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Abstract: Valuation of soil carbon (C) regulating ecosystem services (ES) at the state level is important
for sustainable C management. The objective of this study was to assess the value of regulating
ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil carbon (TSC) stocks,
based on the concept of the avoided social cost of carbon dioxide (CO2) emissions for the state
of New Hampshire (NH) in the United States of America (USA) by soil order and county using
information from the State Soil Geographic (STATSGO) database. The total estimated monetary
mid-point value for TSC stocks in the state of New Hampshire was $73.0B (i.e., 73.0 billion U.S.
dollars (USD), where B = billion = 109), $64.8B for SOC stocks, and $8.1B for SIC stocks. Soil orders
with the highest midpoint value for SOC were Histosols ($33.2B), Spodosols ($20.2B), and Inceptisols
($10.1B). Soil orders with the highest midpoint value for SIC were Inceptisols ($5.8B), Spodosols
($1.0B), and Entisols ($770M, where M = million = 106). Soil orders with the highest midpoint value
for TSC were Histosols ($33.8B), Spodosols ($21.2B), and Inceptisols ($15.9B). The counties with the
highest midpoint SOC values were Rockingham ($15.4B), Hillsborough ($9.8B), and Coös ($9.2B). The
counties with the highest midpoint SIC values were Merrimack ($1.2B), Coös ($1.1B), and Rockingham
($1.0B). The counties with the highest midpoint TSC values were Rockingham ($16.5B), Hillsborough
($10.8B), and Coös ($10.3B). New Hampshire has experienced land use/land cover (LULC) changes
between 2001 and 2016. The changes in LULC across the state have not been uniform, but rather
have varied by county, soil order, and pre-existing land cover. The counties that have exhibited the
most development (e.g., Rockingham, Hillsborough, Merrimack) are those nearest the urban center
of Boston, MA. Most soil orders have experienced losses in “low disturbance” land covers (e.g.,
evergreen forest, hay/pasture) and gains in “high disturbance” land covers (e.g., low-, medium-,
and high-intensity developed land). In particular, Histosols are a high-risk carbon “hotspot” that
contributes over 50% of the total estimated sequestration of SOC in New Hampshire while covering
only 7% of the total land area. Integration of pedodiversity concepts with administrative units can be
useful to design soil- and land-cover specific, cost-efficient policies to manage soil C regulating ES in
New Hampshire at various administrative levels.
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1. Introduction

Determining the value of soil carbon is critical for achieving the United Nations
(UN) Sustainable Development Goals (SDGs), especially SDG 13: “Take urgent action to
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combat climate change and its impacts on future climate” [1]. The ecosystem services
(ES) framework is frequently utilized with UN SDGs because it is aimed at the valuation
of benefits (ES) and/or ecosystem disservices (ED) people obtain from nature based on
three general categories of services: provisioning, regulating/maintenance, and cultural
services [2]. Soil carbon regulating ES/ED are associated with the sequestration/stocks
of soil organic carbon (SOC) (derived from living matter), soil inorganic carbon (SIC)
(different types of carbonates), and total soil carbon (TSC = SOC + SIC), which vary with
geographic location and soil type. Soil carbon sequestration in the forms of SOC and SIC
is an ES, which results in “avoided” social costs associated with the emission of carbon
dioxide (CO2) to the atmosphere [3]. Release of CO2 to the atmosphere from losses of SOC
and SIC is an ED, which results in “realized” social costs [3,4].

Traditionally, soil resources are primarily valued for their provisioning ES (e.g., food
production) with limited consideration of regulating ES (e.g., carbon sequestration), but
increased concerns over global warming require assessment of soil ED associated with
greenhouse gas emissions from soils [5,6]. Soil C regulating ES/ED are dependent on
soil pedodiversity, which defines a soil “portfolio” and its SOC, SIC, and TSC stocks in a
geographic area under various land covers [3]. For example, the state of New Hampshire
has five soil orders (Entisols, Inceptisols, Histosols, Mollisols, and Spodosols) with soil-
specific characteristics and constraints related to soil ES/ED, which are all part of the
intricate mosaic of land use/land covers (LULC) within the landscape [7] (Table 1, Figure 1).
Soils of New Hampshire have undergone three varying degrees of weathering: slightly
weathered (Entisols, Inceptisols, Histosols), moderately weathered (Mollisols), and strongly
weathered (Spodosols) (Table 1). Entisols (5% of the total area) and Inceptisols (36%) contain
low soil C contents with limited capacity to sequester C because of their slight degree of
weathering and soil development [8]. Spodosols are common soils in New Hampshire (52%
of the total area) and contain low soil C contents in their mineral horizons because of their
strong degree of weathering and soil development [8]. New Hampshire selected Spodosols
to be the State Soil (soil series name: Marlow) for its importance in timber production [9].
Jevon et al. [10] conducted research on soil C stocks and concentrations in an actively
managed forest of northern New Hampshire and reported lower soil C in this managed
forest compared to less disturbed forests in the state. In addition, Jevon et al. [10] reported
“legacy” effects of previous management decisions in the vertical distribution of SOC.

Table 1. Soil diversity (pedodiversity) is expressed as taxonomic diversity at the level of soil order and ecosystem service
types in New Hampshire (U.S.A.) (adapted from Mikhailova et al., 2021 [3]).

Stocks Ecosystem Services

Soil Order General Characteristics and Constraints Provisioning Regulation/
Maintenance Cultural

Slightly Weathered

Entisols Embryonic soils with ochric epipedon x x x
Inceptisols Young soils with ochric or umbric epipedon x x x
Histosols Organic soils with ≥20% of organic carbon x x x

Moderately Weathered

Mollisols Carbon-enriched soils with B.S. ≥ 50% x x x

Strongly Weathered

Spodosols Coarse-textured soils with albic and spodic horizons x x x

Note: B.S. = base saturation.
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Figure 1. General soil map of New Hampshire (U.S.A.) (Latitude: 42◦ 42′ N to 45◦ 18′ N; Longitude:
70◦ 36′ W to 72◦ 33′ W) (adapted from [11]).

Although limited in their soil C regulating ES, Entisols, Inceptisols, and Spodosols serve
important cultural ES (e.g., recreation) as documented by research on soils of the White
Mountains of New Hampshire and their suitability for recreational development [12].

Mollisols are nutrient-rich soils high in C, but they are almost negligible in New
Hampshire. Histosols (7% of the total area) are organic carbon-rich soils commonly found
in different types of wetlands and can be a large source of greenhouse gas emissions from
changes in LULC (e.g., drainage, development, etc.) [13].

The ES framework is increasingly being used as “an operational framework” [14],
but because of “the difficulty in relating soil properties to ES, soil ES are still not fully
considered in the territorial planning decision process” [14]. Past research on avoided social
costs of SOC, SIC, and TSC in the USA has been conducted at various scales using both
biophysical (e.g., soil orders) and administrative accounts (e.g., states, regions, counties,
farm, etc.) [15–18], and has shown the need for soil- and carbon-specific management strate-
gies at the state level. The hypothesis of this study is that pedodiversity (e.g., taxonomic
categories) overlaid with administrative units (Figures 1 and 2) can be used to locate spatial
patterns of soil carbon hotspots for sustainable carbon management in the state of New
Hampshire.

The specific objective of this study was to assess the value of SOC, SIC, and TSC in the
state of New Hampshire (USA) based on the social cost of carbon (SC–CO2) and avoided
emissions provided by carbon sequestration, which the U.S. Environmental Protection
Agency (EPA) has determined to be $46 per metric ton of CO2, applicable for the year
2025 based on 2007 U.S. dollars and an average discount rate of 3% [19]. Our calculations
provide estimates for the monetary values of SOC, SIC, and TSC across the state and by
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different spatial aggregation levels (i.e., county) using the State Soil Geographic (STATSGO)
database and information previously reported by Guo et al. [20].

2. Materials and Methods

This study used both biophysical (science-based, Figure 1) and administrative (bound
ary-based, Figure 2) accounts to calculate monetary values for SOC, SIC, and TSC (Tables 2
and 3).

Table 2. A conceptual overview of the accounting framework used in this study (adapted from Groshans et al., 2018 [16]).

STOCKS FLOWS VALUE

Biophysical Accounts
(Science-Based)

Administrative
Accounts

(Boundary-Based)
Monetary Account(s) Benefit(s) Total Value

Soil extent: Administrative extent: Ecosystem good(s) and
service(s): Sector: Types of value:

Separate constitute stock 1: Soil organic carbon (SOC)
Separate constitute stock 2: Soil inorganic carbon (SIC)

Composite (total) stock: Total soil carbon (TSC) = Soil organic carbon (SOC) + Soil inorganic carbon (SIC)
Environment: The social cost of carbon

(SC-CO2) and avoided emissions:

- Soil order - State
- County

- Regulating (e.g.,
carbon sequestration)

- Carbon
sequestration

- $46 per metric ton of CO2 (2007
U.S. dollars with an average

discount rate of 3% [19])

Earth 2021, 2, FOR PEER REVIEW 5 
 

 

 

Figure 2. Administrative map of New Hampshire (U.S.A.) (Latitude: 42° 42′ N to 45° 18′ N; Longi-

tude: 70° 36′ W to 72° 33′ W) with 10 counties [21]. 

Table 3. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity) and county in New 

Hampshire (U.S.A.) based on Soil Survey Geographic (SSURGO) Database (2020) [12]. 

  Degree of Weathering and Soil Development 

County Total Slight  Moderate Strong 

 Area Entisols Inceptisols Histosols Mollisols Spodosols 

 (km2) Area (km2) 

Belknap 993.1  29.9  397.4  87.8  0  478.0  

Carroll 1625.2  57.0  644.7  23.3  0  900.2  

Cheshire 1785.5  77.7  799.7  82.8  0  825.4  

Coös 3690.3  30.0  840.9  97.4  0  2722.0  

Grafton 2857.0  72.9  802.6  14.8  0  1966.7  

Hillsboroug

h 
2169.6  192.4  693.4  272.1  0  1011.8  

Merrimack 2276.5  166.4  1051.5  189.6  0  869.1  

Rockingha

m 
1631.6  136.6  793.3  584.5  0  117.2  

Strafford 564.6  128.2  403.2  33.0  0  0.2  

Sullivan 1276.0  45.1  317.3  20.2  2.9  890.5  

Totals 18869.5  936.1  6744.0  1405.6  2.9  9780.9  

Figure 2. Administrative map of New Hampshire (U.S.A.) (Latitude: 42◦ 42′ N to 45◦ 18′ N; Longi-
tude: 70◦ 36′ W to 72◦ 33′ W) with 10 counties [21].



Earth 2021, 2 212

Table 3. Soil diversity (pedodiversity) by soil order (taxonomic pedodiversity) and county in New
Hampshire (U.S.A.) based on Soil Survey Geographic (SSURGO) Database (2020) [11].

County
Total
Area
(km2)

Degree of Weathering and Soil Development
Slight Moderate Strong

Entisols Inceptisols Histosols Mollisols Spodosols
Area (km2)

Belknap 993.1 29.9 397.4 87.8 0 478.0
Carroll 1625.2 57.0 644.7 23.3 0 900.2

Cheshire 1785.5 77.7 799.7 82.8 0 825.4
Coös 3690.3 30.0 840.9 97.4 0 2722.0

Grafton 2857.0 72.9 802.6 14.8 0 1966.7
Hillsborouh 2169.6 192.4 693.4 272.1 0 1011.8
Merrimack 2276.5 166.4 1051.5 189.6 0 869.1
Rockinghm 1631.6 136.6 793.3 584.5 0 117.2

Strafford 564.6 128.2 403.2 33.0 0 0.2
Sullivan 1276.0 45.1 317.3 20.2 2.9 890.5
Totals 18869.5 936.1 6744.0 1405.6 2.9 9780.9

The present study estimates monetary values associated with stocks of SOC, SIC, and
TSC in New Hampshire based on reported contents (in kg m−2) from Guo et al. [20]. Values
were calculated using the avoided social cost of carbon (SC-CO2) of $46 per metric ton
of CO2, applicable for 2025 based on 2007 U.S. dollars and an average discount rate of
3% [19]. According to the EPA, the SC-CO2 is intended to be a comprehensive estimate
of climate change damages. Still, it can underestimate the true damages and cost of CO2
emissions due to the exclusion of various important climate change impacts recognized
in the literature [19]. Area-normalized monetary values ($ m−2) were calculated using
Equation (1), and total monetary values were summed over the appropriate area(s) (noting
that a metric ton is equivalent to 1 megagram (Mg) or 100 kilograms (kg)):

$
m2 =

(
SOC/SIC/TSC Content,

kg
m2

)
× 1 Mg

103 kg
× 44 Mg CO2

12 Mg TSC
× $46

Mg CO2
(1)

Table 4 presents area-normalized contents (kg m−2) and monetary values ($ m−2) of
soil carbon, which were used to estimate stocks of SOC, SIC, and TSC and their correspond-
ing values by multiplying the contents/values by the area of a particular soil order within
a county (Table 3). For example, for the soil order Inceptisols, Guo et al. [20] reported a
midpoint SOC content of 8.9 kg·m−2 for the upper 2-m soil depth (Table 4). Using this SOC
content in Equation (1) results in an area-normalized SOC value of $1.50 m−2. Multiplying
the SOC content and its corresponding area-normalized value each by the total area of
Inceptisols present in New Hampshire (6744 km2, Table 3) results in an SOC stock of 6.0 ×
1010 kg (Table 5) with an estimated monetary value of $10.1B (Table 6).

Land use/land cover change in New Hampshire between 2001 and 2016 was analyzed
using classified land cover data from the Multi-Resolution Land Characteristics Consortium
(MRLC) [22]. Changes in land cover, with their associated soil types, were calculated in
ArcMap 10.7 [23] by comparing the 2001 and 2016 data, converting the land cover to vector
format, and unioning the data with the soils layer in the Soil Survey Geographic (SSURGO)
Database [11].



Earth 2021, 2 213

Table 4. Area-normalized content (kg m−2) and monetary values ($ m−2) of soil organic carbon (SOC), soil inorganic carbon
(SIC), and total soil carbon (TSC) by soil order based on data reported by Guo et al. [20] for the upper 2 m of soil and an avoided
social cost of carbon (SC-CO2) of $46 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [19]).

Soil Order

SOC Content SIC Content TSC Content SOC Value SIC Value TSC Value

Minimum—Midpoint—Maximum Values Midpoint Values

(kg m−2) (kg m−2) (kg m−2) ($ m−2) ($ m−2) ($ m−2)

Slightly Weathered

Entisols 1.8–8.0–15.8 1.9–4.8–8.4 3.7–12.8–24.2 1.35 0.82 2.17
Inceptisols 2.8–8.9–17.4 2.5–5.1–8.4 5.3–14.0–25.8 1.50 0.86 2.36
Histosols 63.9–140.1–243.9 0.6–2.4–5.0 64.5–142.5–248.9 23.62 0.41 24.03

Moderately Weathered

Mollisols 5.9–13.5–22.8 4.9–11.5–19.7 10.8–25.0–42.5 2.28 1.93 4.21

Strongly Weathered

Spodosols 2.9–12.3–25.5 0.2–0.6–1.1 3.1–12.9–26.6 2.07 0.10 2.17

Note: TSC = SOC + SIC.

Table 5. Midpoint soil organic carbon (SOC) storage by soil order and county for the state of New
Hampshire (USA), based on the areas shown in Table 3 and the midpoint SOC contents shown in
Table 4.
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3. Results

Based on avoided SC–CO2, the total estimated monetary mid-point value for TSC
in the state of New Hampshire was $73.0B (i.e., 73.0 billion U.S. dollars, where B = bil-
lion = 109), $64.8B for SOC (89% of the total value), and $8.1B for SIC (11% of the total
value). Previously, we have reported that among the 48 conterminous states of the U.S.,
New Hampshire ranked 40th for TSC [18], 40th for SOC [15], and 45th for SIC [16].

3.1. Storage and Value of SOC by Soil Order and County for New Hampshire

Soil orders with the highest midpoint monetary value for SOC were Histosols ($33.2B),
Spodosols ($20.2B), and Inceptisols ($10.1B) (Tables 5 and 6). The counties with the highest
midpoint SOC values were Rockingham ($15.4B), Hillsborough ($9.8B), and Coös ($9.2B)
(Tables 5 and 6). Rockingham has the largest area occupied by Histosols (Table 3), which
has a high SOC midpoint content (140.1 kg m−2; Table 4) and therefore a corresponding
high monetary value of $13.8B (Table 6). Note that soil survey data can overestimate SOC
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contents, because SOC is extrapolated with soil depth [17]. Despite this limitation, the
overall trends for soil orders and counties should be informative in sustainable soil C
management.

Table 6. Monetary value of soil organic carbon (SOC) by soil order and county for the state of New
Hampshire (USA), based on the areas shown in Table 3 and the area-normalized midpoint monetary
values shown in Table 4.
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Table 8. Monetary value of soil inorganic carbon (SIC) by soil order and county for the state of New
Hampshire (USA), based on the areas shown in Table 3 and the area-normalized midpoint monetary
values shown in Table 4.
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Table 10. Monetary value of total soil carbon (TSC) by soil order and county for the state of New
Hampshire (USA), based on the areas shown in Table 3 and the area-normalized midpoint monetary
values shown in Table 4.
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2016 Area by Soil Order, km2 (Change in Area, 2001–2016, %) 
Barren land 80 25.3 (−6.8%) 21.3 (−4.5%) 4.2 (−5.6%) 0.0 (5.1%) 29.2 (−0.1%) 

Woody wetlands 1354 83.9 (−0.2%) 494.8 (0.4%) 452.7 (2.3%) 0.2 (−1.1%) 322.0 (0.4%) 
Shrub/Scrub 710 12.6 (89.9%) 198.7 (218.1%) 22.5 (219.0%) 0.0 (−25.6%) 476.1 (322.0%) 
Mixed forest 6506 146.4 (−3.2%) 2362.8 (−2.0%) 343.3 (−2.0%) 0.2 (−6.0%) 3653.7 (−1.5%) 

Deciduous forest 4022 67.6 (−5.8%) 1277.0 (−6.0%) 150.4 (−9.5%) 0.3 (−10.2%) 2526.9 (−8.4%) 
Herbaceous 249 13.9 (20.4%) 89.7 (25.1%) 12.9 (45.3%) 0.1 (1030.4%) 132.6 (−0.9%) 
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Hay/Pasture 628 56.2 (−7.6%) 327.2 (−5.1%) 15.8 (−10.7%) 0.6 (−8.6%) 228.5 (−5.6%) 
Cultivated crops 61 20.3 (2.3%) 32.9 (3.1%) 0.6 (−14.0%) 0.3 (17.4%) 6.8 (6.6%) 

Developed, open space 884 83.9 (4.1%) 356.1 (5.5%) 66.0 (14.3%) 0.2 (−6.1%) 377.4 (1.0%) 
Developed, medium intensity 275 95.9 (9.3%) 102.4 (14.6%) 22.4 (16.3%) 0.1 (14.9%) 53.9 (10.6%) 

Developed, low intensity 542 110.0 (4.4%) 225.5 (8.5%) 52.8 (14.0%) 0.2 (−0.2%) 153.8 (2.9%) 
Developed, high intensity 68 37.6 (13.2%) 18.1 (32.5%) 2.3 (36.8%) 0.1 (164.9%) 10.4 (17.3%) 
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18′ N; Longitude: 70◦ 36′ W to 72◦ 33′ W) [21].

4. Discussion

Pedodiversity (soil diversity) in New Hampshire impacts the level of various soil ES
goods and services and will play a role in potential soil ecosystem disservices (ED) under
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certain conditions. This study demonstrates the value of regulating ES/ED at the state
and county levels. The New Hampshire soil “portfolio” [3] is composed of five soil orders:
Entisols (5% of the total soil area), Inceptisols (36%), Histosols (7%), Mollisols (< 0.02%),
and Spodosols (52%) (Figure 1, Table 3, Figure 4a). Highly weathered Spodosols account
for the largest fraction of area in the state, but they are not the largest contributor to soil C
regulating ES. Rather, because of their high SOC content, Histosols are a carbon “hotspot”
that contributes over 50% of the total monetary value for SOC in the state while covering
only 7% of the state’s area. The relative contribution of SIC to soil C regulating ES is small
at the state and county levels and is primarily associated with Inceptisols, Spodosols, and
Entisols.

Soil “portfolios” differ within each county in New Hampshire, as illustrated by three
example counties: Coös, Strafford, and Rockingham (Figure 5). In all three examples,
pedodiversity influences the monetary value of regulating ES or potential ED.
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Figure 4. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity can vary within the state 

by soil order: (a) pedodiversity by area of soil order; (b) monetary value of soil organic carbon (SOC) storage or potential 

cost if all SOC is released as CO2 emissions, (c) similar value or potential cost associated with soil inorganic carbon (SIC), 

(d) similar value or potential cost associated with total soil carbon (TSC). Monetary valuation is based on soil C in the 

upper 2-m depth and a social cost of CO2 emission of USD 46 (USD) per metric ton of CO2 [19]. Note: B = billion = 109. 
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Figure 4. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity can vary within the state
by soil order: (a) pedodiversity by area of soil order; (b) monetary value of soil organic carbon (SOC) storage or potential
cost if all SOC is released as CO2 emissions, (c) similar value or potential cost associated with soil inorganic carbon (SIC), (d)
similar value or potential cost associated with total soil carbon (TSC). Monetary valuation is based on soil C in the upper
2-m depth and a social cost of CO2 emission of $46 (USD) per metric ton of CO2 [19]. Note: B = billion = 109.
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Figure 4. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity can vary within the state 
by soil order: (a) pedodiversity by area of soil order; (b) monetary value of soil organic carbon (SOC) storage or potential 

cost if all SOC is released as CO2 emissions, (c) similar value or potential cost associated with soil inorganic carbon (SIC), 

(d) similar value or potential cost associated with total soil carbon (TSC). Monetary valuation is based on soil C in the 

upper 2-m depth and a social cost of CO2 emission of USD 46 (USD) per metric ton of CO2 [19]. Note: B = billion = 109. 
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Figure 5. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity varies within counties 

by soil order: (a,c,e) pedodiversity by area of soil order; (b,d,f) monetary value of soil organic carbon (SOC) storage or 
potential cost if all SOC is released as CO2 emissions. Monetary valuation is based on soil C in the upper 2-m depth and a 

social cost of CO2 emission of USD 46 (USD) per metric ton of CO2 [19]. Note: B = billion = 109. 
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Figure 5. Diagram showing how the “portfolio-effect” and “distribution-effect” of pedodiversity varies within counties
by soil order: (a,c,e) pedodiversity by area of soil order; (b,d,f) monetary value of soil organic carbon (SOC) storage or
potential cost if all SOC is released as CO2 emissions. Monetary valuation is based on soil C in the upper 2-m depth and a
social cost of CO2 emission of $46 (USD) per metric ton of CO2 [19]. Note: B = billion = 109.

The concepts of “avoided” and “realized” social costs demonstrate different interpre-
tations of the regulating ES/ED associated with soil carbon. For example, “avoided” social
cost refers to the benefits of sequestered soil C, because it is not emitted to the atmosphere
as CO2. Conversely, “realized” soil cost refers to damages resulting from CO2 emissions. In
Figures 4 and 5, “realized” is taken to be the maximum potential cost that would occur if all
stocks of sequestered soil carbon were released to the atmosphere as CO2. For example, in
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Coös County, the soil order Spodosols make the largest contribution to the SC–CO2 because
of their dominant area (Figure 5a,b). In Strafford County, the largest area is occupied by
Inceptisols, but their relatively small area overall and low soil carbon stocks translate into
relatively small monetary values for the SC–CO2 (Figure 5c,d). In Rockingham County,
Histosols occupy a relatively small area compared to Entisols and Inceptisols but make
the largest contribution to the SC–CO2 (Figure 5e,f). In New Hampshire, Histosols are
particularly sensitive to climate change and LULC changes because of their relatively high
soil C content. Therefore, Histosols may experience higher decomposition rates due to
increases in temperature and precipitation. All soils in the State of New Hampshire have
low recarbonization potential because of various reasons (e.g., high economic cost of soil C
sequestration, climate change, etc.) (Table 12).

Table 12. Distribution of soil carbon regulating ecosystem services in the state of New Hampshire
(USA) by soil order (photos courtesy of USDA/NRCS [24]). Values are taken/derived from Table 3,
Table 6, Table 8, and Table 10.

Soil Regulating Ecosystem Services in the State of New Hampshire

Degree of Weathering and Soil Development
Slight
48%

Moderate
<0.02%

Strong
52%

Entisols
5%

Inceptisols
36%

Histosols
7%

Mollisols
<0.02%

Spodosols
52%
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Note: Entisols, Inceptisols, Mollisols, and Spodosols are mineral soils. Histosols are mostly organic 

soils. M = million = 106; B = billion = 109. 

According to Bétard and Peulvast [25], soils can become carbon “hotspots” when 

they are disturbed (e.g., tillage, erosion, etc.) and release CO2 to the atmosphere, resulting 

in maximum (i.e., complete loss of sequestered C) or fractional (i.e., partial loss of seques-

tered C) “realized” costs because of damages associated with global warming, extreme 

weather events, flooding, etc. Changes in LULC can also be types of disturbance with po-

tential for “realized” social costs. Table 13 provides maximum potential estimates of “re-

alized” costs by soil order for land in New Hampshire that was developed from low- to 

high-disturbance LULC classes from 2001 to 2016. 

Table 13. Increases in developed land and maximum potential for realized social costs of carbon 

due to complete loss of total soil carbon of developed land by soil order in New Hampshire (USA) 

from 2001 to 2016. Values are derived from Tables 4 and 11. 

NLCD Land Cover Classes  

(LULC) 

Degree of Weathering and Soil Development 

Slight Moderate Strong 

Enti- 

sols 

Incepti- 

sols 

Histo- 

sols 

Molli- 

sols 

Spodo- 

sols 

Area Change, km2 (Social Cost of CO2, $=USD) 
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According to Bétard and Peulvast [25], soils can become carbon “hotspots” when they
are disturbed (e.g., tillage, erosion, etc.) and release CO2 to the atmosphere, resulting in
maximum (i.e., complete loss of sequestered C) or fractional (i.e., partial loss of sequestered
C) “realized” costs because of damages associated with global warming, extreme weather
events, flooding, etc. Changes in LULC can also be types of disturbance with potential
for “realized” social costs. Tables 13 and 14 provide maximum potential estimates of
“realized” costs by soil order for land in New Hampshire that was developed from low- to
high-disturbance LULC classes from 2001 to 2016.
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Table 13. Increases in developed land and maximum potential for realized social costs of carbon due to complete loss of
total soil carbon of developed land by soil order in New Hampshire (USA) from 2001 to 2016. Values are derived from
Tables 4 and 11.

NLCD Land Cover Classes
(LULC)

Degree of Weathering and Soil Development
Slight Moderate Strong

Entisols Inceptisols Histosols Mollisols Spodosols
Area Change, km2 (SC-CO2, $=USD)

Developed, open space 3.3 ($7.2M) 18.7 ($44.2M) 8.3 ($198.4M) - 3.7 ($7.9M)
Developed, medium intensity 8.2 ($17.8M) 13.0 ($30.7M) 3.1 ($75.3M) 0.02 ($80,000) 5.2 ($11.2M)

Developed, low intensity 4.6 ($10.0M) 17.7 ($41.7M) 6.5 ($155.9M) - 4.3 ($9.3M)
Developed, high intensity 4.4 ($9.5M) 4.4 ($10.5M) 0.6 ($14.9M) 0.06 ($242,000) 1.5 ($3.3M)

Totals 20.5 ($44.5M) 53.8 ($127.0M) 18.5 ($444.5M) 0.08 ($322,000) 14.6 ($31.8M)
Note: Entisols, Inceptisols, Mollisols, and Spodosols are mineral soils.Histosols are mostly organic soils. M = million = 106.

Table 14. Impacts of land development on the maximum potential realized social costs of carbon
dioxide (SC-CO2) from total soil carbon (TSC) in New Hampshire (USA) from 2001 to 2016 by county.
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maximum potential “realized” social cost depend on the area of disturbance and the soil 
type with its corresponding TSC content. For example, Histosols are a “hotspot” of carbon 
sequestration, but are vulnerable to development. From 2001 to 2016, development on 
Histosols in New Hampshire has resulted in a maximum potential realized social cost of 
over $440M (Table 13). 

Integration of pedodiversity concepts with LULC classes and administrative units 
(e.g., counties) enable researchers and policy makers to identify locations and magnitudes 
of maximum potential “realized” social costs of soil carbon so that cost-effective policies 
for sustainable soil carbon management can be developed (Table 14). For example, land 
development in Rockingham County from 2001 to 2016 resulted in the highest SC-CO2 

($323M), followed by Hillsborough ($241M) and Merrimack ($25M) counties (Table 14).  

In Table 13, the conservative assumption was made that land developed over the time
period of interest had no soil carbon stocks remaining in 2016, consistent with IPCC guidelines
for Tier 1 evaluations of changes in LULC [26,27]. Monetary values of maximum potential
“realized” social cost depend on the area of disturbance and the soil type with its correspond-
ing TSC content. For example, Histosols are a “hotspot” of carbon sequestration, but are
vulnerable to development. From 2001 to 2016, development on Histosols in New Hampshire
has resulted in a maximum potential realized social cost of over $440M (Table 13).

Integration of pedodiversity concepts with LULC classes and administrative units
(e.g., counties) enable researchers and policy makers to identify locations and magnitudes
of maximum potential “realized” social costs of soil carbon so that cost-effective policies
for sustainable soil carbon management can be developed (Table 14). For example, land
development in Rockingham County from 2001 to 2016 resulted in the highest SC-CO2
($323M), followed by Hillsborough ($241M) and Merrimack ($25M) counties (Table 14).

Changes in LULC are available through this analysis in a spatially explicit manner,
so the location and extent of these potential “hotspots” can be identified on the landscape.
Furthermore, areas adjacent to locations that have been subject to development may be
more vulnerable to future “contagious” development [28], which is especially dangerous
for high-risk Histosols because of their high C content. In the future, identifying areas of
possible hotspots, over time, using land cover change analysis will become an important
tool for carbon accounting.
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5. Conclusions

This study applied soil diversity (pedodiversity) concepts (taxonomic) and their
measures to value soil C regulating ES/ED in the state of New Hampshire (USA), its
administrative units (counties), and the systems of soil classification (e.g., U.S. Department
of Agriculture (USDA) Soil Taxonomy, Soil Survey Geographic (SSURGO) Database) for
sustainable soil C management. Taxonomic pedodiversity in New Hampshire exhibits high
soil diversity (five soil orders: Entisols, Inceptisols, Histosols, Mollisols, and Spodosols),
which is not evenly distributed within the state and counties. Spodosols occupy the highest
proportion of the state area (52%) but ranked only second (after Histosols) in terms of their
SOC storage and related social costs of carbon ($20.2B). Despite a relatively small area
(7% of the total soil area), Histosols contribute $33.2B (51%) to the social cost of SOC, and
$33.8B (46%) to the social cost of TSC. The contribution of SIC to associated social costs of
carbon is small ($8.1B) at the state level and primarily associated with Inceptisols ($5.8B),
Spodosols ($978.1M), and Entisols ($767.6M). In the state of New Hampshire, Histosols are
particularly sensitive to climate change because of their relatively high soil C content, which
is most likely to experience higher rates of decomposition due to global warming with
increases in temperature and precipitation. All soils in the state of New Hampshire have
low recarbonization potential [18,29]. New Hampshire experienced land cover changes
between 2001 and 2016, which varied by soil order and land cover, with most soil orders
experiencing losses in “low disturbance” land covers (e.g., evergreen forest, hay/pasture)
and gains in “high disturbance” land covers (open, low, medium, and high intensity
developed land) with most maximum potential “realized” social costs of C associated with
all soil orders ($648M), but Histosols ($445M) in particular. Rockingham County generated
the highest SC-CO2 ($323M), followed by Hillsborough ($241M) and Merrimack ($25M)
counties. Administrative areas (e.g., counties) combined with pedodiversity concepts can
provide useful information to design soil- and land-cover specific, cost-efficient policies to
manage soil carbon regulating ES in the state of New Hampshire at various administrative
levels.
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ED Ecosystem disservices
ES Ecosystem services
EPA Environmental Protection Agency
SC-CO2 Social cost of carbon emissions
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SOC Soil organic carbon
SIC Soil inorganic carbon
SOM Soil organic matter
SSURGO Soil Survey Geographic Database
TSC Total soil carbon
USDA United States Department of Agriculture
U.S.A. United States of America
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