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Abstract: In this work, a solar illumination model of the Earth’s atmosphere is developed. The
developed model allows us to determine with extreme accuracy how the atmospheric illumination
varies during night hours on a global scale. This time-dependent variation in illumination causes a
series of sudden changes in the entire Earth-atmosphere-ionosphere system of considerable interest
for various research sectors and applications related to climate change, ionospheric disturbances,
navigation and global positioning systems. The use of the proposed solar illumination model to
calculate the time-dependent Solar Terminator Height (STH) at the global scale is also presented.Time-
dependent STH impact on the measurements of ionospheric Total Electron Content (TEC) is, for the
first time, investigated on the basis of 20 years long time series of GPS-based measurements collected
at ground. The correlation analysis, performed in the post-sunset hours, allows new insights into
the dependence of TEC–STH relation on the different periods (seasons) of observation and solar
activity conditions.

Keywords: Solar Terminator Height; solar illumination of the atmosphere; Total Electron Content;
ionosphere; GNSS; solar activity

1. Introduction

The dividing boundary between the day and night side of the Earth and its atmo-
sphere is called Solar Terminator (ST). Its position on the ground determines the times
of sunrise and sunset. Solar illumination reaching the two sides of this region differently
contributes to the energy balance at different heights in the atmosphere. Such a differ-
ential, time-dependent, illumination generates sudden changes throughout the whole
Earth-atmosphere-ionosphere system. Among the consequences of such a vertical (and
horizontal) ST variation during the time there are: generation of acoustic gravity waves
(AGW) [1–6] which, manifesting themselves at ionospheric heights as traveling ionospheric
disturbances (TID), are responsible for the transport of energy and momentum in the
near-Earth space; oscillations of vertical pressure and temperature gradients as well as of
neutral and ionic atmospheric components (such as N2, O, O+, NO+, O2+) of particular
interest for the study of climate change [7]; significant effects on wave propagation of all
frequencies (ULF, VLF, LF, HF, etc.) [8] and on Total Electron Content [9], both of consid-
erable interest for their significant influence on radio transmissions and for the study of
the ionospheric effects of seismic activity. Moreover, as demonstrated by [10], over the
equatorial region, horizontal and vertical components of AGW phase velocity coincide
with horizontal and vertical components of the terminator velocity. For example, in the
study of atmospheric gravitational waves, it is important to accurately determine the time,
latitudes and altitudes in which the speed of variation of terminator becomes supersonic
because in this space–time interval it can generate gravitational waves [1].

Vertical movements of the ST are particularly relevant for the construction of iono-
spheric empirical models [11]. They affect the composition and transport dynamics of
plasma (temperature and ion/electron concentration) providing basic information required
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to separate day and night conditions at different ionospheric layers. On this basis, in fact, it
is possible to predict the layer D disappearance during the night or the elevation changes
of the F2 layer peak. Similarly, the knowledge of ST movements is fundamental for the
interpretation of the differential illumination of lower ionospheric layers that can oscillate
following the regular alternation of day and night while, in certain conditions (e.g., at high
latitudes), the upper layers remain always irradiated.

Despite its multi-disciplinary importance, a detailed model for the determination of ST
vertical movements is still lacking. In the scientific literature available to date, manuscripts
dealing with the subject [12] provide only partial solution equations.

In this paper, a Solar Terminator Height (STH) model is proposed which provides,
with unprecedented accuracy and at the global scale, the vertical variation of the ST as a
function of time.

The model also offers methodological support and solution equations to go beyond a
series of approximations (e.g., use of the spherical shape of the Earth, not precise Earth–Sun
position, use of sidereal time, use of the mean terrestrial radius, etc.) still used in all field of
applications, even when greater accuracy would improve the performances.

As an example of the impact of ST variations on space–time dynamics of atmospheric
parameters, the case of ionospheric Total Electron Content (TEC) is particularly addressed.

The TEC represents the number of electrons present along a ray path of 1 m2 of an
ionospheric section, measured in TEC Unit (1 TEC Unit = 1016 electrons/m2), and can be
determined by ground-based (e.g., from ionosondes, Global Navigation Satellite Systems
receivers [13]) and space-based (e.g., FORMOSAT/COSMIC series [14,15], DEMETER [16])
measurements.

In this work, a statistically-based analysis of 20 years of GPS (Global Positioning
System)-TEC data measured over Central Italy during the period 2000–2019 is performed
in order to recognize its dependence on STH space–time variations.

The analysis here implemented investigates, for the first time, the correlations between
TEC measurements and STH. In the post-sunset hours, in fact, the sudden variation in
solar irradiation incident on the various ionospheric layers generates variation in total
ionization. Such a study can be particularly useful in the elaboration of ionospheric TEC
models as well as in those applications requiring predicting the behavior of TEC parameter
in specific conditions.

Moreover, due to the fact that the ionosphere directly influences trans-ionospheric
radio waves propagating from satellites to GNSS receivers [17,18], such models are of
vital importance in order to evaluate and correct errors (that can be quite significant) in
GNSS-positioning due to TEC ionospheric irregularities. No less important is the role that
TEC models play in the study of the possible relations between ionospheric perturbations
and seismic activity, theorized by several authors in recent years [19–23].

2. Materials and Methods

This section is divided into two subsections. In the first one, we illustrate the proposed
time-dependent STH model describing how the atmospheric solar illumination varies
during the night along the vertical at a given geographical position. In the second, we report
the method used for the statistical correlation analysis between STH and the ionospheric
TEC parameter measured over Central Italy.

2.1. Solar Terminator Height Determination

The Solar Terminator Height (STH) at time t, h (θ, ϕ, t) for a given point P, at lati-
tude θ and longitude ϕ on the Earth’s surface, represents the height of the Sun-shadow
demarcation line (solar terminator) at the instant t along the vertical at point P (θ, ϕ).

The only assumptions we make in the mathematical modelling are: solar rays parallel
to each other and ellipsoidal (WGS84) shape of the Earth.

The vertical height of the point P above the Earth’s surface is a line joining the point P
and a point H along the local ellipsoid’s normal n (Figure 1). The length PH is called the
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ellipsoidal height h. The ellipsoid’s normal n is a straight line perpendicular to the plane
tangent to the ellipsoid at the point P and which, then, crosses in a generic point P0 the axis
of rotation of the Earth.
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Therefore, the terminal point H (θ, ϕ, t) of the solar terminator ellipsoidal height h (θ,
ϕ, t) is given by the intersection between n and the boundary of the shape generated by the
shadow produced by the Earth’s ellipsoid illuminated by the Sun’s rays (elliptical shadow
cylinder shown in Figure 1).

By choosing WGS84 as reference ellipsoid and by choosing a Cartesian reference
system, which for convenience we call X”Y”Z”, having the Z” axis coinciding with the
Earth’s rotation axis, the X”Y” plane coinciding with the equatorial plane and the X”
axis which intersects the prime meridian on the positive side (Figure 1), it is possible
to determine the ellipsoidal height h by making it explicit from any of the well-known
conversion formulas provided by geodesy:

X′′ H = (N + h)· cos θ· cos ϕ; (1)

Y′′ H = (N + h)· cos θ· sin ϕ; (2)

Z′′ H =
[

N·
(

1− e2
)
+ h
]
· sin θ; (3)

where:

• H is the terminal point of the ellipsoidal height h;
• N = a√

1−e2·sin2θ
is the length of the straight line coinciding with the ellipsoid’s normal

n connecting the point P and the point of intersection between n and Z” axis P0 (length
PP0 in Figure 1);

• e2 and a, respectively equal to 0.00669438 and to 6,378,137 m, are the ellipsoidal
parameters first eccentricity squared and semi-major axis of the reference ellipsoid
used (WGS84);

• θ and ϕ are, respectively, the geodetic latitude and the longitude.

Since we are interested in determining the variation of h as a function of time (and
therefore of the angle of rotation of the Earth around its axis), for our purposes it is more
convenient to choose a new X′Y′Z′ reference system, rotating the X”Y”Z” system around
the Z” axis, so that, as the Earth rotates, our reference system rotates in the opposite
direction, making sure that the positive side of the X′ axis always passes through the point
of intersection between sunset line and equatorial plane (Figure 1 shows the moment of
the day in which X′Y′Z′ coincides with X”Y”Z”).

In order for the proposed equations, (1), (2) and (3), to be valid in the new X′Y′Z′

reference system, we replace the longitude ϕ with the angle measured on the equatorial
plane between the meridian passing through the X′ axis (sunset line) and the meridian
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passing through the point P. We call this angle λ, local hour angle from sunset. λ, which
varies according to the Earth’s rotation, will subsequently be accurately determined.

In the new reference system X′Y′Z′, we have:

X′H = (N + h)· cos θ· cos λ; (4)

Y′H = (N + h)· cos θ· sin λ; (5)

Z′H =
[

N·
(

1− e2
)
+ h
]
· sin θ; (6)

with λ = local hour angle from sunset.
Furthermore, due to the revolution motion of the Earth around the Sun, the equatorial

plane tilts with respect to the direction of the Sun’s rays by an angle δ (solar declination). δ
reaches a maximum angle in June at the moment of the Northern Hemisphere summer
solstice, which is about 23.44◦, and a minimum angle in December at the moment of
the Northern Hemisphere winter solstice, which is about −23.44◦. Since the X′ axis is
perpendicular to the direction of the Sun’s rays, the rotation of the angle δ takes place
around the X′ axis itself. Thus, we define a new reference system XYZ obtained by rotating
the X′Y′Z′ reference system by the angle -δ around the X′ axis (see Figure 2). The angle δ
will be calculated later.
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In the XYZ system, we have:

XH = X′H = (N + h)· cos θ· cos λ; (7)

YH = Y′H · cos δ− Z′H · sin δ =
= (N + h)· cos θ· sin λ· cos δ−

[
N·
(
1− e2)+ h

]
· sin θ· sin δ;

(8)

ZH = Y′H · sin δ− Z′H · cos δ =
= (N + h)· cos θ· sin λ· sin δ−

[
N·
(
1− e2)+ h

]
· sin θ· cos δ.

(9)

Solving Equation (7) for h gives:

h =
XH

cos θ· cos λ
− N; i f : α ≤ 0◦ (10)

where α = solar elevation angle, to be defined later.
Therefore, we need to calculate XH to determine h. To do this, it is possible to exploit

the fact that (given the assumption of solar rays all parallel to each other) the projection on
the XZ plane of the point H is a point Hxz given by the intersection between the projection
on the XZ plane of n (nxz) and the ellipsoid E (see Figure 2). It will, then, be necessary to
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determine the equation of the two geometric figures (n and E) and their intersection at the
point Hxz.

nxz is a straight line passing through the projections on the XZ plane of the points P
and P0. The coordinates of the points P and P0 in the X”Y”Z” reference system are given,
again, by the well-known equations of the ellipsoid’s normal provided by geodesy:

X′′ P = N· cos θ· cos ϕ; (11)

Y′′ P = N· cos θ· sin ϕ; (12)

Z′′ P = N·
(

1− e2
)
· sin θ; (13)

X
′′
P0

= 0; (14)

Y
′′
P0

= 0; (15)

Z
′′
P0

= −e2·N· sin θ. (16)

Applying the equations of rotation already used to rotate the point H from the refer-
ence system X”Y”Z” to the reference system XYZ, the points P and P0 in XYZ are given by
the following expressions:

XP = N· cos θ· cos λ; (17)

ZP = N· cos θ· sin λ· sin δ + N·
(

1− e2
)
· sin θ· cos δ; (18)

XP0 = 0; (19)

ZP0 = −e2·N· sin θ· cos δ. (20)

At this point, we can determine the equation of the line nxz passing through the points
P e P0 (and through the point Hxz; see Figure 2):

Xn − XP0

XP − XP0

=
Zn − ZP0

ZP − ZP0

; (21)

Xn =
Zn − ZP0

ZP − ZP0

·XP. (22)

From the Equations (17), (18) and (20), after some simplifications, we have:

XP
ZP − ZP0

=
cos λ

sin λ· sin δ + tan θ· cos δ
; (23)

defining:

C1 =
cos λ

sin λ· sin δ + tan θ· cos δ
; (24)

we can write:
Xn =

(
Zn − ZP0

)
·C1. (25)

Let’s now move on to the equation of the ellipsoid E, which, in the X”Y”Z” reference
system, coincides with the one in the X′Y′Z′ reference system:

X′E2 + Y′E2

a2 +
Z′E2

c2 = 1; (26)

where c, equal to 6,356,752.314 m, is the semi-minor ellipsoid parameter of the reference
ellipsoid used (WGS84).
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We determine the equation of the coordinate XE as a function of ZE on the XZ plane
(for Y = 0). Again exploiting the rotation equations of the reference system, in XYZ, after
some substitutions, we have:

X′E = XE; (27)

Y′E = Z′E·
sin δ

cos δ
= Z′E· tan δ; (28)

Z′E =
ZE −Y′E· sin δ

cos δ
=

ZE − Z′E· tan δ· sin δ

cos δ
=

ZE
cos δ

− Z′E· tan2 δ; (29)

from which:
Z′E =

ZE

cos δ·
(
1 + tan2 δ

) ; (30)

Y′E =
ZE· tan δ

cos δ·
(
1 + tan2 δ

) . (31)

By replacing Equations (27), (31) and (30) in (26), we have:

X2
E

a2 +

[
ZE· tan δ

a· cos δ·(1 + tan2 δ)

]2
+

[
ZE

c· cos δ·(1 + tan2 δ)

]2
= 1; (32)

X2
E

a2 +

[
ZE· tan δ

a· cos δ·(1 + tan2 δ)

]2
+

[
ZE

c· cos δ·(1 + tan2 δ)

]2
= 1; (33)

X2
E

a2 + Z2
E·

1[
cos δ·(1 + tan2 δ)

]2 ·( tan2 δ

a2 +
1
c2

)
= 1; (34)

X2
E = a2 − Z2

E·
1[

cos δ·(1 + tan2 δ)
]2 ·(tan2 δ +

a2

c2

)
. (35)

Defining:

C2 =
1[

cos δ·(1 + tan2 δ)
]2 ·(tan2 δ +

a2

c2

)
; (36)

we can write:
X2

E = a2 − Z2
E·C2; (37)

and, squaring the Equation (25), we obtain:

X2
n = Z2

n·C2
1 − Zn·

(
2·ZP0 ·C

2
1

)
+ Z2

P0
·C2

1 . (38)

Thus, given the expressions of Xn (Zn) and XE (ZE), (38) and (37), it is possible to
determine their point of intersection ZH (XH) by equating them:

Z2
H ·
(

C2
1 + C2

)
− ZH ·

(
2·ZP0 ·C

2
1

)
+ Z2

P0
·C2

1 − a2 = 0. (39)

Defining:
K1 = C2

1 + C2; (40)

K2 = 2·ZP0 ·C
2
1 ; (41)

K3 = Z2
P0
·C2

1 − a2; (42)

we can write:

ZH =
K2 ±

√
K2

2 − 4·K1·K3

2K1
. (43)

We use the positive sign if θ + δ > 0 and the negative sign if θ + δ < 0.
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From Equation (25), it follows that:

XH =
(
ZH − ZP0

)
·C1; (44)

and, finally, it is possible to compute the Equation (10):

h = STH =
XH

cos θ· cos λ
− N. i f : α ≤ 0◦ (45)

The last step consists in determining the three unknown angles:

• Solar declination angle δ;
• Local hour angle from sunset λ;
• Solar elevation angle α.

We use the equations proposed in Chapters 25, 7, 22 and 30 of the book Astronomical
Algorithms [24] for the accurate determination of the solar declination angle δ and the
equations proposed in Chapters 28, 22 and 25 of the same book [24] for the determination of
the equation of time ET, as a function of which the angles λ and α will then be determined.
The proposed equations can also be deduced from the spreadsheets available online on the
NOAA solar calculator website [25], also based on the book Astronomical Algorithms [24].
However, given that the equations proposed by [24] have different scopes from those pro-
posed in the present work and different possibilities of choosing the “previous parameters”
according to the use of the “dependent parameters” and that over time there have been
some updates to the equations, it is preferred to reorganize them and report them below
for clarity and simplicity of use.

2.1.1. Solar Declination Angle: δ

The equations proposed in Chapters 25, 7, 22 and 30 of [24] for the accurate determina-
tion of the solar declination angle δ are then reorganized below.

Defining JD as the Julian Day from the epoch “1 January 2000 12:00:00 UTC”, it is
possible to determine the time T expressed in Julian centuries:

T =
JD

36525
; (46)

It is considered superfluous to report the JD calculation procedure as nowadays
any programming language has at least one function for its calculation; in any case, the
procedure can be found in Chapter 7 of [24].

Thus, the Sun’s Mean Longitude (ML), referring to the mean equinox of the date
(decimal degrees), is:

ML = 280.46646◦ + T(36000.76983◦ + 0.0003032◦·T); (47)

where 280.46646◦ is the mean longitude of the Sun on 1 January 2000 at noon UTC (mean
equinox of the date).

Then, the Sun’s Mean Anomaly MA is given by:

MA = 357.52911◦ + T(35999.05029◦ − 0.0001537◦·T); (48)

MA is defined as “the angular distance from perihelion which the planet would have
if it moved around the Sun with a constant angular velocity” [24] (Cap. 30, p. 194).

As a function of MA, it is now possible to calculate the Sun’s equation of the center
C, that is, the angular difference between the actual position of a body in its elliptical
orbit and the position it would occupy if its motion were uniform in a circular orbit of the
same period.
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C can be performed as follows:

C = sin(MA)·(1.914602◦ − T(0.004817◦ + 0.000014◦·T)) + sin(2T)
·(0.019993◦ − 0.000101◦·T) + sin(3T)·0.000289◦;

(49)

By adding Sun’s equation of the center C to Sun’s Mean Anomaly MA, we calculate the Sun’s
true longitude TL (the true geometric longitude referred to the mean equinox of the date):

TL = ML + C; (50)

The Sun’s Apparent longitude AL, i.e., TL corrected for the nutation and the aberration,
is given by:

AL = TL− 0.00569◦ − 0.00478◦· sin(125.04◦ − 1934.136◦·T); (51)

The next step is to calculate the mean obliquity of the ecliptic MOE. The equation
proposed by the 1998 version of Astronomical Algorithms [24], which we are using as the
main reference, shows terms up to the third order. This equation is still in use also in
the spreadsheets available online on the NOAA solar calculator website [25], but the JPL’s
fundamental ephemerides are constantly updated. In particular, the MOE calculation was
updated in the Astronomical Almanac for the year 2010 [26], which, in addition to correcting the
coefficients for the terms up to the third order, adds the terms of the fourth and fifth orders:

MOE = 23◦26′21′′ , 406− 46′′ , 836769T − 0′′ , 0001831T2+0′′ , 00200340T3

−0′′ , 576·10−6T4 − 4′′ , 34·10−8T5;
(52)

where, again, T is the time measured in Julian centuries from noon 1 January 2000 UTC.
Once MOE is known, it is possible to compute the obliquity corrected OC, which

should be considered in order to calculate the apparent position of the Sun (position of the
Sun corrected for the nutation and the aberration):

OC = MOE + 0.00256◦· cos(125.04◦ − 1934.136◦·T); (53)

Finally, the Sun’s declination δ is given by:

δ = asin(sin OC· sin AL); (54)

2.1.2. Equation of Time: ET (min)

For the precise determination of the angles λ and α, instead, we use the equation of
time ET, the calculation of which is proposed in Chapter 28 (with references to Chapters 22
and 25) of the book Astronomical Algorithms [24].

ET is a corrective parameter of the heliocentric longitude of the Earth and therefore of
solar time. In particular, it transforms the mean solar time MST into the true solar time TST.

MST, in fact, is calculated on the basis of the assumption of Earth’s constant velocity
of revolution along a circular orbit, rather than an elliptical one. Furthermore, at a much
lower magnitude, the equation of time also corrects the variations in the Earth’s speed
along the elliptical due to the interaction with the Moon and with the planets.

ET expressed in minutes is given by the following expression:

ET = [y· sin(2·ML)− 2·e· sin(MA) + 4·e·y· sin(MA)· cos(2·ML)− 1/2
·y2· sin(4·ML)− 5/4e2· sin(2·MA)

]
· 1440 min

360◦ ;
(55)

where e = eccentricity of the Earth’s orbit:

e = 0.016708634− 0.000042037·T − 0.0000001267·T2; (56)
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y = coefficient of correction of the position of the Sun for the nutation and the aberration:

y = tan2 OC
2

; (57)

2.1.3. Local Hour Angle from Sunset λ

The angle λ is defined as the local hour angle from sunset since it represents the local
hour angle LHA reduced by 90◦. In fact, LHA, which is the angle between the meridian
passing through the geographical position of the Sun and the meridian passing through
the geographical position of the point P, measures 0◦ when the point P is at solar noon.
Similarly, λ is equal to 0 when the meridian passing through the point P coincides with the
meridian passing through the point where sunset occurs on the equatorial plane.

For its determination, the following 4 steps are carried out:

1. HD (min/UTC), the hour of the day hh:mm:ss UTC of point P expressed in minutes,
is calculated:

HD = hh·60 + mm + ss/60; (58)

2. TST (min/UTC), the true solar time of point P expressed in minutes, is obtained
as follows:

TST = (HD + ET + 4·ϕ) mod 1440 min; (59)

3. LHA (◦), the local hour angle of point P expressed in degrees, is given by:

LHA = TST/4− 180◦; (60)

4. λ (◦), local hour angle from sunset expressed in degrees, then, is:

λ = (LHA− 90◦) mod 360◦; (61)

2.1.4. Solar Elevation Angle α

Finally, still exploiting the knowledge of the LHA, it is possible to calculate α (◦), the
solar elevation angle, expressed in degrees:

α = asin(sin θ· sin δ + cos θ· cos δ· cos LHA). (62)

A computer code for the time-dependent STH calculation for any geographic location
on the globe was written using the R programming language [27]. This code can be found
in the Supplementary Materials (Supplementary 1) to this paper.

2.2. STH–TEC Correlation Analysis

A simple look at the typical behavior of TEC measurements clearly enhances their
strict dependence on the daily solar variation (see Figure 3, [28]).

Solar forcing also causes seasonal variations [29–31]; however, it is not the unique
cause of ionospheric TEC deviations. For instance, geomagnetic activity (and storms) can
significantly affect TEC so that, in order to discriminate solar from other contributions, it is
particularly important to study those parts of the day (before sunrise or after sunset) when
ionospheric layers are selectively illuminated by the Sun [32] (Figure 3).

In order to evaluate solar contribution to TEC variations (as a function of the specific
location and time of year and in different conditions of solar activity), a correlation analysis
with STH after sunset was performed. A simple linear regression model and a log-linear
regression model, accompanied by the estimate of Pearson’s linear correlation coefficient,
were used to verify the existence of a relationship between the two variables and the
relative degree of correlation between them.
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In the data preprocessing phase, the following data selection and filtering operations
were implemented in order to respond to the double need for homogeneity and statistical
significance of the TEC data under investigation.Earth 2021, 2, FOR PEER REVIEW 10 
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Collection of TEC Data Samples

The analyzed Total Electron Content (TEC) data were obtained using the open-source
software IONOLAB-TEC [33]; this software, developed by the Ionospheric Research Labo-
ratory of the Hacettepe University of Ankara (Turkey), elaborates the vertical TEC (slant
TEC calculated along the joining GPS satellite–GPS receiver corrected for vertical direction)
using the method described in [34] and offers the possibility to test its effectiveness by
comparison with TEC estimates from IGS analysis centers. The satellite DCB (Differential
Code Bias) is obtained from IONEX files, and the receiver DCB is obtained using the
IONOLAB-BIAS algorithm detailed in [35]. The temporal resolution of the TEC data is 30 s.

To avoid comparing non-homogeneous data, we proceeded, first of all, to sample only
data coming from the same GPS receiver, and then measured in the same geographical
position. The one located in Central Italy in the city of L’Aquila was chosen as the reference
station for estimating the TEC, whose GPS receiver is called AQUI (Lat.: 42.368, Long.:
13.35). We chose this station as it is the one that provides the longest historical series of data
at national level, lasting over 20 years. We then analyzed the twenty-year time interval that
goes from 1 January 2000 00:00:00 to 1 January 2020 00:00:00 of TEC data.

As a first operation, in order to avoid unnecessary delays in processing the twenty-
year time series under analysis, the data were downsampled from 30 s to 10 min. The time
interval of 30 s between successive observations was, in fact, considered the low temporal
dynamic of the signal, considered excessively short for the purposes of this work.

The next step of pre-processing the data, implemented in order to prepare them for the
linear correlation study with the STH variable, was to filter the TEC data, saving only the
data recorded at the times of our interest, that is, from the time of sunset to solar midnight
at the geographical position of the AQUI-GPS receiver.

The TEC, as previously anticipated, is a parameter that varies not just in response to
the normal daily/seasonal solar cycle but also according to additional known and unknown
sources. Known further sources of variation are intensification of solar activity as well
as the already mentioned geomagnetic activity both affecting TEC above the geographic
location under observation.

Therefore, a twenty-year dataset of observations was built, including the measured
indices of solar activity F10.7 and of geomagnetic activity (Dst) obtained from NASA’s data
supply service [36]. Using the 20:00 measurement of the F10.7 index and the hourly mea-
surements of the Dst index, for each of the two parameters, through a linear interpolation
operation between successive values, the difference in time resolution with the TEC index



Earth 2021, 2 201

(which is equal to 10 min) was filled. Both are indices measured on a global scale, which,
however, influence the TEC parameter to a variable extent, even at a local level.

In particular, geomagnetic activity is more difficult to manage, as it can generate
anomalous and unpredictable local variations in the electron content in the ionosphere.
Therefore, to determine to what extent the TEC may vary as a function just of the portion
of the ionosphere illuminated by the Sun, periods affected by intense (|Dst| > 20 nT)
geomagnetic activity were excluded by the dataset.

In order to take into account TEC dependence on both seasonal solar cycle and active-
Sun periods, the twenty-year dataset was divided into 12 monthly groups, one for each
month of the year, and into 6 groups according to the parameter F10.7 (6 ranges of solar
activity shown in Table 1) in order to obtain 72 homogeneous datasets.

Table 1. Solar activity levels of F10.7 index in solar flux unit (s.f.u.) in which the STH–TEC linear
regression graphs are grouped.

Solar Activity Level Range 1 Range 2 Range 3 Range 4 Range 5 Range 6

F10.7 (s.f.u.) 0–80 80–100 100–120 120–140 140–160 160–Inf.

3. Results
3.1. STH as Function of Time

Figures 4–6 give some examples of time-dependent STH values computed following
the model described in Section 2.1 over three pairs of points chosen in both hemispheres
in three different (Tropical, Temperate and Polar) Zones. The temporal resolution of the
graphs is 10 min, and the STH values are shown for an entire year (2000).
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Figure (a) represents STH in the Northern Hemisphere. Figure (b) represents STH in the Southern
Hemisphere. Note that, in the two STH peaks—corresponding to the solar midnight of the two days
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time or longitude are enough to ensure that each of the two STH peaks varies considerably (in fact, if
it were θ = −δ, when SZA = −180, it would be STH = ∞). Therefore, precise longitude values were
chosen, such as to better emphasize such an aspect.

As can be seen, the graphs proposed reflect expected STH annual behavior. In the
case of the first two plots (Figure 4), relating to intertropical latitudes, the solar terminator
reaches peak altitudes in the few winter nights in which the vertical to the considered
geographical position is almost parallel to the direction of the Sun’s rays, going to meet
the Sun-shadow line at hundreds of thousands of kilometers of altitude, before dropping
abruptly. At mid-latitudes (Figure 5), however, the nocturnal peak heights show more
tenuous variations, touching the maximum and minimum values at the relative winter
and summer solstices. Finally, at polar latitudes, it is possible to appreciate the alternation
of the months of polar day and polar night, with maximum daily values of STH that are
maintained in the order of hundreds (or a few thousand) of kilometers of altitude.
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3.2. STH–TEC Correlation Analysis

In this section, we show the results of a preliminary study on the STH–TEC correlation
analysis during the period between sunset and solar midnight. In particular, the scatter
plots and the regression lines for the two variables were monthly processed in different
conditions of solar activity. As a representative example of how the correlation evolves on
average in the six ranges of solar activity, we show the plots related to the solar activity
level between 100 and 120 s.f.u. (Figure 7). The other five ranges of solar activity plots
can be found in the Supplementary Materials to this paper (Supplementary). The TEC
data used in the analysis were collected by the AQUI GPS receiver located in Central Italy
(Lat.: 42.37; Long.:13.35). At the top of each graph, the corresponding linear correlation
coefficient, the root mean squared error (RMSE) and the daily mean Time Coverage (TC) of
the month are reported.

The statistical analysis carried out on the time interval between sunset and solar
midnight highlights, as expected, a negative correlation between STH and TEC, which,
albeit to a more or less marked extent, always exists. In other words, in this period of
time and in the absence of high geomagnetic activity, regardless of the solar activity, it
can be expected that, as the portion of the atmosphere illuminated by the sun decreases
(increasing STH), the TEC also decreases.

From the visual analysis of the monthly scatter plots generated in presence of solar
activity between 100 and 120 s.f.u., it is quite evident that, if on the one hand there is a fairly
clear TEC–STH linear anti-correlation during the spring–summer period (in particular
during the period May–August), on the other, in the autumn–winter period the decrease in
TEC as STH increases is considerably more marked in the first 200–500 km of altitude, a
trend that, probably, during the period September–March, can be better described with a
log-linear regression (this would imply that the TEC–STH relationship is exponential).
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Another element that can be seen when looking at plots individually is the tendency of
TEC to decrease (as STH increases) during spring–summer months always at similar rates
within the same graph (the higher the TEC at sunset, the higher the TEC at midnight). This,
during this period, when the correlation tends to be linear, gives the graphs the property of
homoscedasticity, a desirable property, as it implies that the errors on TEC do not vary as
STH varies. However, this element allows us to assume that the correlation between the
two parameters has further margins for improvement if only the causes underlying the
higher or lower electronic content at sunset within the ionospheric layer could be identified.
Some table checks, carried out on a sample basis, show how the initial TEC variation is
only rarely attributable to slight variations in solar or geomagnetic activity within the
predetermined ranges but often remains unjustified.

Given the exponential trend detected by the graphs during the autumn–winter period,
a monthly log-linear regression analysis was also performed for each of the six solar activity
ranges. Figure 8 shows, again by way of example, the monthly graphs of the log-linear
correlation analysis for the period October–March in the same range of solar activity as
in Figure 7 (100 s.f.u. < F10.7 < 120 s.f.u.). The other log-linear plots can be found in the
Supplementary Materials to this paper (Supplementary 2).

The STH–TEC log-linear correlation, actually, in the solar activity range between
100 and 120 s.f.u. and during the autumn–winter period, seems to fit better than the linear
one as also confirmed by the higher correlation coefficient reported at the top of the plots.

The monthly correlation coefficients obtained from each of the two analyses (linear
and log-linear) and for each solar activity range are compared in Table 2.

Adding to the visual analysis the comparison of the correlation coefficients, it appears
that generally the months of March–April and September–October act as periods of transi-
tion between the two models. Instead, during the May–August and November–February
periods, respectively, the linear model and the log-linear model seem to fit better. The only
exception is the period October–March with F10.7 < 80 s.f.u. (very low solar activity), when
neither model seems to fit well (correlation coefficients never greater than 0.5).

In Table 3, excluding the transition periods, for each of the two correlation models,
are shown the seasonal means of the TEC–STH correlation coefficients of the months in
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which each of the two models fits better than the other (May–August for the linear one and
November–February for the log-linear one).

The seasonal means of the correlation coefficients obtained with each of the two
models, with the exception of the winter period in conditions of very low solar activity
(F10.7 < 80), show generally good values (with correlation coefficients always greater than 0.6).

In the case of linear correlation, there is no particular trend as the solar activity varies,
while in the case of log-linear correlation, as the solar activity increases the correlation
coefficient also increases. The case where F10.7 is greater than 160 s.f.u. is an exception
showing a reduction of the log-linear correlation coefficient likely due to the major weights
assumed by F10.7 outliers compared with a reduced population of records.
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Table 2. TEC–STH correlation coefficient values for the sunset–solar midnight period obtained in each
of the 12 months of the year in each of the 6 predetermined solar activity ranges and for both linear
(Lin) and log-linear (Log-Lin) correlation. The values in bold are the maximums in the comparison
between Lin and Log-Lin.

Linear and Log-Linear TEC–STH Correlation Coefficients Comparison
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3 –0.49 –0.50 –0.66 –0.64 –0.70 –0.74 –0.70 –0.72 –0.71 –0.71 –0.67 –0.66

4 –0.66 –0.56 –0.67 –0.60 –0.66 –0.57 –0.74 –0.69 –0.71 –0.68 –0.59 –0.63

5 –0.66 –0.53 –0.61 –0.49 –0.72 –0.58 –0.78 –0.67 –0.65 –0.56 –0.77 –0.70

6 –0.69 –0.55 –0.60 –0.50 –0.63 –0.52 –0.65 –0.56 –0.72 –0.61 –0.62 –0.52

7 –0.70 –0.58 –0.66 –0.53 –0.77 –0.63 –0.76 –0.62 –0.76 –0.64 –0.63 –0.53

8 –0.64 –0.53 –0.67 –0.57 –0.80 –0.69 –0.79 –0.67 –0.78 –0.65 –0.75 –0.63

9 –0.54 –0.52 –0.65 –0.63 –0.79 –0.78 –0.61 –0.66 –0.75 –0.76 –0.64 –0.65

10 –0.44 –0.42 –0.67 –0.58 –0.66 –0.74 –0.62 –0.73 –0.69 –0.83 –0.59 –0.70

11 –0.42 –0.44 –0.58 –0.60 –0.52 –0.63 –0.59 –0.74 –0.65 –0.82 –0.55 –0.75

12 –0.39 –0.45 –0.47 –0.60 –0.64 –0.78 –0.57 –0.75 –0.62 –0.82 –0.54 –0.76
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Table 3. Averages of the TEC–STH correlation coefficients of the periods May–August (linear) and
November–February (log-linear), in each of the 6 predetermined solar activity ranges.

Seasonal Means of The TEC–STH Correlation Coefficients

F10.7 < 80 80 < F10.7 <
100

100 < F10.7
< 120

120 < F10.7
< 140

140 < F10.7
< 160 F10.7 > 160

Lin
(May–Aug) −0.67 −0.64 −0.73 −0.74 −0.73 −0.69

Log-Lin
(Nov–Feb) −0.46 −0.64 −0.69 −0.77 −0.81 −0.67

4. Discussion

The availability of an accurate solar illumination model of the Earth’s atmosphere
could be functional to the improvement of studies relating to the whole series of applica-
tions (AGW/TID, vertical pressure and temperature profiles, neutral and ionic atmospheric
components, electromagnetic waves, total electron content, ionospheric empirical models,
etc.) already discussed in the introductory section.

The TEC–STH dependence relationships that were determined, on the other hand,
have the ultimate aim of describing and better predicting the nocturnal behavior of the TEC
parameter to obtain useful information for improving the processing of empirical models
and forecasting models. In this sense, also given the absence of previous studies on the
same topic, the investigation initiated represents a starting point for proceeding to more
detailed analyses that can open up different directions of research.

This first STH–TEC correlation analysis seems to indicate that, in the absence of
geomagnetic activity and in the post-sunset hours, the trend with which the TEC decreases,
as the portion of the ionosphere illuminated by the sun decreases, tends to be linear during
the summer period and exponential during the winter period. The exponential decreasing
trend is best suited in conditions of high solar activity.

The fact that the TEC has a decreasing trend (as STH increases) always at similar rates
within the monthly time intervals during the spring/summer period suggests that the
relationship could be also investigated by a multivariate regression analysis involving
other potential covariates (e.g., vertical temperature profile, portion of the atmosphere
crossed by incident solar radiation, Sun’s declination angle, etc.).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/earth2020012/s1. Supplementary 1: Time dependent STH code. Supplementary 2: TEC-STH
Regression Plots.
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