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Abstract: Litter decomposition in intermittent streams is driven by the biotic compartment and
uniquely shaped by abiotic conditions such as flow variability. In this study, we compared microbial-
mediated decomposition of three temperate native leaf species (alder, chestnut, and oak) in the
channel and riparian area of an intermittent stream. The stream channel presented a total of 8, 49,
and 35 days of flow, isolated pools, and dry conditions, respectively, while the riparian area remained
emersed. Independently of the species, decomposition rates after 3 months incubation were higher in
the stream channel than in the riparian area. Alder and chestnut’s different quality was not translated
into distinct fungal biomass, which seems to be related with an earlier fungal colonization and faster
decomposition of the former. Leaves incubated in-channel presented higher fungal biomass than
in the riparian area. During autumn, even in the absence of water flow, a higher moisture in the
stream channel and the presence of isolated pools yielded significantly faster decomposition rates and
fungal biomass accrual than in the riparian area. We may expect that, along with the resumption of
surface flow, the reestablishment of hydrological connectivity will lead to the lateral and longitudinal
transport of dissolved nutrients and organic matter of more (channel) or less (riparia) increased
quality, fueling local and downstream communities.

Keywords: flow variability; streambed; riparian; aquatic hyphomycetes; litter quality

1. Introduction

Intermittent streams may currently account for more than 50% of the total length of
the global river network [1], and their frequency is projected to significantly increase due
to climate change [2]. Even so, their ecological processes and provision of services are still
poorly understood [3]. Leaf litter decomposition is a key ecosystem process in forested
intermittent watercourses, fueling the in-stream food webs and contributing to nutrients
recycling [4]. This process is driven by the characteristics of the biotic compartment (e.g.,
litter quality and decomposer and detritivore communities; [5–7]) and uniquely shaped by
the abiotic context of the stream, namely, its flow variability [8,9], largely responsible for
the hydrological connectivity [10] and community structure of the watercourse [11].

In intermittent streams, flow variability creates continuously interchanging lotic, lentic,
and terrestrial local mosaics [1], influencing litter decomposition rates. Detritus in dry
habitats decompose slower than those immersed in water [12–14] due to the imposed
limitation of microbial activity [15] and aquatic detritivores density [16]. Flow variability
also causes highly variable lateral (e.g., with the riparian area), vertical, and longitudinal
hydrological connections, resulting in perpetual litter movements among different mosaics.
This creates important, but largely unknown, intra- and interseasonal legacy effects for the
decomposition process [17,18] and nutrient cycling in these systems.
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The main goal of this study was to compare the microbial-mediated decomposition of three
temperate leaf species (Alnus glutinosa (L.) Gaertn.—alder [A], Castanea sativa Mill.—chestnut
[C], and Quercus robur L.—oak [O]) in the channel and riparian area of an intermittent stream
subjected to a high flow variability during autumn. We hypothesized that, independently of
the species, leaf litter incubated in the stream channel (vs. riparian area) would exhibit higher
decomposition rates and fungal biomass, due to flow/standing water presence. Additionally, the
litter quality gradient—alder > chestnut > oak—would be translated into similar decomposition
rates and fungal biomass patterns among leaf species, independently of the zone.

2. Results

Decomposition rates differed between incubation zones (two-way ANOVA, p = 0.004)
independently of leaf species (p = 0.180), being 1.7-times higher in the channel than in the
riparian area (Figure 1a). Decomposition rates were also dissimilar among litter species
(p < 0.001): alder presented 1.9- and 3.2-times higher decomposition rates than chestnut
and oak, respectively.
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Figure 1. (a) Decomposition rates rates and (b) fungal biomass (mean ± SE) in the stream channel
(SC) and riparian area (RA) for the three leaf species (Alder, A; Chestnut, C; Oak, O). Statistical
differences are also shown among incubation areas and leaf species. (*) indicates differences between
zones within each species (factors interaction).

Fungal biomass was 2.4-times higher in the channel than in the riparian area (two-way
ANOVA, p < 0.001; Figure 1b) and differed between species (p < 0.001), with a significant
interaction between both factors (p = 0.004). Chestnut and alder presented higher fungal
biomass than did oak in the stream channel (Figure 1b), while no statistical differences in
fungal biomass were found in the riparian area among all the species.

3. Discussion

Litter decomposition rates and fungal biomass were consistently higher in the stream
channel; differences between zones were mainly determined by the presence of wa-
ter in the channel along the incubation period, and by the consequent higher remnant
moisture during dry periods. Leaf litter quality determined decomposition rates—alder
> chestnut > oak—regardless of the zone; however, the importance of the leaf physico-
chemical characteristics on fungal biomass was modulated by the zone-specific hydrological
conditions.

Our results point to the importance of water presence, even as isolated pools, in main-
taining a higher humidity in the channel throughout autumn. These lentic environments,
present in the channel for the majority of our study period (opposed to flowing water
conditions, present for only 8 days), were likely vital in maintaining a higher microbial-
decomposition potential when compared to the terrestrial/riparian environment. This
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is in agreement with previous works that found faster decomposition rates in patches
with higher moisture availability [14,19]. Such lower moisture availability in the riparian
area, although potentially allowing aquatic hyphomycetes activity [20], might have also
determined a microbial community dominated by terrestrial fungi. This, together with a
delayed leaching process that defers microbial colonization [21], likely resulted in reduced
decomposition rates, 28–44% inferior in relation to the channel area.

As expected, litter quality effects on decomposition rates seem to prevail independently
of the incubation zone. Leaves presenting lower C:N and C:P ratios and leaf toughness, thin
cuticles, and low lignin contents are generally expected to exhibit fast decomposition rates,
both in aquatic [22–24] and terrestrial systems [24–26]. The visible, although nonsignificant,
trend in fungal biomass (alder > chestnut > oak) in the riparian area seems to express
such intrinsic litter quality differences. On the other hand, the effect of litter quality on
fungal biomass in the stream channel was likely strengthened by the favorable hydrological
conditions, stimulating leaching and aquatic fungi colonization, particularly of more labile
leaves. In fact, an earlier fungal colonization peak may explain the lack of fungal biomass
differences between alder and chestnut in the stream channel, after 88 days of incubation.

The higher rates of litter decomposition and fungal biomass content observed in our
study in the channel area seem to be related with its higher hydrological heterogeneity. Such
conditions likely reduced energetically expensive microbial responses to stress [27] and
allowed for an investment of aquatic fungi on growth and degradative activity. Additionally,
they may have favored the development of combined assemblages of aquatic and terrestrial
fungi in this area, which may justify the high fungal biomass values registered in relation to
other intermittent/drought studies [28,29]. Aquatic hyphomycetes, the main decomposers
in freshwaters, are particularly vulnerable to desiccation [30] but respond immediately
upon rewetting [31], while the biosynthesis of ergosterol (proxy of fungal biomass) is
involved in terrestrial resistance of fungi to air-drying [32]. Whether such microbial biomass
accrual and consequent increases in leaf N content and palatability [33] result in important
differences in organic matter quality, locally available for the stream communities in dry or
wet conditions, remains to be evaluated.

Our results suggest that lentic habitats such as isolated pools may be crucial for
the maintenance of higher moisture levels in the stream channel, before complete flow
reestablishment. Such conditions stimulate a leaf species–specific fungal enrichment in
the stream channel. Litter conditioning in the dryer riparian area, although slower across
all leaf species, may still enhance the food quality potentially available for early winter
recovered aquatic communities. When hydrological connectivity is reestablished, the lateral
and longitudinal transport of dissolved nutrients and organic matter, of more (channel) or
less (riparia) increased quality, will fuel both local and downstream communities.

4. Materials and Methods
4.1. Study Site

The study took place in a low-order intermittent stream in Lousã Mountain (central
Portugal; 40◦03′38.0′′ N 8◦12′26.9′′ W). The riparian cover was composed mostly of C. sativa
and Q. robur trees. This area is characterized by a sub-Mediterranean climate, with hot and
dry summers with prolonged droughts, and mild and rainy winters [34].

4.2. Procedures

Leaves of alder (A. glutinosa), chestnut (C. sativa), and oak (Q. robur), common riparian
species in central Portugal, were collected after natural abscission and dried in the dark at
room temperature. Ground leaves (IKA Tube-Mill control, Germany) were characterized
in molar ratios of nitrogen (N), carbon (C) (IRMS ThermoDelta V advantage with a Flash
EA (1112 series)), and phosphorous (P; [35]), as well as total phenolics (% leaf dry mass
(DM); Folin–Ciocalteau assay, [35]) and toughness, measured with a leaf penetrometer [35].
The three litter species portrayed a litter quality gradient: alder presented the highest
quality because of the lowest C:N, C:P, toughness, and phenolics contents, and highest N:P
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(Table 1). Chestnut was of intermediate quality, and oak was the most recalcitrant species,
presenting highest values of C:P and toughness.

Table 1. Initial chemical and structural characteristics of the leaves of alder, chestnut, and oak (mean± SE,
n = 3). C:N, C:P, and N:P were calculated as molar ratios. For each parameter, different letters indicate
significant differences between species (one-way ANOVA followed by Tukey’s HSD test; p < 0.05).

Alder Chestnut Oak

C:N 17.8 a 83.7 c 70.9 b

C:P 880.1 a 2052.9 b 2183.3 c

N:P 49.3 c 24.6 a 30.8 b

Total phenolics (% DM) 1.2 a 3.7 c 2.0 b

Toughness (g) 30.5 a 55.6 b 76.5 c

A total of 12 fine (FM; 10 × 12 cm, 0.5 mm mesh) mesh bags per species were prepared
with 4 ± 0.15 g leaves. Half of the bags of each species were randomly placed in the stream
channel (SC), perpendicularly to the flow direction; the other half were randomly placed
in the adjacent riparian area (RA). Litterbags were placed in the field in early Autumn, at
which point there was no surface water in the stream channel.

During the 88 days of the study period, hydrological conditions were checked every
two days by a remote-controlled photographic camera (GSM Digital Trail Camera HC-
300M). Flow was observed for a total duration of 8 days, isolated pools were present for
49 days, and no flow was observed for a duration of 35 days. The riparian area, due to the
high slope of the river banks, was never flooded. Temperature was monitored every hour
in both zones (Hobo Pendant Datalogger UA-001-08; Onset Computer Corp., Cape Cod,
MA, USA).

After the incubation period, all litterbags were retrieved, placed in individual zip-lock
bags, and transported in a cooler for subsequent determinations. In the laboratory, leaf
material from each bag was gently rinsed with distilled water to remove sediments. Then,
five random leaf discs were punched out with a cork borer (10 mm Ø) to determine fungal
biomass (see below). The remaining leaf material was oven-dried (60 ◦C, 48 h), weighed,
ashed (500 ◦C, 4 h), and reweighed to obtain ash-free dry mass (AFDM).

For fungal biomass determination, punched discs were freeze-dried for 24 h (lyophilizer
CHRIST, ALPHA 1-2/LD Plus, Osterode am Harz, Germany) and weighed. Ergosterol was
extracted by microwave exposure in methanol, separated by pentane [36], and quantified
by high-performance liquid chromatography (HPLC; Shimadzu Prominence UFLC, Kyoto,
Japan) using an HPLC C18 column (Mediterranea sea18, 250 × 4.6 mm, 5 µm particle
size; Teknokroma). Ergosterol concentration was converted into fungal biomass (5.5 µg
ergosterol per 1.0 mg fungal dry mass; [37]). Results were expressed as mg fungal biomass
per g ash-free dry mass.

4.3. Data Treatment

Leaf mass loss was calculated with the following linear model: b = (M0 −Mt)/dd,
where b is decomposition linear rate, M0 is the mean remaining mass in terms of percentage
at the initial time, Mt is the remaining mass in terms of percentage at the end of the
incubation period, and dd is the degree-days. Degree-days were used rather than time in
order to standardize the rates among zones due to possible temperature differences.

Decomposition rates (dd−1) and fungal biomass were analyzed by two-way ANOVAs
(factors: “incubation zone” and “leaf species”). Data were transformed whenever necessary
to meet homogeneity assumptions. Post hoc Tukey’s HSD test and planned comparisons
were performed whenever differences were found (p < 0.05; Statistica 10 software).

Author Contributions: C.C., A.L.G. and A.M. conceived and designed the experiments; A.L.G., I.R.,
and S.S. performed the experiments; A.M. and S.S. analyzed the data; A.M., C.C. and S.S. wrote the
paper. All authors have read and agreed to the published version of the manuscript.
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