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Abstract: One of the most important natural processes responsible for soil loss is rainfall-induced 
erosion. The calculation of rainfall erosivity, as defined in the Universal Soil Loss Equation, requires 
the availability of rainfall data, either continuous breakpoint, or pluviograph, with sampling 
intervals on the order of minutes. Due to the limited temporal coverage and spatial scarcity of such 
data, worldwide, alternative equations have been developed that utilize coarser rainfall records, in 
an effort to estimate erosivity equivalently to that calculated using pluviograph data. This paper 
presents the application of generalized additive models (GAMs) to estimate erosivity utilizing daily 
rainfall records. As a case study, pluviograph data with a time step of 30 min from the Water District 
of Thrace in Greece were used. By applying GAMs, it became possible to model the nonlinear 
relation between daily rainfall, seasonal periodicity, and rainfall erosivity more effectively, in terms 
of accuracy, than the application of two well-known nonlinear empirical equations, both on a daily 
and an annual basis. 

Keywords: rainfall erosivity; USLE; GAM; nonlinear regression; rainfall data; Greece 
 

1. Introduction 

Rainfall erosivity concerns the ability of rainfall to cause erosion on the surface of the earth [1]. 
Unsustainable land management, growing human pressure on ecosystems, and possible higher 
erosion rates due to climate change [2] can lead to soil degradation and decreasing agricultural 
productivity, setting the ecologic balance in danger, and even reducing the efficiency of adaptation 
measures [3]. Accelerated soil losses and the menace of desertification, which many countries face 
[4], pose a danger to the achievement of the Sustainable Development Goals of the United Nations to 
end poverty [5], because these goals depend on a healthy environment and sustainable agricultural 
production. 

Regarding the calculation of soil erosion rates, it is a necessity to compute rainfall erosivity and 
simulate the effects of land use and the appliance of different land practices [6]. Due to the difficulty 
in modeling the distribution, size, and terminal velocity of raindrops in relation to the detachment of 
soil particles, more tractable rainfall indices have been utilized for the calculation of erosivity [7]. 
Therefore, in the Universal Soil Loss Equation (USLE) [8], the rainfall erosivity factor R was 
introduced as the product of the rainfall kinetic energy of a storm, classified as erosive by certain 
criteria, and its maximum 30 min intensity. USLE with its computerized revisions RUSLE [9] and 
RUSLE2 [10] are the most widely applied soil erosion prediction models globally [11]. 

A serious issue in the application of USLE is the computation of R, which requires pluviograph 
records with a length of at least twenty years, so that wet or dry rainfall periods will be incorporated, 
eliminating any bias [7]. In order to cope with the difficulties that arise due to the absence of adequate 
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pluviograph data, in terms of spatial and temporal coverage, many models have been developed. 
These models use empirical equations based on various coarser records of rainfall depths (daily, 
monthly, annual), under specific spatial parameters and climatological data, in order to estimate R. 
A comprehensive list of such methods can be found in Vantas et al. [12]. Additionally, these models 
can be used in conjunction with climate models in order to estimate projected changes in R [3]. 

The use of more efficient techniques, such as machine or statistical learning algorithms, to 
estimate erosivity is exiguous in the pertinent literature. Recently, Vantas et al. utilized quantile 
regression forests to estimate current and future values of R [3], and the same authors applied 
spatiotemporal clustering to define regions in Greece with similar erosivity density patterns [13]. 
Vantas et al. [12] compared the results from deep neural networks to empirical equations on the 
estimation of R, and Vantas and Sidiropoulos [14] evaluated the use of Bayesian neural networks on 
the estimation of weekly erosivity values. 

A generalized additive model (GAM) is a statistical learning algorithm [15], in the area of 
supervised learning, that can be used in classification and regression problems. This algorithm is an 
extension of generalized linear models (GLMs) that automatically fits a set of smoothing functions 
for each one of the input variables and adds all of these contributions, in order to estimate the output 
response [16]. In contrast to the use of ordinary linear regression or GLMs, GAMs provide more 
accurate results if nonlinear relationships exist [15]. In addition, GAMs are easier to interpret in 
comparison to other machine learning methods, such as random forests or neural networks, etc. [17]. 
Additionally, GAMs offer the ability to evaluate the results for each one of the terms of the model, to 
report the approximate significance of smooth terms and to produce confidence intervals of the 
output response [18]. Uses of GAM in hydrology are relatively scarce and can be found in regional 
low-flow frequency analysis [19], modeling extreme droughts [20], and empirical streamflow 
simulation [21]. 

This study aims to introduce and evaluate the use of GAMs for the estimation of erosivity using 
daily rainfall records. As a case study, pluviograph data of twelve stations from the Water District of 
Thrace in Greece were used. Firstly, erosive storms were extracted and their erosivity was calculated 
using the procedure described in RUSLE2. Subsequently, the calculated erosivity values and 
precipitation timeseries were aggregated on a daily basis. Afterward, a GAM model and two 
empirical exponential equations were fitted utilizing the aggregated values. Finally, the performance 
of the fitted models on estimating daily and annual erosivity was validated, in relation to the directly 
calculated values, using an independent test set. This type of analysis is a novel approach and it has 
not been presented, until now, in the international literature. 

2. Materials and Methods 

2.1. Data Acquisition and Processing 

The study region, located to the north-east of Greece (Figure 1), extends to an area of 11,243 km2 
that covers the Water District of Thrace. It is delimited by the boundaries of Greece with Bulgaria and 
Turkey on the north and east, respectively, by the Thracian Sea on the south, and by the watershed 
of Nestos River on the west. This area was identified: (a) To have common rainfall erosivity 
spatiotemporal patterns [3]; (b) to form a region with a distinct monthly temporal distribution of 
erosivity density [13], a parameter strongly related to seasonal rainfall intensity [10]; and (c) to have 
similar intra-storm temporal distribution intensity patterns of heavy and, consequently, erosive 
precipitation [22]. 

Pluviograph data for 12 meteorological stations were taken from the Greek National Bank of 
Hydrological and Meteorological Information (NBHM) [23]. The time series comprised a total of 372 
years of pluviograph records with a time step of 30 min for the time period from 1965 to 1996 (Table 
1). The time series rainfall records were checked for consistency and cleared from errors. 
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Table 1. Meteorological station locations and record data durations. 

 Name Latitude (°) Longitude (°) Elevation (m) Duration (y) 
1 TOXOTES 41.09 24.79 75 27 
2 M. DEREIO 41.32 26.10 116 22 
3 FERRES 40.90 26.17 43 31 
4 PARANESTI 41.27 24.50 122 34 
5 GRATINI 41.14 25.53 120 27 
6 KECHROS 41.23 25.86 700 24 
7 M. KSIDIA 41.13 25.64 70 27 
8 THERMES 41.35 25.01 440 26 
9 GERAKAS 41.20 24.83 308 24 

10 ORAIO 41.27 24.83 656 26 
11 SEMELH 41.09 24.84 65 23 
12 CHRYSOUPOLI 40.99 24.69 15 14 

 
Figure 1. Station locations used in the analysis in the Greek Water District of Thrace. 

2.2. Rainfall Erosivity Calculations 

The erosivity of a single erosive rainfall event, 𝐸𝐼  (MJ·mm/ha/h), was computed using the 
pluviograph records [1]: 

𝐸𝐼 = 𝑒 ⋅ 𝑣 ⋅ 𝐼30 (1)

where 𝑒  is the kinetic energy per unit of rainfall (MJ/ha/mm), 𝑣  the rainfall depth (mm) for the 
time interval 𝑟 of the hyetograph, which has been divided into 𝑟 = 1,2, … , 𝑚 time sub-intervals, and 𝐼30 is the maximum rainfall intensity for a 30 min duration during that rainfall. 

The quantity 𝑒  was calculated for each time sub-interval, 𝑟 , applying the kinetic energy 
equation used in RUSLE2 [10]: 𝑒 = 0.29(1 − 0.72𝑒 0.82 ) (2)

where 𝑖  is the rainfall intensity (mm/h).  
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An individual rainfall event was extracted from the continuous pluviograph data, if its 
cumulative depth for a duration of 6 h at a certain location was less than 1.27 mm. A rainfall event 
was considered to be erosive if it had a cumulative rainfall depth greater than 12.7 mm. Given that 
the use of coarser fixed time intervals as 30 min to a finer one can lead to an underestimation of the 
value of erosivity, the appropriate monthly conversion factors, previously computed for Greece [3], 
were applied. 

The daily erosivity 𝑅  (MJ·mm/ha/h/d) was either set equal to the sum of all daily events or when 
a storm was crossed temporally by two or more consecutive days; it was assigned to the first calendar 
day: 𝑅 = (𝐸𝐼 )  (3) 

where 𝑖 = 1, . . . , 𝑛 are the erosive events that initiate during calendar day d. 

2.2. Empirical Equations for the Estimation of Erosivity 

The empirical equations utilized were the Richardson et al. [24] and the Yu and Rosewell [25] 
models, which are given in Equations (4) and (5), respectively: 𝑅 , = 𝛼 , ⋅ 𝑃 ,  (4)

where 𝑅 ,  is the daily erosivity, 𝑃  is the daily precipitation, and the parameters 𝛼 ,  and 𝛽 ,  
correspond to station s and month m. 𝑅 , = 𝛼 ⋅ 1 + 𝛽 ⋅ 𝑐𝑜𝑠 𝜋6 𝑚 − 𝜔 𝑃  

(5)

where 𝑅 ,  is the daily erosivity; the parameters 𝛼 , 𝛽 , and 𝛾  are different for every station s; 𝑚 is 
the month; and ω is the month with the highest average daily erosivity values. The parameters in the 
previous equations were determined using nonlinear least squares as implemented in the R language 
package stats [26]. 

2.3. Generalized Aditive Models 

As previously mentioned, GAMs provide a generic framework for the extension of GLM and were 
introduced by Hastie and Tibshirani [16]. Α GLM has the form [27]: 𝑔(𝐸(𝑌|𝑋)  =  𝛽 ∙ 𝑿 (6)

where g(.) is a link function, a priori known, that transforms the output response 𝑌 in order to make 
the model linear; 𝑌 is expected to follow a distribution from the exponential family; 𝛽 is a vector of 
unknown parameters; and X is the matrix of input variables. 

A GAM usually has the form [16]: 𝑔(𝐸(𝑌|𝑋)  =  𝛼 + 𝑓 (𝑥 ) (7)

where 𝛼 is the intercept and 𝑓  is the smooth function, called the “smooth,” of the j-th input variable 𝑥 . Smooths consist of a set of basis functions [28]: 𝑓(𝑥)  =  𝑏 (𝑥) ∙ 𝛽  (8)

where 𝑏  is the basis function and 𝛽  are unknown parameters. Some indicative basis functions that 
are used are polynomial, cubic, or penalized regression splines, or thin-plate regression splines. 
Computationally efficient fitting procedures have been developed and implemented in the open source 
R language packages gam [29] and mcgv [28], which automatically select the smoothing parameters. 
The reader can find more details about alternative fitting algorithms in [15,18,30–32]. 
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In this paper, a GAM model was fitted using the daily erosivity as an output response, and the 
smooths of the logarithm of daily precipitation and the smooth of the month as numerical values 
(1,2..,12) as input variables. The basis function was penalized thin-plate regression splines. A log link 
function was used and daily erosivity was assumed to be distributed according to the Gamma 
distribution as positive and highly skewed [12,33,34]. 

2.4. Validation and Model Performance Criteria 

The daily aggregated data were divided using 70% of them as a training set and 30% as testing. 
The split was based on the years that constitute the dataset. In this way, it was made possible to estimate 
the out-of-sample error of the models on new data using both the initial daily step of the dataset and a 
further aggregated annual, based on daily estimates, in order to examine the presence of systematic 
errors, as previous studies reported systematic underestimation [12,34]. As measures of the out-of-
sample error on the test set, the coefficient of determination 𝑅 , the root-mean-squared error (RMSE), 
and the mean absolute error (MAE) were used: 𝑅 = 1 − ∑ (𝑦 − 𝑦 )∑ 𝑦 − 𝜇  (9)

𝑅𝑀𝑆𝐸 =  1𝑚 (𝑦 − 𝑦 )  (10)

𝑀𝐴𝐸 =  1𝑚 |𝑦 − 𝑦 | (11)

where 𝑚 is the number of the samples in the test set (daily or annual), 𝑦  is the predicted value of 𝑦  
that belongs in the test set, and 𝜇  is the mean of 𝑦 . 𝑅  describes the ratio of variance that is 
explained by a model and may be negative, among other reasons, if an inappropriate model is used 
[35]. 

3. Results and Discussion 

The daily dataset consisted of 10,424 records for all the stations. Using the training set: (a) the 
empirical equations, Equations (4) and (5), were fitted for each station; (b) a single GAM was fitted using 
all stations’ data, representative of the area. Figure 2 illustrates the partial effect plots of the smoothing 
functions used in the GAM model. Precipitation had a monotonic nonlinear effect and the month a 
smooth seasonal pattern, with its maximum during summer. Both smoothing functions add to the 
overall prediction of erosivity. 

The reported estimated degrees of freedom (>>1) indicated nonlinear smoothing functions. The 
computed approximate significance p-values of both smooth terms was less than 10−16 and the 
deviance explained by the model was 86.5% (in the training set). Given the above values, there was 
strong evidence that both terms explained erosivity adequately. 

The comparison of the models was based on their error metrics on the test set using daily and 
annual time steps. These results are given in Tables 2 and 3, where the single GAM performed better 
than those of the fitted parametric equations (R2 was closer to one, and RMSE and MAE had lower 
values).  

Figure 3 depicts the annual erosivity values as calculated in the test set versus the values 
estimated from the three models. In these two diagrams, the GAM’s estimations present less scatter 
than those coming from the empirical equations. In addition, all methods did not systematically 
underestimate R values. 
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Figure 2. Plots of the smoothing functions of each variable used in generalized additive models 
(GAMs). Dashed lines give the confidence intervals of the predictions of the fitted smooth curves 
(solid lines). The number in the parenthesis (Y-axis) gives the estimated degrees of freedom for the 
model terms. 

Table 2. Annual time step estimation of the out-of-sample error metrics for the two empirical 
equations and GAM. R2 values are unitless. Root-mean-squared error (RMSE) and mean absolute error 
(MAE) values are in MJ·mm·ha−1h−1y−1. 

Model R2 RMSE MAE 
GAM 0.88 306.43 231.20 

Richardson et al. 0.77 419.64 308.50 
Yu and Rosewell 0.76 431.19 309.24 

Table 3. Daily time step estimation of the out-of-sample error metrics for the two empirical equations 
and GAM. R2 values are unitless. RMSE and MAE values are in MJ·mm·ha−1h−1. 

Model R2 RMSE MAE 
GAM 0.73 89.19 53.00 

Richardson et al. 0.63 104.83 61.28 
Yu and Rosewell 0.61 107.58 59.82 

 
Figure 3. Calculated annual erosivity values coming from pluviograph data, versus predicted values 
using the three models on the testing set. The black line symbolizes the identity function f(x) = x. 
Values are in MJ·mm·ha−1h−1. 
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4. Conclusions 

In summary, this paper presented an indicative sample of the use of the GAM in the problems 
associated with the estimation of erosivity using daily precipitation values. These coarser 
precipitation data are in abundance worldwide, in contrast to pluviograph values that are required 
for the calculation of erosivity. Through the use of GAM, it became possible to model the nonlinear 
relationships in an additive way between rainfall erosivity, the daily rainfall, and seasonal 
periodicity. Using 30% of the data as an independent test set, just one model gave erosivity estimates 
with a significantly smaller error on a daily and on a yearly basis, utilizing the sums of the daily 
values, in comparison to the estimates from the application of two well-known nonlinear empirical 
equations, which were applied for every station, using data from the Greek Water District of Thrace. 
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