
 
 

 

 
Environ. Sci. Proc. 2021, 6, 24. https://doi.org/10.3390/iecms2021-09359 www.mdpi.com/journal/environsciproc 

Proceeding Paper 

Siliceous Fly Ash Utilization Conditions for Zeolite Synthesis † 
Silvana Gjyli 1,*, Arjan Korpa 2, Valdet Teneqja 2, Dritan Siliqi 3 and Claudia Belviso 4,* 

1 Department of Industrial Chemistry, Faculty of Natural Sciences, University of Tirana, 1000 Tirana, Albania 
2 Department of Chemistry, Faculty of Natural Sciences, University of Tirana, 1000 Tirana, Albania;  

arjan.korpa@fshn.edu.al (A.K.); teneqjavaldet@gmail.com (V.T.) 
3 Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; dritan.siliqi@ic.cnr.it 
4 Institute of Methodologies for Environmental Analysis—IMAA-CNR, 85050 Tito Scalo Potenza, Italy 
* Correspondence: vanagjyli@yahoo.com (S.G.); claudia.belviso@imaa.cnr.it (C.B.);  

Tel.: +355-683268520 (S.G.); +39-3474767524 (C.B.) 
† Presented at the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021;  

Available online: https://iecms2021.sciforum.net/. 

Abstract: Fly ash is a coal combustion product partly disposed of in landfills since it finds no other 
application. Recycling this solid is of great benefit in terms of quality, cost effectiveness and the 
environment. The chemical and mineralogical composition of siliceous fly ash makes it an attractive 
and economic raw material for the synthesis of zeolites. Zeolites are microporous, aluminosilicate 
minerals characterized by a three-dimensional network of tetrahedral units produced industrially 
on a large scale. In this work, synthetic X and A-type zeolite with high crystallinity and high value 
of surface area were synthesized by a pre-fusion method followed by a hydrothermal treatment 
under various conditions. The data indicate that zeolitic products were obtained using NaOH while 
no zeolitic material was crystallized using KOH and LiOH. Pre-treatment of fly ash with acid before 
being used in the synthesis of artificial zeolites is considered an important parameter for the purity 
phase of zeolites. Without sodium aluminate additions, synthetic zeolite A was not formed. The 
results confirm that temperature, crystallization time, SiO2/Al2O3 ratio and type of water (distilled 
water and seawater) are also important parameters influencing type of zeolite synthesized. Zeolite 
X was used as a novel catalyst for the alkylation of phenol using diethyl carbonate. 

Keywords: fly ash; synthesis; zeolite structure; crystallinity 
 

1. Introduction 
The major generators of industrial solid wastes are the by-products of combustion 

power plants producing coal fly ash. In the last few decades, worldwide coal consumption 
has been monitored. The main producer being China, followed by India, United States 
and Russia [1]. Accumulation of massive amounts of such residues, if not managed 
properly, causes serious environmental, aesthetic, economic and social problems. The re-
evaluation of “wastes”, in which significant energy has been invested and lost through 
disposal, via their conversion into sustainable construction materials and products, is 
probably the best way to recover this energy [2].  

Fly ash is one of the waste by-products with major potential for recycling. To date, 
several approaches have been carried out aiming to increase the utilization of fly ash and 
reducing its negative impacts. Fly ash offers a large spectrum of utilization possibilities 
ranging from underground mining to the building and cement industry [3,4]. Further-
more, the synthesis of mesoporous silica from fly ash has attracted interest due to the 
resulting material’s characteristics [5]. 

Fly ash is mineralogically characterized by the presence of amorphous materials and 
the mixture of ferro-aluminosilicate minerals. The high content of silica and alumina 
makes it a suitable raw material for the synthesis of high value zeolitic material.  
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Since the last millennium, zeolites have been known as a “magic rock”. Zeolites are 
hydrated aluminosilicate minerals with a three-dimensional open structure. They consist 
of SiO4 and AlO4 tetrahedra which gives it an anionic framework with the negative charge 
of Al being compensated by extra framework cations (positively charged ions), some be-
ing Na+, K+, Ca2+, Mg2+ and water molecules. The porous structure is large enough to be 
able to accommodate the guest ionic and molecular species. It is also possible to produce 
zeolite structures that do not appear in nature. Therefore, converting fly ash into zeolite 
is expected to resolve the problem of the disposal of fly ash, at least partially, and thereby 
minimize its impact on the environment. 

In the last decade, fly ash was used as a raw material for obtaining zeolites type X 
[6,7], A [6–9] and P [10], competing with zeolites made from pure industrial chemicals, 
which is of great importance for sustainable resource management [11]. Developing green 
techniques with cost-effective and eco-friendly routes for the synthesis of zeolite from FA 
is very significant for the economy and sustainable technology. Furthermore, the synthe-
sis of zeolite from fly ash has attracted interest due to the resulting material’s characteris-
tics [12,13].  

Two well-known methods are commonly applied, namely the conventional hydro-
thermal method using an alkaline medium, and the hydrothermal process with fusion 
pre-treatment at high temperatures. The advantages of the fusion method are its speed of 
reaction [14], and the purity of the final product [15] whereas the hydrothermal method 
has an advantage in terms of the consistent pattern of zeolite produced. Synthesis condi-
tions for each of the methods are different; they include pretreatment with acid [8], vari-
ous alkali sources [16], molarities of alkaline agents [17], solution–solid ratio [18], temper-
ature [6], reaction time [19], pressure, type of incubation [20] and type of water [21,22]. 

In this project, different conditions determining the synthesis of zeolites from fly ash 
were investigated. The synthetic products were characterized in terms of mineralogy and 
morphology.  

2. Materials and Methods  
2.1. Materials 

The main raw material, coal fly ash (Class F type) sample, was supplied from the 
BauMineral GmbH, a German power plant company. Sodium hydroxide anhydrous pel-
lets with ≥97.0% purity, sodium aluminate 99.9% NaAlO2 powder and hydrochloric acid 
ACS reagent 37% HCl were purchased from Sigma-Aldrich.  

2.2. Zeolite Synthesis Procedure 
Initially raw fly ash (FA) was added to HCl, with 20% w/w acid concentration under 

the acid/FA ratios of 15 mL acid/g FA [8]. The mixture was constantly stirred at the rate of 
300 rpm at 80 °C for 2 h. Once stirred, the solid sample was filtered and repeatedly washed 
with distilled water until the solution reached neutral pH and then dried overnight at 90 °C 
in oven. The fly ash was mixed with sodium hydroxide anhydrous pellets, in a weight 
ratio NaOH/FA of 0.75 and 1.25 by initially grinding the fly ash with sodium hydroxide. 
Subsequently, the mixture was fused at 550 °C for 1 h in a muffle furnace. Once cooled 
down, the product was crushed and was added to NaAlO2 to make the ratio NaAlO2/FA 
of 0.5 and 1. To investigate the effect of the ratio of Si/Al the mixture was dispersed in a 
weight ratio of 1/5 mL of seawater or distilled water. Crystallization was then performed 
under static conditions (40, 60 and 90 °C) for 1–72 h. The crystal products were separated 
and washed several times with distilled water for a pH of around 10–11. The wet solid 
was finally dried overnight at 105 °C and then calcined at 550 °C for 5 h and used as pre-
viously described. 
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2.3. Characterization Methods  
The X-ray fluorescence (XRF) (PANalytical AXIOS Spectrometer) was applied for the 

chemical composition of major chemical constituents and trace elements. The mineral 
characterizations of both fly ash and zeolite products were determined by powder X-ray 
diffraction (XRD) using a Philips X’Pert vertical diffractometer, using cooper radiation 
Cu-Kα. The morphology and the chemical composition of the main mineral components 
were determined using electron scanning microscope (SEM). The equipment used was a 
Zeiss Supra 40 scanning microscope. The specific surface area of the zeolite samples was 
determined applying N2 adsorption—desorption technique involving Brunauer–Em-
mett–Teller (BET), using a Sorpty 1750 Fison instrument, after a preliminary degassing 
step under vacuum at 150 °C.  

3. Results 
The chemical composition of fly ash determined by means of X-ray fluorescence 

(XRF) contains mainly 78 % SiO2 + Al2O3, whereas the impurities consist of metallic oxides 
such as Fe2O3 and CaO. Other elements including K2O, TiO2, SO3 and MgO are present in 
trace amounts, shown in Table 1 (defined as class F coal fly ash corresponding with ASTM 
C618). Fly ash was treated with acid washing to dealuminate and reduce the concentration 
of iron and alkali oxides and to enhance Si and Al compositions. XRF data (Table 1) indi-
cate that most of the impurities (Fe2O3, CaO, and other impurities) were removed by FA 
treatment with 20% w/w of hydrochloric acid in liquid ratio (acid/fly ash solution of 15 mL 
acid/1 g FA) thus enhancing SiO2 + Al2O3 compositions. Table 1 shows that the amount of 
silicon was increased by acid treatment, thus increasing the mass ratio of SiO2/Al2O3 which 
was 1.8% before acid treatment and became 2.25% after treatment. This is also confirmed 
by XRD data (Figure 1) which mainly confirms the presence of amorphous phase by giv-
ing wide elevations in the 2θ range of 20–35°. Meanwhile the main crystalline phase con-
sists largely of quartz (SiO2) (Ref. 01-089-8936) and mullite (Al6Si2O13) (Ref. 00-015-0776) 
where sharp points are observed. 

Table 1. Chemical composition of raw and acid-treated fly ash analyzed by XRF. 

Chemical Composition (wt. %) Fly Ash Raw Fly Ash Acid Treatment 
SiO2 50.96 61.66 

Al2O3 27.45 24.20 
Fe2O3 7.02 5.47 
CaO 4.22 1.07 
K2O 3.34 3.21 
TiO2 1.74 1.92 
SO3 1.52 0.18 

MgO 1.28 0.75 
Na2O 0.92 0.68 
P2O5 0.77 0.23 

SiO2/Al2O3 1.86 2.55 

The SEM image in Figure 1 shows the typical fly ash morphology characterized by 
the most spherical particles which consist of cenospheres and plerospheres. XRD data in 
Figure 1 indicate that the mineral composition of fly ash does not change following the 
acid treatment showing the presence of mullite and quartz, as well as a large number of 
amorphous materials. The specific surface, instead, slightly increases after the treatment 
with acid, from 1.5 m2/g to 2.9 m2/g. Figure 1 also displays the XRD pattern of FA after 
fusion at 550 °C for 1 h with NaOH. The profile indicates the formation of sodium silicate 
(Na2SiO3) (Ref. 00-016-0818) and silicon oxide dealuminate (Al2SiO5) (Ref. 01-088-0890). 
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Figure 1. X-ray diffraction patterns of raw fly ash, fly ash pretreated with acid, fly ash pretreated with acid and fused with 
NaOH/FA 1.25 at 550 °C for 1 h. Top right, Scanning electron microscopy image of raw fly ash. 

On the other hand, these newly formed compounds dissolve in water much more 
easily than quartz and mullite in the initial FA. Dissolution of FA and alkaline alumino-
silicate phases released ionic species which were activated at the nucleation sites. As con-
densation of aluminum and silicon ions occurred, the surface of the FA particles was cov-
ered with the precipitate of an aluminosilicate gel. After some time, the zeolite phases 
were crystallized, using NaOH as an activator. All zeolite products were obtained when 
NaOH was used as an activator (Figure 2a) whereas no zeolite material was crystallized 
using KOH or LiOH (Figure 2b,c). 

 
Figure 2. X-ray diffraction patterns of products synthesized from fly ash using as an activator: (a) NaOH; (b) KOH; and 
(c) LiOH. 
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XRD data show the presence of an amorphous geopolymer phase in the sample 
treated with KOH as activator (Figure 2b); and lithium silicate (Li2SiO3) when LiOH was 
used (Figure 2c). Figure 3 shows A- and X-type zeolites after NaOH pre-fusion treatment 
followed by the hydrothermal process. In detail, X-type zeolite (Figure 3, top) formed after 
FA was pre-treated with hydrochloric acid followed by the fusion process at 550 °C for 1 h 
(NaOH)/FA = 1.25), with a crystallization temperature 60 °C, crystallization time of 72 h 
and distilled water as the solution. In detail, the X-ray diffraction pattern shows that the 
generated X zeolite has a high crystallinity and is pure phase. The surface area (BET) for 
this synthetic product was 412 m2/g. The diffraction peaks of the powder pattern are well 
described by Na71(Si121Al71)O384 crystal structure (Ref. 00-150-7214).  

 
Figure 3. X-ray diffraction patterns of synthesized zeolite from fly ash type Zeolite X (top) and Zeolite A (bottom). 

The addition of sodium aluminate (NaAlO2/FA = 1.0) combined with a higher crys-
tallization temperature (90 °C) and higher incubation time (6 h) determined the formation 
of A-type (Figure 3 bottom). Zeolite A was synthesized using the following experimental 
conditions: FA pre-treated with hydrochloric acid (HCl) followed by the fusion process at 
550 °C for 1 h (NaOH/FA = 1.25), the addition after calcination of sodium aluminate at the 
ratio NaAlO2/FA = 1, the crystallization temperature at 90 °C and a crystallization time of 
6 h using distilled water as the solution in 1/5 solid/liquid ratio. The XRD model shows 
that zeolite A is characterized by a very high crystallinity phase (80–97%) with yield up to 
71%. However, the results show that the surface area of this zeolite is 30 m2/g (BET) much 
lower than X-type zeolite. The diffraction peaks of the powder pattern are well described 
by Na12(Al12Si12O48)(H2O)27 crystal structure (Ref. 00-8104-214).  

Both zeolite X and zeolite A belong to the cubic system. Synthesis conditions strongly 
influenced the morphology of the synthesis products. Figure 4a shows an SEM micro-
graph of typical octahedral crystals of zeolites X (Figure 4a) and cubic shapes of zeolite A 
(Figure 4b).  
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(a) (b) 

Figure 4. Scanning electron microscopy (SEM) images of (a), zeolite type X (b), zeolite type A. 

Zeolite have been successfully synthesized from fused fly ash by using seawater as a 
crystallization medium. Using distilled water, zeolite type X with a specific surface area 
of 412 m2/g was formed; meanwhile, when sea water was used this created zeolite type X 
with a lower specific surface area of 362 m2/g. 

4. Discussion and Conclusions 
Zeolite samples were synthesized from fly ash through fusion followed by hydro-

thermal treatment. FA contained a reasonable fraction of Si and Al, which is considered a 
potential raw material for the synthesis of zeolite. Several other components act as poison 
during the catalytic applications of zeolites [19]. Fly ash particles are mostly spherical in 
shape with a relatively smooth surface structure. Cenospheres show a large variation in 
their dimensions and plerospheres expose smaller spheres [22]. Fly ash was treated with 
acid washing to dealuminate and reduce the concentration of iron and alkali oxides. Re-
sults agree with those of [7,8], who reported that heavy metals show a high leachability in 
acid condition. Fe2O3 is closely bound to ash and does not break down easily, while the 
CaO content in FA is highly soluble and purifies more than half of the content, specifically, 
CaO was 4.2% before acid treatment and reached 1.1% after acid treatment. The untreated 
carbon fly ash had a purity of 79% (Na2O, SiO2 and Al2O3), while the HCl treatment pro-
vided a purity of the material of up to 87% (Na2O, SiO2 and Al2O3). From the results it is 
observed that the acid pre-treatment of the fly ash before being used in the synthesis of 
artificial zeolites is considered an important parameter for the purity of the zeolite phase.  

Conversion of FA to zeolite materials using an alkaline fusion, followed by hydro-
thermal treatment revealed that KOH and LiOH showed a poor efficiency to activate FA, 
compared to the case where NaOH was used as activator as reported by [23]. Na+ cations 
also play a very important role during zeolitization because they stabilize the sub-build-
ing units of zeolite frames and are fundamental to the synthesis of zeolite under hydro-
thermal conditions [19]. On the other hand, K+ solution promotes the slow rate of crystal-
lization in KOH solutions and is therefore the suppression factor for zeolite synthesis [24]. 
The synthesis of zeolite X was favored by the value 1.7 of the mass ratio SiO2/Al2O3, oth-
erwise expressed in the molar ratio of 2.9, which is suitable for the synthesis of zeolite X. 
These results agree with those of [25] who reported that zeolites such as (Na-X, Na-Y) 
formed in the Si/Al molar ratio of more than 1; in this case the concrete molar ratio Si/Al 
was 1.35. The synthesis of zeolite A is attributed to the modified Si/Al ratio with the addi-
tion of NaAlO2 which enables the synthesis of zeolites A instead of zeolites X. It is worth 
mentioning here that the synthesis of type A zeolite requires much shorter crystallization 
time (starting from 4 h compared to the synthesis of type X zeolites which requires 72 h). 
The Si/Al molar ratio for the synthesized zeolite A is calculated at 0.98, this agrees with 
[25] who reported also that zeolites A are formed in the Si/Al molar ratio around the value 1. 
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Meanwhile, crystallization is the process that forms the crystal framework of the ze-
olite, which occurs faster at higher crystallization temperatures such as 90 °C, but the 
highest phase purity is obtained at 60 °C. The crystallinity of zeolite X increases progres-
sively in the crystallization temperature range from 40 °C to 60 °C. The surface area in-
creased from 44 to 412 m2/g as the crystallization temperature increased from 40 to 60 °C, 
and then dropped to 318 m2/g at 90 °C. The use of seawater improves the zeolite synthesis, 
and the action is more pronounced at lower incubation temperatures. When sea water is 
used instead of distilled water to produce X-type zeolite, the newly formed mineral has 
lower purity and specific surface area but higher catalytic activity than when distilled wa-
ter is used [12].  

With a short crystallization time of 24 h, low temperature at 60 °C and low ratio of 
NaOH/FA 0.75, the use of sea water was favorable compared to distilled water in the syn-
thesis of zeolite type X. 

However, it was confirmed from the XRD profile, that when sea water was used, with 
a crystallization time of 72 h, a crystallization temperature of 90 °C and a ratio of 
NaOH/FA 1.25, sodalite was generated together with an undesired secondary.  

Synthetic zeolites were tested as heterogeneous basic catalysts in the gas-phase alkyl-
ation of phenol with diethyl carbonate (DEC). This obtained phenol conversions up to 
95% with a selectivity to phenetole higher than 85%, thus demonstrating that the catalytic 
activity of the zeolites synthesized from fly ash is very high. 

Results obtained show that the method described is clean, cost-effective, and envi-
ronmentally friendly. The stability of the catalyst and the applicability of our innovative 
synthetic zeolites for catalytic application as heterogeneous basic systems makes zeolite 
synthesis from FA an alternative for the common commercial catalysts used in industries. 
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