Next Issue
Volume 2, September
Previous Issue
Volume 2, March
 
 

Earth, Volume 2, Issue 2 (June 2021) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 3040 KiB  
Article
Biomass Burning and Water Balance Dynamics in the Lake Chad Basin in Africa
by Forrest W. Black, Jejung Lee, Charles M. Ichoku, Luke Ellison, Charles K. Gatebe, Rakiya Babamaaji, Khodayar Abdollahi and Soma San
Earth 2021, 2(2), 340-356; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020020 - 21 Jun 2021
Cited by 1 | Viewed by 2243
Abstract
The present study investigated the effect of biomass burning on the water cycle using a case study of the Chari–Logone Catchment of the Lake Chad Basin (LCB). The Chari–Logone catchment was selected because it supplies over 90% of the water input to the [...] Read more.
The present study investigated the effect of biomass burning on the water cycle using a case study of the Chari–Logone Catchment of the Lake Chad Basin (LCB). The Chari–Logone catchment was selected because it supplies over 90% of the water input to the lake, which is the largest basin in central Africa. Two water balance simulations, one considering burning and one without, were compared from the years 2003 to 2011. For a more comprehensive assessment of the effects of burning, albedo change, which has been shown to have a significant impact on a number of environmental factors, was used as a model input for calculating potential evapotranspiration (ET). Analysis of the burning scenario showed that burning grassland, which comprises almost 75% of the total Chari–Logone land cover, causes increased ET and runoff during the dry season (November–March). Recent studies have demonstrated that there is an increasing trend in the LCB of converting shrubland, grassland, and wetlands to cropland. This change from grassland to cropland has the potential to decrease the amount of water available to water bodies during the winter. All vegetative classes in a burning scenario showed a decrease in ET during the wet season. Although a decrease in annual precipitation in global circulation processes such as the El Niño Southern Oscillation would cause droughts and induce wildfires in the Sahel, the present study shows that a decrease in ET by the human-induced burning would cause a severe decrease in precipitation as well. Full article
Show Figures

Figure 1

9 pages, 826 KiB  
Communication
Neoliberalism and the Environment: Are We Aware of Appropriate Action to Save the Planet and Do We Think We Are Doing Enough?
by Ellie-Anne Jones and Rick Stafford
Earth 2021, 2(2), 331-339; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020019 - 21 Jun 2021
Cited by 5 | Viewed by 4054
Abstract
We currently face several interlinked environmental crises, including climate change, habitat destruction and biodiversity loss. However, many governments seem unwilling to take strong and immediate action to address these threats, preferring to promote neoliberal approaches to allow consumers and the general public to [...] Read more.
We currently face several interlinked environmental crises, including climate change, habitat destruction and biodiversity loss. However, many governments seem unwilling to take strong and immediate action to address these threats, preferring to promote neoliberal approaches to allow consumers and the general public to make environmentally friendly choices. This is despite neoliberal approaches being much less likely to be successful than government leadership, taxation, subsidies, and legislation in addressing environmental issues. In this study, we examine public perception of environmental threats and solutions to these threats in a survey mainly completed in the UK. Climate change is seen as the biggest issue, likely due to recent activist campaigns and subsequent media attention on the issue. Neoliberal attitudes, such as green consumer choices to environmental concerns, do still dominate in a series of possible presented solutions, and they score more highly than lifestyle changes, such as changing diet. However, when questioned specifically about plastic pollution, government intervention to ban all unnecessary plastic scored very strongly, indicating a shift from a consumer-driven response. Furthermore, most participants think they are at best only partly “doing their bit” to protect the environment. The results demonstrate that the public is aware that not enough is happening to protect the environment and provide evidence that there is willingness for stronger government intervention to address environmental issues; however, there is potential resistance to major lifestyle changes. Full article
Show Figures

Figure 1

28 pages, 53633 KiB  
Article
Before and After: A Multiscale Remote Sensing Assessment of the Sinop Dam, Mato Grosso, Brazil
by Oliver Lucanus, Margaret Kalacska, J. Pablo Arroyo-Mora, Leandro Sousa and Lucélia Nobre Carvalho
Earth 2021, 2(2), 303-330; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020018 - 16 Jun 2021
Cited by 3 | Viewed by 3410
Abstract
Hydroelectric dams are a major threat to rivers in the Amazon. They are known to decrease river connectivity, alter aquatic habitats, and emit greenhouse gases such as carbon dioxide and methane. Multiscale remotely sensed data can be used to assess and monitor hydroelectric [...] Read more.
Hydroelectric dams are a major threat to rivers in the Amazon. They are known to decrease river connectivity, alter aquatic habitats, and emit greenhouse gases such as carbon dioxide and methane. Multiscale remotely sensed data can be used to assess and monitor hydroelectric dams over time. We analyzed the Sinop dam on the Teles Pires river from high spatial resolution satellite imagery to determine the extent of land cover inundated by its reservoir, and subsequent methane emissions from TROPOMI S-5P data. For two case study areas, we generated 3D reconstructions of important endemic fish habitats from unmanned aerial vehicle photographs. We found the reservoir flooded 189 km2 (low water) to 215 km2 (high water) beyond the extent of the Teles Pires river, with 13–30 m tall forest (131.4 Mg/ha average AGB) the predominant flooded class. We further found the reservoir to be a source of methane enhancement in the region. The 3D model showed the shallow habitat had high complexity important for ichthyofauna diversity. The distinctive habitats of rheophile fishes, and of the unique species assemblage found in the tributaries have been permanently modified following inundation. Lastly, we illustrate immersive visualization options for both the satellite imagery and 3D products. Full article
Show Figures

Figure 1

16 pages, 2410 KiB  
Article
Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran
by Hasan Mozaffari, Mahrooz Rezaei and Yaser Ostovari
Earth 2021, 2(2), 287-302; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020017 - 06 Jun 2021
Cited by 17 | Viewed by 2961
Abstract
Land degradation by soil erosion is one of the most severe environmental issues that is greatly dependent on land use management. In this study, the effects of long-term land use management (including annual cultivated field (ACF), fallow field (FF), rangeland (R), and orchard [...] Read more.
Land degradation by soil erosion is one of the most severe environmental issues that is greatly dependent on land use management. In this study, the effects of long-term land use management (including annual cultivated field (ACF), fallow field (FF), rangeland (R), and orchard field (OF)), soil depth (0–10 and 10–20 cm), and soil organic matter content (SOM) on wind- and water-erosion indices were investigated in calcareous soils of southern Iran. Soil samples were collected from four above-mentioned land-use types, and some soil properties and erosion indices were measured. Results showed that the most of soil aggregates stability indices in the surface layer (0–10 cm) of OF were higher than those in ACF, FF, and R, respectively, by nearly 39%, 32%, and 47% for dry mean weight diameter of aggregates (MWDdry); 10%, 10%, and 48% for dry geometric mean weight diameter of aggregates (GMDdry); 21%, 17%, and 15% for water-stable aggregates (WSA); and 11%, 16%, and 31% for aggregate stability index (ASI). Moreover, the mean of the soil wind erosion indicators in OF (0–10 cm) were lower than those in ACF, FF, and R, respectively, by nearly 18%, 24%, and 26%, for wind-erodible fraction (EF); 43%, 38%, and 49% for soil erodibility to wind erosion (K); and 36%, 32%, and 41% for wind erosion rate (ER). In ACF, despite the high clay content, some aggregate stability indices such as MWøDdry and WSA were the lowest among studied land-use types which showed the negative effects of conventional tillage practices. Depth factor had only a significant effect on dust emission potential (DEP) in ACF, FF, and OF. In addition, there were significant and strong correlations between SOM and MWDdry (r = 0.79), WSA (r = 0.77), EF (r = −0.85), K (r = 0.74), and ER (r = 0.74) in all datasets. Full article
Show Figures

Figure 1

15 pages, 9607 KiB  
Article
Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal
by Sudeep Thakuri, Furbe Lama, Rabin Malla, Nitesh Khadka, Narayan Prasad Ghimire and Franco Salerno
Earth 2021, 2(2), 272-286; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020016 - 05 Jun 2021
Cited by 1 | Viewed by 4244
Abstract
Lake evolution and its changes over time are an evident and easily measurable signal of human activities and climate change impacts in mountain regions. This study presents bathymetric modeling of permanent lakes (Begnas and Rara Lakes) located in two different geographic settings of [...] Read more.
Lake evolution and its changes over time are an evident and easily measurable signal of human activities and climate change impacts in mountain regions. This study presents bathymetric modeling of permanent lakes (Begnas and Rara Lakes) located in two different geographic settings of Nepal. Moreover, temporal changes in land cover and soil erosion of the lake watersheds, as well as climatic trends around these lakes, are assessed. This study supports establishing reference sites for exploring scientific evidence on the impacts of anthropogenic and climate change on lake hydrological systems. Second-order polynomial models best represent the relationship between lake depth and volume. Rara Lake had a maximum depth of 169 m with an area of 10.52 km2 and a volume of 1013.305 million cubic meters (Mm3), whereas Begnas Lake had a maximum depth of 12.5 m with an area of 2.98 ± 0.10 km2 and a water volume of 13.539 Mm3 in the year 2019. Both lake regions are experiencing changes in temperature and rainfall. The area and volume of Rara Lake and its watershed have been relatively stable even with minimal land-cover change during the recent decades. Begnas Lake and its watershed have experienced significant changes in the last few decades. This study concludes that human activities in the Begnas Lake watersheds are the primary source of lake area variation rather than climate change. Full article
Show Figures

Figure 1

24 pages, 1649 KiB  
Review
Managing a World Heritage Site in the Face of Climate Change: A Case Study of the Wet Tropics in Northern Queensland
by Ellen T. Weber, Carla P. Catterall, John Locke, Liz S. Ota, Bruce Prideaux, Leslie Shirreffs, Leah Talbot and Iain J. Gordon
Earth 2021, 2(2), 248-271; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020015 - 01 Jun 2021
Cited by 8 | Viewed by 5852
Abstract
World Heritage is the pinnacle of the recognition of the natural, aesthetic, and cultural value of a place on the planet. Since its inception in 1972, over 1100 sites have received World Heritage status. Many of these places are being challenged by the [...] Read more.
World Heritage is the pinnacle of the recognition of the natural, aesthetic, and cultural value of a place on the planet. Since its inception in 1972, over 1100 sites have received World Heritage status. Many of these places are being challenged by the effects of climate change. Urgent action is needed to build the resilience and adaptive capacity of World Heritage sites in the face of climate change threats to come. The Wet Tropics of Queensland World Heritage Area (WTWHA) is one of the most effectively regulated and managed protected Areas in the world. This includes the scientific evidence upon which that regulation and management is based. However, there is growing evidence that climate change impacts are a clear and present threat to the Outstanding Universal Value (OUV) upon which the listing is based. This challenges the very concept of OUV and points to the business-as-usual regulation and management not being sufficient to deal with the threat. It also calls for quantum changes in the approaches to protecting natural and cultural heritage and the OUV in World Heritage Areas. This WTWHA case study gives insights into the journey travelled and the pathways that need to be laid out to protect our most cherished internationally recognised natural and cultural landscapes. We demonstrate the importance of evidence in support of advocacy and management action to address the clear impacts of climate change on species, ecosystems, people, and societies living in the WTWHA. The strategic and climate adaptation plans provide the framework upon which these actions take place. Community engagement in the delivery of mitigation, adaptation, and resilience policy is key to the long-term future of the WTWHA. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 4036 KiB  
Article
Evaluation and Prediction of the Impacts of Land Cover Changes on Hydrological Processes in Data Constrained Southern Slopes of Kilimanjaro, Tanzania
by Mateso Said, Canute Hyandye, Ibrahimu Chikira Mjemah, Hans Charles Komakech and Linus Kasian Munishi
Earth 2021, 2(2), 225-247; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020014 - 30 May 2021
Cited by 10 | Viewed by 3608
Abstract
This study provides a detailed assessment of land cover (LC) changes on the water balance components on data constrained Kikafu-Weruweru-Karanga (KWK) watershed, using the integrated approaches of hydrologic modeling and partial least squares regression (PLSR). The soil and water assessment tool (SWAT) model [...] Read more.
This study provides a detailed assessment of land cover (LC) changes on the water balance components on data constrained Kikafu-Weruweru-Karanga (KWK) watershed, using the integrated approaches of hydrologic modeling and partial least squares regression (PLSR). The soil and water assessment tool (SWAT) model was validated and used to simulate hydrologic responses of water balance components response to changes in LC in spatial and temporal scale. PLSR was further used to assess the influence of individual LC classes on hydrologic components. PLSR results revealed that expansion in cultivation land and built-up area are the main attributes in the changes in water yield, surface runoff, evapotranspiration (ET), and groundwater flow. The study findings suggest that improving the vegetation cover on the hillside and abandoned land area could help to reduce the direct surface runoff in the KWK watershed, thus, reducing flooding recurring in the area, and that with the ongoing expansion in agricultural land and built-up areas, there will be profound negative impacts in the water balance of the watershed in the near future (2030). This study provides a forecast of the future hydrological parameters in the study area based on changes in land cover if the current land cover changes go unattended. This study provides useful information for the advancement of our policies and practices essential for sustainable water management planning. Full article
Show Figures

Figure 1

17 pages, 4617 KiB  
Article
Vulnerability of Soil Carbon Regulating Ecosystem Services due to Land Cover Change in the State of New Hampshire, USA
by Elena A. Mikhailova, Lili Lin, Zhenbang Hao, Hamdi A. Zurqani, Christopher J. Post, Mark A. Schlautman and Gregory C. Post
Earth 2021, 2(2), 208-224; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020013 - 19 May 2021
Cited by 5 | Viewed by 2878
Abstract
Valuation of soil carbon (C) regulating ecosystem services (ES) at the state level is important for sustainable C management. The objective of this study was to assess the value of regulating ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total [...] Read more.
Valuation of soil carbon (C) regulating ecosystem services (ES) at the state level is important for sustainable C management. The objective of this study was to assess the value of regulating ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil carbon (TSC) stocks, based on the concept of the avoided social cost of carbon dioxide (CO2) emissions for the state of New Hampshire (NH) in the United States of America (USA) by soil order and county using information from the State Soil Geographic (STATSGO) database. The total estimated monetary mid-point value for TSC stocks in the state of New Hampshire was $73.0B (i.e., 73.0 billion U.S. dollars (USD), where B = billion = 109), $64.8B for SOC stocks, and $8.1B for SIC stocks. Soil orders with the highest midpoint value for SOC were Histosols ($33.2B), Spodosols ($20.2B), and Inceptisols ($10.1B). Soil orders with the highest midpoint value for SIC were Inceptisols ($5.8B), Spodosols ($1.0B), and Entisols ($770M, where M = million = 106). Soil orders with the highest midpoint value for TSC were Histosols ($33.8B), Spodosols ($21.2B), and Inceptisols ($15.9B). The counties with the highest midpoint SOC values were Rockingham ($15.4B), Hillsborough ($9.8B), and Coös ($9.2B). The counties with the highest midpoint SIC values were Merrimack ($1.2B), Coös ($1.1B), and Rockingham ($1.0B). The counties with the highest midpoint TSC values were Rockingham ($16.5B), Hillsborough ($10.8B), and Coös ($10.3B). New Hampshire has experienced land use/land cover (LULC) changes between 2001 and 2016. The changes in LULC across the state have not been uniform, but rather have varied by county, soil order, and pre-existing land cover. The counties that have exhibited the most development (e.g., Rockingham, Hillsborough, Merrimack) are those nearest the urban center of Boston, MA. Most soil orders have experienced losses in “low disturbance” land covers (e.g., evergreen forest, hay/pasture) and gains in “high disturbance” land covers (e.g., low-, medium-, and high-intensity developed land). In particular, Histosols are a high-risk carbon “hotspot” that contributes over 50% of the total estimated sequestration of SOC in New Hampshire while covering only 7% of the total land area. Integration of pedodiversity concepts with administrative units can be useful to design soil- and land-cover specific, cost-efficient policies to manage soil C regulating ES in New Hampshire at various administrative levels. Full article
Show Figures

Figure 1

17 pages, 2206 KiB  
Article
A New Model of Solar Illumination of Earth’s Atmosphere during Night-Time
by Roberto Colonna and Valerio Tramutoli
Earth 2021, 2(2), 191-207; https://0-doi-org.brum.beds.ac.uk/10.3390/earth2020012 - 30 Apr 2021
Cited by 3 | Viewed by 2102
Abstract
In this work, a solar illumination model of the Earth’s atmosphere is developed. The developed model allows us to determine with extreme accuracy how the atmospheric illumination varies during night hours on a global scale. This time-dependent variation in illumination causes a series [...] Read more.
In this work, a solar illumination model of the Earth’s atmosphere is developed. The developed model allows us to determine with extreme accuracy how the atmospheric illumination varies during night hours on a global scale. This time-dependent variation in illumination causes a series of sudden changes in the entire Earth-atmosphere-ionosphere system of considerable interest for various research sectors and applications related to climate change, ionospheric disturbances, navigation and global positioning systems. The use of the proposed solar illumination model to calculate the time-dependent Solar Terminator Height (STH) at the global scale is also presented.Time-dependent STH impact on the measurements of ionospheric Total Electron Content (TEC) is, for the first time, investigated on the basis of 20 years long time series of GPS-based measurements collected at ground. The correlation analysis, performed in the post-sunset hours, allows new insights into the dependence of TECSTH relation on the different periods (seasons) of observation and solar activity conditions. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop