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Abstract: The operational management of tanks for urban water distribution networks is usually a 
critical element due to the dynamic nature of the water demand and the age of the distribution 
networks themselves. Today, in a context of water resource scarcity, optimal management is a key 
point for the sustainable management of urban systems. For this purpose, it is useful to implement 
predictive tools, able to provide short-term forecasts to inform urban water managers on the most 
suitable procedure to be applied in the case of routine or critical events. A possible approach is to 
use autoregressive integrated moving average (ARIMA) models, which combine the autoregression 
and the moving average approaches, with the possibility to work on a differenced series of the data. 
They can further embed a seasonal- component (Seasonal ARIMA models), to account for possible 
periodic patterns in the observed data. In this study, the data of water levels measured from May 
2018 to 10 January 2019 in a water storage tank in the area of Benevento, Campania region (Italy), 
were considered as a case study. The standard ARIMA techniques were applied to find the best 
model for this dataset, according to “Deviance Information Criterion” (DIC) and “Bayesian 
Information Criterion” (BIC) optimization. The results are discussed, shedding light on the 
behaviour of the time series with reference to the management of the infrastructure and the dataset. 
The residual analysis, carried out to check if the autocorrelation was still present and if the residuals 
were normally distributed, revealed a narrow distribution. Small values were found throughout the 
dataset, except for a few periods, corresponding to the imputed data. This application represents a 
preliminary step of more detailed research that will be carried out to detect the best model for 
forecasting tank levels for the case study to help to manage the urban water supply. 
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1. Introduction 

The management of water distribution networks (WDNs) relies on water utility operations 
consisting of usually quick responses to either water demand or source variations as well as the 
effects of network aging [1,2]. Recently, the development of real-time control (RTC) strategies based 
on the use of measurement devices, with compact technology at affordable prices, has been facilitated 
by their straightforward implementation in Internet of Things (IoT) technologies as well as in 
Supervisory Control and Data Acquisition (SCADA) systems [3]. IoT allows automatic WDN 
monitoring and control as well as SMS alerting by operating on object components, interconnected 
through low-cost wired and wireless network sensors [4,5]. SCADA systems consist of distributed 
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control systems that allow devices to be turned on or off remotely while displaying real-time 
operations in a graphical user interface (GUI) for high-level process supervisory management [6,7]. 

In this evolving context, storage tanks play a key role, actually acting as lungs [8]—that is, by 
balancing instantaneous flow variations in the water demand pattern as well as compensating abrupt 
interruptions of the water feed to the storage tank, as in cases of drought periods or electricity 
shortages in pumping stations delivering water, when the tank level fluctuates within a fixed range 
of levels. Water tank levels can be modelled through hydraulic models when the water demand and 
the management rules and operations are known, but in practical applications, the latter facts are not 
always fully known. Water demand/tank level prediction and forecasting are therefore a crucial step 
for supporting decision making regarding operating actions. 

From a “modellistic” point of view, the AutoRegressive Integrated Moving Average (ARIMA) 
typology of models is well established, having been applied in the field of water demand forecasting 
for a long time [8–11]. This is justified by the fact that the model follows the trend at different time 
scales. Despite the applications in urban water demand, there is a gap in the literature concerning the 
use of ARIMA models for tank water levels [12]. In [13], the link between the water supply, consumer 
demand and water level at the tank is, however, discussed, with the aim of providing a practical tool 
for water utilities to take prompt action based on water level variations [14]. The definition of ARIMA 
models or, more generally, time-series analysis techniques applied to water levels would allow the 
definition of water leakages at the tank as well, helping to save water, on one hand, and treatment 
costs related to chlorination or purifying techniques. This is an aspect of paramount importance as 
the circumstance in which the tank is not able to serve due to water scarcity is not rare, whereas there 
is a waste of the resource when the water inflow is not controlled [14]. 

2. Methodology 

In this paper, we assess the performance of one of the most conventional linear models, widely 
used in the literature for the forecasting and management of several datasets: the Box–
Jenkins/ARIMA model (see, for instance, [13,15–18]). 

The order of an ARIMA model is represented by the notation ARIMA (p, d, q), where p, d and 
q are, respectively, the order of the autoregressive part, the order of the differencing and the order of 
the moving-average process. The general source formula is: φp B (1 − B)d Yt = ϑq(B) et, (1)

in which Yt is the value of the series observed at the time t, B is the delay operator, φ and ϑ are the 
autoregressive and the moving average polynomials and et is the difference between the observed 
value Yt and the forecast Yt at the time t. In the case study presented in this paper, the chosen model 
is ARIMA (2, 1, 2), according to “Deviance Information Criterion” (DIC) and “Bayesian Information 
Criterion” (BIC) optimization. The choice was performed with the aid of the statistical program “R”. 

3. Dataset Analysis 

This statistical study was performed on the time series of the levels observed at the Gesuiti water 
tank, located in the neighbourhood of Pezzapiana, of the water supply system of the town of 
Benevento, Italy. The data were measured almost continuously and with a time interval never smaller 
than 5 min (minimum of 12 samples per hour), from 10:00 of 5 May 2018 to 9:00 of 10 January 2019. 
Hourly averages were calculated with the available data, resulting in a number of 6000 periods in 
total. A plot of the input dataset is shown in Figure 1. It can be noticed that the maximum levels 
observed are never larger than zmax = 5.72 m. This is basically due to the presence of an automatic 
system of water outlet—that is, a tank spillway—which is allocated at an elevation of 5.80 m, 
consistent with the observed value of zmax. 

Two large intervals of data were missing, from 19:00 of 4 August 2018 to 9:00 of 14 August 2018, 
and from 16:00 of 18 August 2018 to 13:00 of 6 September 2018. Since the dataset needs to be continuous 
for the Time Series Analysis (TSA) techniques, a preliminary Deterministic Decomposition model (DD-
TSA) [15] was calibrated on the first 2193 data, in order to impute the missing data. 
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Figure 1. 1-h averaged water tank levels, with evidence of missing data. 

When the number of missing measurements was smaller than 10, the missing data were imputed 
simply with the last available data. On the contrary, for the two large intervals described above, the 
results of the DD-TSA were used. 

The summary statistics of the reconstructed calibration dataset are reported in Table 1. Figure 2 
and Figure 3 report, respectively, the autocorrelation function and the histogram of the data. The 
correlogram reported in Figure 2 shows that there is a daily seasonality (lag = 24). In addition, a 
relative maximum is observed for lag = 168, meaning that a weekly seasonality could be explored as 
well. 

The distribution of the data reported in Figure 3 is skewed, due to the typical daily pattern of a 
water tank. The left tail has a low frequency occurrence because the situation of low storage in the 
tank is uncommon. A marked drop in frequency can be observed on the right side of the distribution, 
the range of water levels between 5 m and 6 m, because of the presence of the spillway, previously 
mentioned. The mode of the distribution is not centred but skewed to the right as the range 4–4.50 
likely represents the optimal storage level at which the tank operates for water distribution. 

Table 1. Descriptive statistics for the calibration dataset of water levels observed at the tank of Gesuiti. 

Sample Size Mean 
(m) 

Std. Dev. 
(m) 

Median 
(m) 

Min 
(m) 

Max 
(m) Skewness Kurtosis 

5986 4.00 0.85 4.12 0.87 5.72 −0.63 0.28 

 
Figure 2. Autocorrelation of the data as a function of the lag. 
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Figure 3. Histogram of the data. 

4. ARIMA Model Calibration 

As mentioned above, the adopted model is ARIMA (2, 1, 2). This model embeds a differentiation 
in the data of order 1. Autoregressive and moving average terms are included, both of them of order 
2. The prediction provided by the model for a generic period t is described by the following equation: Y =  Y + φ Y − Y + φ Y − Y + ϑ e + ϑ e + ϑ e   (2)

This model provides one-step-ahead simulation. 
Coefficients were estimated using the likelihood maximization as technique for parameter 

estimation, in the calibration dataset. Calculations have been performed by means of the statistical 
program “R”. Table 2 shows the estimated values of the coefficients of the model. 

Table 2. Estimated coefficients of the ARIMA (2, 1, 2) model. 

 AR1, 𝛗𝟏 AR2, 𝛗𝟐 MA1, 𝛝𝟏 MA2, 𝛝𝟐 
Estimated Value 1.7362 −0.8146 −1.1330 0.2334 

The plot of the estimated hourly water tank levels is reported in Figure 4. It can be noticed that 
the slope of the data is very similar to the one shown in Figure 1. The simulated data present a 
stationary behaviour in two time ranges, in the period 2194 to 2424 and the period 2527 to 2980. This 
is due to the fact that these ranges are the ones in which the dataset was reconstructed, imputing 
missing data with the DD-TSA model. 
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Figure 4. Simulated hourly water tank levels, with ARIMA (2, 1, 2) model. 

5. Results and Discussion 

The ARIMA (2, 1, 2) model exhibits excellent performance when comparing the estimations with 
the measurements in the calibration dataset. Despite a few outliers, probably related to sudden spikes 
in the calibration dataset, the simulations are always very close to the measurements. This result can 
be quantitatively summarized in the residual analysis. 

In Figure 5, the residuals of the model—the differences between the observed and simulated 
data—are plotted. Residuals larger than 0.5 m in absolute value are always related to periods in which 
the measurements were missing, and the estimated levels are compared with the imputations. 

 
Figure 5. Difference between observed and simulated hourly water tank levels. 

In Figure 6, a histogram of the residuals of the model is presented. A very narrow distribution 
of the residuals is obtained, as can be expected when looking at the plot in Figure 5, since the largest 
part of the data is gathered in a ±0.5 m interval with respect to zero. Basically, the model has very 
small residuals throughout the dataset, except for a few periods, corresponding to the imputed data. 
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Figure 6. Histogram of the residuals of the ARIMA (2, 1, 2) model. 

The autocorrelation of the residuals is shown in Figure 7. The values are very low, except for 
two relative maxima for lag = 12 and lag = 24. This result confirms the good performance of the 
ARIMA model and suggests further applications for which a seasonal model could be tested. 

 
Figure 7. Autocorrelation function (ACF) of the residuals of the ARIMA (2, 1, 2) model. 

The statistics of the residuals are reported in Table 3. Besides the interesting result of very small 
mean and median values, it is valuable to confirm the presence of outliers by looking at the minimum 
and maximum values. 
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Table 3. Summary statistics of the residuals of ARIMA (2, 1, 2) model. 

Mean 
(m) 

Std. Dev. 
(m) 

Median 
(m) 

Min 
(m) 

Max 
(m) Skewness Kurtosis 

0.00 0.08 0.00 −3.10 1.87 −9.16 434.27 

6. Conclusions 

Today, in a context of water resource scarcity, optimal management is of paramount importance 
for the sustainable management of urban water networks. The management relies on water utility 
operations consisting of usually quick responses to either water demand or source variations as well 
as the effects of network aging. 

In this framework, the present work aimed at the simulation of drinking water tank levels by 
time series analysis to support water distribution managers. The case study referred to the time series 
of the levels observed at the Gesuiti water tank, belonging to the water supply system of the town of 
Benevento, Italy. Since two large intervals of data were missing, data imputation was necessary to 
obtain a continuous series. This was achieved by the use of a preliminary DD-TSA model. ARIMA (2, 
1, 2) was chosen as the optimal statistical model for the purpose, according to the BIC and DIC criteria. 

The analysis of the model residuals showed a good agreement between the observed and 
simulated data. The residuals appeared with a zero mean value and a very moderate correlation at 
lag 12 and 24, which would suggest a seasonal component to be accounted for in the model 
description, which is foreseen in order to improve the data simulation for future applications. 
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