processes and materials [17]. A high-
quality bioindicator should satisfy specific criteria, including a well-characterized biology,
the ability to generate an early warning of impact to ecosystem health, wide distribution in
the relevant environment, embodiment of an essential function in the ecosystem, and the
presence of a well-established link between the toxicological endpoint and the level of a
pollutant [18]. By these criteria, some aquatic snails have the potential to be considered
ideal bioindicators. For example, the biology of a few snail species, such as Biomphalaria
glabrata [19], are well-studied. Some species are known to respond to environmental
contaminants; for example, esterase activity of Lymnaea natalensis is considered an early
warning signal of pollutants exposure [20]. The relationship between the degree of metal
exposure and a measurable effect has been largely established for some freshwater snails,
such as Biomphalaria alexandrina [21] and Pomacea canaliculate [22]. Mollusks have been
recognized as ideal bioindicators for decades [23], and snails, which are widespread in
freshwater ecosystems, can represent up to 60% of the total biomass of macroinvertebrates
in some freshwater ecosystems [24].

Several ecotoxicological studies have been reported which used freshwater snail
species as bioindicators [25]. For instance, Lymnaea stagnalis has been widely adopted
in ecotoxicological studies and pollution biomonitoring programs [26], especially for
investigating the toxicological effects of aquatic contaminants [27]. Some relevant studies
using freshwater snails in ecotoxicological assessments of analytes relevant to OSPW are
provided in Table 1. Interestingly, more investigations focus on potentially toxic metals
than organic compounds, perhaps due to the technical challenges associated with the
quantification and characterization of organic materials.

The sensitivity of aquatic invertebrates to OSPW has been reported to be between
that of fish and macrophytes [28]. A recent species sensitivity distribution comparison—
expressed as critical target lipid body burdens (CTLBBs)—was developed for organisms
exposed to OSPW-related organics [29]. The results showed that the relative species
sensitivity of Lymnaea stagnalis (log CTLBB = 1.83 µmol/g lipid) is close to the mean
of 14 tested aquatic species (log CTLBBs = 1.85 µmol/g lipid), including invertebrates,
algae, and bacteria [30]. A biomimetic extraction method by solid-phase microextraction
(BE–SPME) has been developed to predict toxicity during exposure to complex organic
mixtures [31]. Pairing BE-SPME analysis results with toxicity response/endpoints of snails
could validate this screening tool for estimating the toxicity of OSPW in the future.
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3. Effect of Naphthenic Acids

NAs refer to an extensive and diverse group of polar organic compounds present in
OSPW [32]. Reviews of the composition and toxicity of OSPW have confirmed NAs as the
primary source of toxicity (both acute and chronic) to a variety of fish and invertebrates [33];
it is possible that this toxicity can be alleviated through the process of biodegradation [34].

Research on the toxicity of commercial NAs to the pond snail, Physa heterostropha,
can be traced back to the 1960s [35], and investigations of the adverse impact of NAs
on the physiological and behavioral functions of snails (e.g., Lymnaea stagnalis [36]) are
still ongoing. Recently, the embryonic development of Lymnaea stagnalis has emerged as
a tool in the study of toxicity associated with NAs derived from OSPW [37]. Although
reported EC50 (concentration associated with 50% effect, 31 mg/L) for NAs (solution
pH 7.2–7.6) in Lymnaea stagnalis is higher than in fathead minnow (Pimephales promelas
1.7–12.4 mg/L for hatching success, solution pH 8.2–8.4 [38]), this snail species was sug-
gested as a bioindicator to monitor the acute toxicity of surfactants in aquatic ecosys-
tems [39]. This point is especially pertinent to the effects of OSPW, given that the mecha-
nism of toxicity for NAs may be associated with their surfactant properties [40]. The age of
OSPW, as well as the character of the oil sands materials with which it has been in contact
are important determinants of its NA molecular structure [41]. The analytical difficulties
associated with NAs [42], as well as the qualitative differences between commercially
available and OSPW-extracted NA mixtures [43], are still challenges for the quantification
and comparison of toxicity data between species.

4. Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are a concern in the oil sands area of Alberta [44]. Mortality was not detected
in the freshwater snail, Physella virgata, subsequent to acute exposure to a fluoranthene
(a PAH) within the limit of its water solubility [45]. However, subsequent investigations
of PAH toxicity in the Lymnaeidae family suggested that these freshwater snails may be
useful bioindicators for this class of compounds [46]. Recently, the freshwater snail Lanistes
carinatus was reported as a bioindicator for crude oil pollution based on its capacity to
bioaccumulate PAHs [47]. The biota sediment accumulation factor (BSAF) values observed
in field-collected freshwater brown snails in Nigeria ranged between 0.22 and 11.72 among
12 individual PAH compounds [48].

5. Effect of Other Organic Compounds

Other organic compounds found in the oil sands environment include BTEX (benzene,
toluene, ethylbenzene, xylenes) and their alcohol derivatives such as phenol [49]. To the
authors’ best knowledge, fewer studies have been conducted on organic compounds than
on metals and other trace elements. The effects of benzene, xylene, and styrene on the
mortality of Amphimelania holandri and Lymnaea stagnalis have been explored, but it was
found that freshwater snails were less sensitive to these compounds than certain crustacean
species are [50]. Ethylbenzene was believed to be the source of potential genotoxicity in
the freshwater snail Bellamya aeruginosa [51], but further evaluation is required to confirm
this supposition.

6. Bioaccumulation of Metals

Metals exist as free cations or as inorganic/organic complexes in water and do not
degrade like organic compounds. Many metals have the potential for bioaccumulation
and biomagnification in aquatic organisms [52] and studies of the ability of snails to
bioaccumulate metals have been reported for years [53]. For example, it was reported
in the 1970s that Physa gyrina can rapidly accumulate cadmium (Cd) [54]. Over the past
two decades, toxicological investigations involving freshwater snails have focused on
sensitivity to metals [27]. Pulmonated (i.e., air breathing) freshwater snails are sensitive to
both acute and chronic metals exposures [55], which makes these taxa particularly relevant
as bioindicators informing future water quality criteria [56] and metals risk assessments [57].
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Several species of freshwater snails, including Viviparus acerosus [58], Lymnaea stagnalis [59],
and Physa acuta [60], have great potential to serve as bioindicators of metal pollution.
For example, Physa acuta was shown to be a suitable bioindicator of metal toxicity under
laboratory conditions [61]. Subsequent research has confirmed this species to be useful
for metal bio-uptake research [62]. In addition, Lymnaea stagnalis was reported to be one
of the most sensitive species to a 96 h copper exposure [53], and a good bioindicator of
mercury contamination in aquatic ecosystems [63]. A recent study revealed that the BSAF
in Melanoides tuberculata was more than two for six metals, resulting in this species being
classified as a macro-concentrator for Mn, Fe, Cu, Zn, Cd, and Pb [64].

7. Bioindication of Salt and Nutrients

OSPW is generally dominated by sodium, chloride, bicarbonate, ammonium, and
sometimes sulfate ions [49]. Leptoxis ampla was found to be sensitive to chloride with a
LC50 (lethal concentration associated with 50% mortality) value of 3414 µg/L, which was
the lowest LC50 value among four species reported, including two gastropod and two
bivalve species [65]. Lymnaea stagnalis, at early developmental stages, was reported to be
a very sensitive bioindicator of ammonia pollution [66]. An in situ evaluation in Canada
has reported that tissues of lymnaeid snails collected from a natural pond exhibited lower
trace element concentrations than those collected from microcosms where petroleum coke
was used as sediment. However, the authors speculated that this might be due to the
differences between the natural wetland and microcosms [67].

8. Discussion

From the literature review, Lymnaea stagnalis appears to be widely used to assess
several toxicants associated with OSPW. The Lymnaea stagnalis Reproduction Test was
adopted by the OECD (Organization for Economic Cooperation and Development) under
its Guidelines for the Testing of Chemicals in 2016 [68]. However, mollusk toxicity evalua-
tion is not emphasized in the biological test methods and guidance documents published
by Environment Canada. Certain species of freshwater snails, such as Lymnaea stagnalis
and Physa acuta, could be considered as standard toxicology model organisms in Canada.
In addition, incorporating case studies using native snail species in field monitoring pro-
grams could address some concerns of Indigenous communities and other stakeholders
about the potential long-term effects of oil sands activities. Overall, the literature supports
the potential for aquatic snails to act as bioindicators of toxicity associated with OSPW
exposure. Field-scale investigations with OSPW from different operators, in addition to
laboratory testing focusing on OSPW-derived compounds (especially NAs), may be useful
in further evaluating the utility of these organisms as bioindicators.

Table 1. Selected studies using freshwater snails in ecotoxicological assessments of analytes relevant to oil sands process-
affected water (OSPW).

Species (Family) Age Chemical
Compounds Effect

Measured
Response

Type

Exposure
Duration

(Days)

Toxicological
Values
(µg/L)

Measured
Level in
OSPW
(µg/L) 1

Potamopyrgus
antipodarum

(Hydrobiidae)
NR 3 Cadmium Mortality LC50 2 1000–4000

[69] 1.6

Somatogyrus sp.
(Hydrobiidae) Adult Potassium Ventilation/

movement EC50 4 7285 [70] 12,000
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Table 1. Cont.

Species (Family) Age Chemical
Compounds Effect

Measured
Response

Type

Exposure
Duration

(Days)

Toxicological
Values
(µg/L)

Measured
Level in
OSPW
(µg/L) 1

Lymnaea stagnalis
(Lymnaeidae)

Embryo Naphthenic
acids

Embryonic
development EC50 28 31,000 [37] 53,000

Embryo Ammonia Mortality LC50 1 24,270 [66] 6400
Juvenile Silver Growth EC10 14 1.48 [56] 0.17
Juvenile Cadmium Growth EC10 14 12.0 [56] 1.6
Juvenile Copper Growth EC10 14 3.71 [56] 2.5
Juvenile Copper Mortality LC20 4 18 [53] 2.5
Juvenile Nickel Growth EC10 14 115 [56] 120
Juvenile Lead Growth EC10 14 4.00 [56] 1.2
Juvenile Zinc Growth EC10 14 223 [56] 20

NR 3 Mercury Mortality LC50 4 203.92 [63] 0.047
Radix auricularia
(Lymnaeidae) Embryo Cadmium Embryonic

development LC50 4 58.26 [71] 1.6

Aplexa hypnorum
(Physidae) Adult Acenaphthene Mortality LC50 4 >2040 [72] <0.11

Physa gyrina
(Physidae)

Adult Naphthalene Mortality LC50 2 5020 [73] <0.075
Immature Cadmium Mortality TL50 2 4 430 [54] 1.6

Biomphalaria
glabrata

(Planorbidae)
Embryo Chromium Embryonic

development EC50 1 5760 [25] 4.4

Leptoxis ampla
(Pleuroceridae) Juvenile Chloride Mortality LC50 4 3414 [65] 139,000

1 Median values were derived from Table 6-1 of reference [49]; 2 TL50 = 50% tolerance limits; 3 NR = not reported.
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