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Abstract: The solution to the second-order fuzzy unsteady nonlinear partial differential one-dimensional
Boussinesq equation is examined. The physical problem concerns unsteady flow in a semi-infinite,
unconfined aquifer bordering a lake. There is a sudden rise and subsequent stabilization in the
water level of the lake; thus, the aquifer is recharging from the lake. The fuzzy solution is presented
by a simple algebraic equation transformed in a fourth-degree polynomial approximation for the
head profiles. In order to solve this equation, the initial and boundary conditions, as well as the
numerous soil properties, must be known. A fuzzy approach is used to solve the problem since the
aforementioned auxiliary conditions are vulnerable to various types of uncertainty resulting from
human and machine errors. The physical problem described by a partial differential equation and
the generalized Hukuhara derivative and the application of this theory for the partial derivatives
were chosen as solving methods. In order to evaluate the accuracy and effectiveness of the suggested
fuzzy analytical method, this study compares the findings of fuzzy analysis to those obtained using
the Runge–Kutta method. This comparison attests to the accuracy of the former. Additionally, this
results in a fuzzy number for water level profiles as well as for the water volume variation, whose
α-cuts, provide according to Possibility Theory, the water levels and the water volume confidence
intervals with probability p = 1 − α.

Keywords: unsteady flow; fuzzy partial derivatives; numerical methods

1. Introduction

The horizontal water flow concerning unconfined aquifers without precipitation is
described by the one-dimensional second-order unsteady nonlinear partial differential
equation, called the Boussinesq equation:

∂h
∂t

=
K
S

∂

∂x

(
h

∂h
∂x

)
, (1)

where K = hydraulic conductivity (LT−1), S = effective porosity(L0T0), h = piezometric head
(L), x = horizontal coordinate (L), t = time (T).

Boussinesq (1904) [1] first proposed the above equation according to the assumption
that the horizontal component of velocity ux does not change with depth and is a function of
x and t, while the inertial forces are negligible. A unique solution to this nonlinear equation
was published by Boussinesq in the “Journal de Mathématiques Pures et Appliquées” in 1904.
With boundary conditions such as those of soil drained by drains placed in the impermeable
substratum, Boussinesq solution dealt with the case of an aquifer atop an impermeable layer.
Using the small disturbance method, Polubarinova-Kochina (952, 1962) [2,3] published a
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solution to Boussinesq’s equation. By utilizing polynomial approximation and similarity
transformation, Tolikas et al. (1984) [4] found an approximate solution. A weighted
residual approach was used by Lockington (1997) [5] to provide an easily applicable
analytical solution. Due to an abrupt change in the head at the origin, this approach
was used for both the recharging and discharging of an unconfined aquifer. By using
Adomian’s decomposition method, Moutsopoulos (2010) [6] arrived at a simple series
solution with a limited number of terms while he also performed a benchmark test, which
demonstrated the benefits of his solution. The problem of flow in a one-dimensional semi-
infinite horizontal aquifer with an initially dry head and a power-law function of time at
the origin was examined by Lockington et al. in 2000 [7]. In accordance with the numerical
outcomes, an approximative quadratic solution was developed. Using the traveling wave
method, Basha (2013) [8] obtained a nonlinear solution with an easily applicable logarithmic
form. The solution allows for the results to be of practical value in hydrology and is
adaptable to any flow situation, whether it be recharge or discharge condition. There
are also algebraic formulae for the propagation front velocity, the location of the wetting
front, and the linkage between the characteristics of the aquifer. The nonlinear Boussinesq
equation was given by a series solution by Chor et al. (2013) [9] in terms of the Boltzmann
transform in a semi-infinite domain. An approximate solution was recently obtained by
Hayek (2019) [10], who introduced an empirical function with four parameters. Using
Microsoft Excel Solver, a numerical fitting approach was used to acquire the parameters.
An approximate analytical solution for the recharge and discharge of a homogeneous
unconfined aquifer was published by Tzimopoulos et al. in 2022 [11]. Numerous other
studies [12–16] offer helpful clarification on the solution, offering a way for testing and
accuracy of the numerical methods.

The definition of the initial flow condition, the method of linearizing the Boussinesq
equation, the definition of drain spacing and hydraulic conductivity, boundary conditions,
etc., are just a few examples of the ambiguities and uncertainties that the physical problem
described by the Boussinesq equation presents [17,18]. Without taking into account the
ambiguities and uncertainties of the groundwater flow problems, wrong management
decisions could be made, leading to a number of significant negative environmental,
social, and economic effects. Fuzzy algorithms were used to solve this problem for all the
aforementioned reasons.

The fuzzy logic theory is a useful tool for modeling ambiguity, developed by Lofti
Zadeh (1965) [19]. Its development has had a significant impact on both theoretical prob-
lems [20–23] as well as engineering and hydraulic problems [24]. To solve fuzzy differential
equations, some analytical and numerical approaches have recently been put forth. Chang
and Zadeh (1972) [25] first introduced the concept of fuzzy derivative, while Dubois and
Prade (1982) [26] followed by using the extension principle in their approach. Fuzzy differ-
ential functions were studied by Puri and Ralescu (1983) [27], who extended Hukuhara’s
derivative (H-derivative) [28] of a set of values appearing in fuzzy sets. Kaleva (1987,
1990) [29,30] and Seikkala (1987) [31] developed the fuzzy initial value problem, while Ab-
basbandy and Allahviranloo (2002) [32] presented a numerical algorithm for solving fuzzy
ordinary differential equations based on the second Taylor method. However, this method
presented certain drawbacks, and in many cases, this solution was not a good generaliza-
tion of the classic case. The generalized Hukuhara differentiability (gH—differentiability)
was introduced by [33,34], overcoming this drawback. This new derivative is defined
for a larger class of fuzzy functions than the Hukuhara derivative. Allahviranloo et al.
(2015) [35] introduced the (gH-p) differentiability for partial derivatives as an extension
of the above theory. The gH-p differentiability was used by Tzimopoulos et al. (2018,
2020) [17,36], providing a fuzzy linear analytical solution to a parabolic partial differential
equation, and also Tzimopoulos et al. (2018) [18] obtained a fuzzy linear analytical solution
to the Boussinesq equation in the case of an unconfined aquifer problem.

In this paper, a comparison between the fuzzy analytical nonlinear Boussinesq equa-
tion and the Runge–Kutta numerical method is presented for the proposed fuzzy analytical
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solution accuracy evaluation and effectiveness check. This comparison attests to the ac-
curacy of the former. Additionally, an application of the Possibility Theory [37,38] to the
α-cuts of the water level profiles, as well as of the water volume variation, provides the
water levels and the water volume confidence intervals with probability p = 1 − α. Thus, a
combination of fuzzy theory with the Possibility Theory allows managers and engineers to
solve practical hydraulic problems, making the right decision.

2. Constructing the Fuzzy Model and Solution
2.1. Crisp Model

As mentioned in the introduction to the case of one-dimensional horizontal flow, the
Equation (1) corresponds to Boussinesq equation

The initial and boundaries conditions are as follows:

t = 0, h(x, 0) = h0,
t > 0, h(0, t) = h1, h

x→∞
(x, t) = h0

The solution [11] of the above Equation (1) is as follows:

h = h0 + (h0 − h1)Ω(µ, ξ)

where

Ω(µ, ξ) = `F(ξ)−Φ(ξ), Φ(ξ) = er f c(ξ),
ξ = x

2
√

Kh1t
S

, ` = (h0 − h1)/h1, µ = h1/h0,

F(ξ) = − 1
π +

(
1
2 + 1

π

)
Φ− 1√

π
(1−Φ)ξe−ξ2

+ 1
π (1− e−2ξ2

)− 1
2 Φ2.

2.2. Fuzzy Model

We write Equation (1), in its fuzzy form as follows:

∂h̃
∂t

=
K
S

∂

∂x
(h̃

∂ ˜̃H
∂x

) =
K
S
{( ∂h̃

∂x
)

2

+ h̃
∂2h̃
∂x2 }, (2)

with the new boundary and initial conditions:

Initial conditions Boundary conditions
t = 0, h̃(x, 0) = h̃0, t > 0, h̃(0, t) = h̃1, h̃

x→∞
(x, t) = h̃0

(3)

By converting the aforementioned fuzzy problem into a system of second order crisp
boundary value problems—(referred as the corresponding system for the fuzzy problem)—
and applying the theory of [18,35,39,40], we are able to solve the fuzzy problem (2), subject
to the boundary and initial conditions (3). As a result, for the fuzzy problem, eight crisp
BVPs systems are feasible under identical initial and boundary conditions.

Note: We shall now turn our attention to the first system’s solution as it offers a
practical solution to the case of the lake refilling the aquifer.

2.3. Solution of the First System

The nonlinear one-dimensional horizontal flow equations related to the first case
(left boundary) and to the second case (right boundary) are provided with the following
expressions:

First case Second case
∂h−
∂t = K

S

{
h− ∂2h−

∂x2 + ( ∂h−
∂x )

2
}

∂h+
∂t = K

S

{
h+ ∂2h+

∂x2 + ( ∂h+
∂x )

2
}

(4)
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3. Results and Discussion

We have used the data of Lockington (1997) [5], which means K = hydraulic conductiv-
ity = 20 m/d, S = effective porosity = 0.27, h1 = 3m, h0 = 2m. For the first case, the solution
is as follows [11]:

h−(µ, ξ) = h−0 +
(
h−0 − h−1

)
Ω(µ, ξ)

Figure 1 illustrates the water level profiles for t = 5d of the new analytical method
vs Runge–Kutta method (reference solution) and for α = 0, 1 value. The two methods
approach each other closely. In addition, the water table in a period of 5 days approaches
125 m in length. If we consider also the hydraulic conductivity value (K = 20 m/d), the
results are absolutely reasonable regarding the physical problem. Figure 2 illustrates the
stored volume variation vs. time, and Figure 3 illustrates the membership function of
Ṽ(x, t) for t = 5d. According to possibility theory [37,38], every function [Ṽ] estimates the
crisp function V, and the α-cut {Ṽ}a = [V−a , V+

a ] should be interpreted as the confidence
intervals of V with a probability p ≥ 1− a. In this regard, in Figure 3, it is seen that for
α = 0.05, the value of water volume lies in the interval [5.226, 14.310] with a probability
higher than 95%, according to the possibility theory.
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Figure 1. Water level profiles for t = 5d.
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4. Conclusions

Undoubtedly, groundwater flow problems involve a number of ambiguities and
uncertainties, making the use of differential equations even more difficult to solve. However,
nowadays, the opportunity is given through the fuzzy partial differential equations theories
to include these uncertainties in the final calculations and to provide more accurate results
supporting the sustainability of groundwater as well as the researchers and engineers to
make better decisions and plannings.

This work presents an innovative analytical solution in the nonlinear Boussinesq
equation, which describes the groundwater’s unsteady flow. According to the results, the
proposed solution completely coincides with the Runge–Kutta method results used as a
reference solution for comparison reasons in order to prove the accuracy and reliability
of the proposed analytical solution. The volume membership function (Figure 3) could
support decision-makers and planners with a higher degree of confidence than the previous
years, thanks to the possibility theory.
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