

Proceedings Hexavalent Chromium Removal from Groundwater—A Low-Tech Approach *

Samiotis Georgios, Lefteri Lefteris, Mavromatidou Charoula, Tsioptsias Costas, Trikilidou Eleni, Batsi Anna and Amanatidou Elisavet *

Environmental Chemistry and Water & Wastewater Treatment Research Laboratory, University of Western Macedonia, Koila University Campus, 50100 Kozani, Greece; samiotis1982@hotmail.com (S.G.); lefteris1194@gmail.com (L.L.); xaroulam73@gmail.com (M.C.); ktsiopts@gmail.com (T.C.); etrikilido@yahoo.com (T.E.); annampatsi@gmail.com (B.A.)

- * Correspondence: eamanatidou@uowm.gr; Tel.: +30-24610-68015
- + Presented at the 4th EWaS International Conference: Valuing the Water, Carbon, Ecological Footprints of Human Activities, Online, 24–27 June 2020.

Published: 14 August 2020

Iron wool	Iron wire	Iron screen
Specifications:	Specifications:	Specifications:
Wire diameter $(mm) = 0,06$	Wire diameter $(mm) = 1$	Wire diameter $(mm) = 0,1$
Specific weight $(g/m) = 0,0076$	Specific weight (g/m) = 0,0076	Specific weight $(kg/m^2) = 0,255488$
Specific surface area $(m^2/m) =$	Specific surface area $(m^2/m) =$	Specific surface area $(m^2/m^2) =$
0,00038	0,00314	0,00041867
Scrap Iron chips	Scrap Iron fillings	Activated carbon
Specifications:	Specifications:	Specifications:
Wire diameter $(mm) = 1$	Mesh (mm) = 0,6 - 1,6 & < 0,6	Mesh (mm) = 1,6-3,15 & <0,6
Specific weight (g/m) = 0,0076	Specific weight (kg/L) =	Specific weight (kg/L) =
Specific surface area $(m^2/m) =$	1884 & 1271,25	1875 respectively
0,031557	respectively	Specific surface area $(m^2/kg) =$
	Specific surface area (m²/kg) =	235,5 & 84,78 respectively
	80,7 & 111,2 respectively	

Table 1. Materials used for experimental setups.

Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
	1-1	1,5 L vessel with 1m of folded non-galvanized iron wire of 1mm diameter	10 seconds to 1,5 hours	Slow, continuous manual agitation (inversion of vessel every 3 seconds approximately)	Min – Max: 1,5 – 42,0	-
1 st series (vessel vs wire)	1-2	1,5 L vessel with 100 pieces of non-galvanized iron wire (approximately 1 cm each, to a total length of 1 m) of 1mm diameter	10 seconds to 20 hours	Slow, continuous manual agitation (inversion of vessel every 3 seconds approximately) for the first 10 minutes	Min – Max: 1,7 - 100,0	-
	1-3	1,5 L vessel with 4m of folded non-galvanized iron wire of 1mm diameter	10 seconds to 20 hours	Slow, continuous manual agitation (inversion of vessel every 3 seconds approximately) for the first 10 minutes	Min – Max: 6,4 - 100,0	-
2 nd series (first column experiments)	2-1	47,1 g / 25 ml scrap iron fillings (mixed galvanized, oxidized and non- galvanized grains of 0,6 mm to 1,6 mm diameter) mixed with 25ml fine limestone sand in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	1,2 seconds*	No agitation	44,0	First use (day 1) Flow = 100ml/30 seconds

Table 2. Short description of the experimental setups and their results regarding Cr(VI) removal & important data for the evaluation of each experiment.

			1		1	~
Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
	2-2	30,0 g / 16 ml scrap iron fillings (mixed galvanized, oxidized and non- galvanized grains of 0,6 mm to 1,6 mm diameter) in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	0,80 seconds*	No agitation	3,4	Second use 1 day later (day 2) Flow = 100ml/20 seconds
	2-3	30,0 g / 16 ml scrap iron fillings (mixed galvanized, oxidized and non- galvanized grains of 0,6 mm to 1,6 mm diameter) mixed with 16 ml fine limestone sand in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	0,92 seconds*	No agitation	0,0	Third use 1 day later (day 2) Flow = 100ml/23 seconds
	2-4	30,0 g / 16 ml scrap iron fillings (mixed galvanized, oxidized and non- galvanized grains of 0,6 mm to 1,6 mm diameter) mixed with 16 ml fine limestone sand and 16 ml (30g) of activated carbon (grains of 1,6 mm to 1,5 mm diameter) in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	2,31 seconds* (1,32 with iron fillings & 0,99 with Act. Carbon)	No agitation	27,1	Fourth use 1 day later (day 2) Flow = 100ml/33 seconds
	2-5	30,0 g / 16 ml of activated carbon (grains of 1,6 mm to 1,5 mm diameter) in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	2,10 seconds*	No agitation	13,5	First use Flow = 100ml/42 seconds
	2-6	30,0 g / 16 ml of activated carbon (grains of 0,6 mm to 1,5 mm diameter) in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	7,30 seconds*	No agitation	18,7	First use Flow = 100ml/146 seconds
	2-7	30,0 g / 16 ml of activated carbon (grains of 0,6 mm to 1,5 mm diameter) in 100 ml cylinder (Hight = 25 cm, Diameter – 2,75 cm)	15,00 seconds*	No agitation	23,7	First use Flow = 100ml/300 seconds
3 rd series (vessel vs scrap iron fillings)	3-1	250 ml vessel (100 ml standard solution) with 1g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	2,1	First use
	3-2	250 ml vessel (100 ml standard solution) with 2g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	3,2	Addition of 1 g scrap iron fillings (first use)

						~
Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
	3-3	250 ml vessel (100 ml standard solution) with 3g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	5,4	Addition of 1 g scrap iron fillings (first use)
	3-4	250 ml vessel (100 ml standard solution) with 4g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	3,9	Addition of 1 g scrap iron fillings (first use)
	3-5	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	5,2	Addition of 1 g scrap iron fillings (first use)
	3-6	250 ml vessel (100 ml standard solution) with 1g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	97,3	First use
	3-7	250 ml vessel (100 ml standard solution) with 2g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	98,6	Addition of 1 g scrap iron fillings (first use)
	3-8	250 ml vessel (100 ml standard solution) with 3g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	96,1	Addition of 1 g scrap iron fillings (first use)
	3-9	250 ml vessel (100 ml standard solution) with 4g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	96,7	Addition of 1 g scrap iron fillings (first use)
	3-10	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	89,0	Addition of 1 g scrap iron fillings (first use)
	3-11	250 ml vessel (100 ml standard solution) with 1g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	2,2	First use

		-				
Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
	3-12	250 ml vessel (100 ml standard solution) with 2g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	3,1	Addition of 1 g scrap iron fillings (first use)
	3-13	250 ml vessel (100 ml standard solution) with 3g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	5,3	Addition of 1 g scrap iron fillings (first use)
	3-14	250 ml vessel (100 ml standard solution) with 4g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	3,8	Addition of 1 g scrap iron fillings (first use)
	3-15	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	5,1	Addition of 1 g scrap iron fillings (first use)
	3-16	250 ml vessel (100 ml standard solution) with 1g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds	Continuous manual orbital stirring	97,1	First use
	3-17	250 ml vessel (100 ml standard solution) with 2g of scrap iron fillings (non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	98,7	Addition of 1 g scrap iron fillings (first use)
	3-18	250 ml vessel (100 ml standard solution) with 3g of scrap iron fillings (non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	98,0	Addition of 1 g scrap iron fillings (first use)
	3-19	250 ml vessel (100 ml standard solution) with 4g of scrap iron fillings (non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	96,9	Addition of 1 g scrap iron fillings (first use)
	3-20	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds	Continuous manual orbital stirring	92,5	Addition of 1 g scrap iron fillings (first use)

						\sim
Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
	3-21	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of < 0,6 mm diameter)	10 seconds each batch	Continuous manual orbital stirring	1 st pass = 81,4% 2 nd pass = 63,9% 3 rd pass = 71,2% 4 th pass = 70,7% 5 th pass = 64,7%	Five additions of standard solution, each followed by rinsing with ultrapure water
	3-22	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (non-galvanized grains of < 0,6 mm diameter)	10 seconds each batch	Continuous manual orbital stirring	1 st pass = 86,1 % 2 nd pass = 38,9 % 3 rd pass = 36,8 % 4 th pass = 24,7 % 5 th pass = 26,4 %	Five additions of standard solution, each followed by rinsing with ultrapure water
	3-23	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (mixed galvanized, oxidized and non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds each batch	Continuous manual orbital stirring	1 st pass = 81,3% 2 nd pass = 30,5% 3 rd pass = 30,6 % 4 th pass = 22,5% 5 th pass = 27,6%	Five additions of standard solution, each followed by rinsing with ultrapure water
	3-24	250 ml vessel (100 ml standard solution) with 5g of scrap iron fillings (non-galvanized grains of 0,6 mm to 1,6 mm diameter)	10 seconds each batch	Continuous manual orbital stirring	1 st pass = 93,2% 2 nd pass = 24,9% 3 rd pass = 20,9% 4 th pass = 19,1% 5 th pass = 16,4%	Five additions of standard solution, each followed by rinsing with ultrapure water
4 th series (second	4-1	2 iron screen sheets (9cm X 83cm each), with wire diameter of 100 μ m, square pore side's size of 750 μ m non galvanized (500 ml standard solution) in 750 ml cylinder (Hight = 22 cm, Diameter –7 cm)	5 seconds	No agitation	94,0	One passing

	1		1			
Experiment series	Experiment code	Short description	Contact time	Agitation	Cr(VI) removal efficiency (%)	Comments
column experiments)	4-2	2 iron screen sheets (9cm X 83cm each), with wire diameter of 100 μ m, square pore side's size of 750 μ m non-galvanized and oxidized (500 ml standard solution) in 750 ml cylinder (Hight = 22 cm, Diameter –7 cm)	5 seconds	No agitation	1 st pass = 43,0% 2 nd pass = 39,1% 3 rd pass = 91,4 %	Three passings of standard solution (before the third passing, a mild mechanical removal of oxides from iron screens was performed)
	4-3	Iron wool with fiber diameter of 60 μ m, specific density of 0,0076 g/m or 131,154 m/g non-galvanized (100 ml standard solution)	5 seconds	No agitation	89,6	One passing
	4-4	Iron wool with fiber diameter of 60 μ m, specific density of 0,0076 g/m or 131,154 m/g non-galvanized and partially oxidized (100 ml standard solution, prepared with mineral water)	5 seconds	No agitation	100,0	One passing
	4-5	Iron wool with fiber diameter of 60 μ m, specific density of 0,0076 g/m or 131,154 m/g non-galvanized (100 ml standard solution, prepared with mineral water))	5 seconds	No agitation	98,9	One passing
	5-1	Polypropylene tube, length of 1m, diameter of 0,35 cm and volume of 9,61 ml, with 1m non galvanized iron wire of 1mm diameter	2,91 seconds**	No agitation	35,7	Average flow of 3495 ml/h
5 th series (tube experiments)	5-2	Polypropylene tube, length of 1m, diameter of 0,75 cm and volume of 44,15 ml, with 1m non galvanized iron wire of 1mm diameter	19,95 seconds**	No agitation	26,5	Average flow of 3495 ml/h
	5-3	Polypropylene tube, length of 1m, diameter of 1,00 cm and volume of 84,91 ml, with 1m non galvanized iron wire of 1mm diameter	66,46 seconds**	No agitation	18,6	Average flow of 3495 ml/h
	5-4	Polypropylene tube, length of 1m, diameter of 1,00 cm and volume of 84,91 ml, with 3 non galvanized iron wires of 1m each 1mm diameter)	66,46 seconds**	No agitation	43,7	Average flow of 3495 ml/h

* Contact time calculated from: $C_t = \frac{V_{pore}}{Q_F}$

Where: C_t is the contact time; V_{pore} is the pore volume of the media that can be occupied by water solution; Q_F is the volumetric feed. ** Contact time = Retention time (hydraulic) calculated from: $HRT = \frac{V_{vessel,active}}{Q_F}$

Where: *HRT* is the hydraulic retention time in the vessel (tube); *V*_{vessel, active} is the active volume of the vessel; *Q*_F is the volumetric feed.

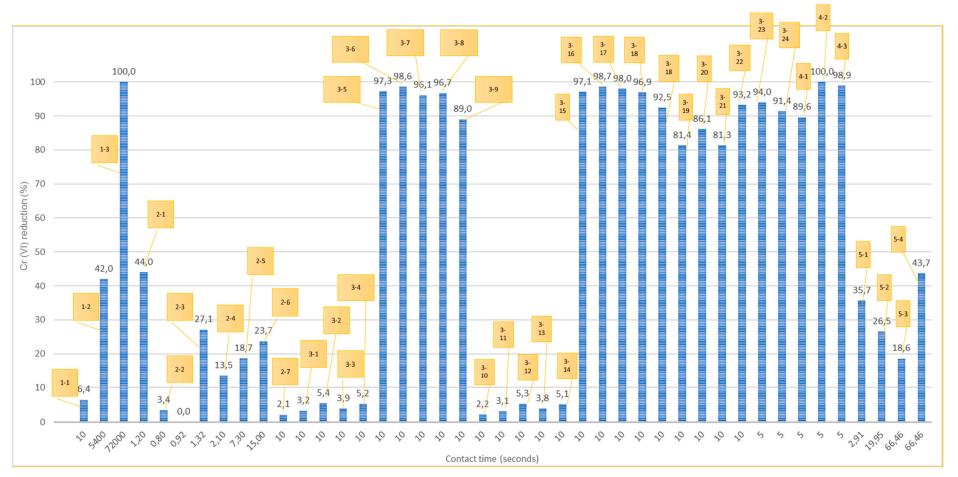


Figure 1. Maximum Cr(VI) reduction/removal efficiency (%) in relation to contact time and experimental setups of Table S2.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).