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Abstract: Background: An irreproducibility crisis currently afflicts a wide range of scientific dis-
ciplines, including public health and biomedical science. A study was undertaken to assess the
reliability of a meta-analysis examining whether air quality components (carbon monoxide, particu-
late matter 10 µm and 2.5 µm (PM10 and PM2.5), sulfur dioxide, nitrogen dioxide and ozone) are risk
factors for asthma exacerbation. Methods: The number of statistical tests and models were counted
in 17 randomly selected base papers from 87 used in the meta-analysis. Confidence intervals from all
87 base papers were converted to p-values. p-value plots for each air component were constructed
to evaluate the effect heterogeneity of the p-values. Results: The number of statistical tests possi-
ble in the 17 selected base papers was large, median = 15,360 (interquartile range = 1536–40,960),
in comparison to results presented. Each p-value plot showed a two-component mixture with small
p-values < 0.001 while other p-values appeared random (p-values > 0.05). Given potentially large
numbers of statistical tests conducted in the 17 selected base papers, p-hacking cannot be ruled out as
explanations for small p-values. Conclusions: Our interpretation of the meta-analysis is that random
p-values indicating null associations are more plausible and the meta-analysis is unlikely to replicate
in the absence of bias.
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1. Introduction

One aspect of replication—the performance of another study statistically confirming
the same hypothesis or claim—is a cornerstone of science and replication of research
findings is particularly important before causal inference can be made [1]. However,
an irreproducibility crisis currently afflicts a wide range of scientific disciplines, including
public health and biomedical science. Far too frequently, scientists are unable to replicate
claims made in published research [2].

A branch of biomedical science—environmental epidemiology—depends, in part,
on establishing statistical associations in default of establishing direct causal biological
links between risk factors and health outcomes such as respiratory diseases (e.g., asthma,
chronic obstructive pulmonary disease). We have previously shown through independent
analysis that published environmental epidemiology studies claiming air quality–heart
attack associations may be compromised by false-positives and bias [3,4]. For the present
study we examined whether these shortcomings are occurring with observational studies
of air quality–asthma attack associations.

1.1. False-Positives and Bias in Biomedical Science Literature

False-positives—False-positive results may be a common feature of the biomedical
science literature with others estimating that a large portion of positive (statistically signifi-
cant) research findings that physicians rely on—as much as 90 percent—may be flawed [5]
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and simply ‘false-positives’ [6]. Today the traditional 0.05 p-value has lost its ability to
discriminate important biomedical science research findings, especially when numerous
comparisons (multiple tests) are being made, and can produce research results that are
irreproducible and, in some examples, harmful to the public’s health [7].

False-positive findings can arise in research when statistical methods are applied
incorrectly or when p-values (or confidence intervals) are interpreted without sufficient
understanding of the multiple testing problem [8]. False-positive results are reported to
dominate the epidemiologic literature, with most of the traditional areas of epidemiologic
research more closely reflecting the performance settings and practices of early human
genome epidemiology showing at least 20 false-positive results for every one true-positive
result [9]. On the other hand, studies with negative (non-statistically significant) results are
more likely to remain unpublished than studies with positive results [10]. Epidemiological
literature may be distorted as a result and any systematic reviews or meta-analyses of these
studies would be biased [11,12] because they are summarizing information and data from
a misleading, selected body of evidence [13–15]. Too many of the results coming from
observational studies turn out to be wrong when they are re-examined [16]. This excess
of false-positive results in published observational (and experimental) literature has been
attributed mostly to bias [17–21].

Bias—Bias consists of systematic alteration of research findings due to factors related
to study design, data acquisition, analysis or reporting of results [18]. Selective reporting
proliferates in published observational studies where researchers routinely test many
models and questions during a study and then report those models that offer interesting
(statistically significant) results [22]. Selective reporting biases affecting overall results
and specific analyses within studies are reported by others to likely be the greatest and
most elusive issue distorting published research findings in the biomedical science field
today [23–27].

There are at least 235 catalogued biases in published biomedical science literature [28].
Although most of the listed terminology for bias in literature is used infrequently, dif-
ferent bias terms used in diverse disciplines appear to refer to biases that have overlap-
ping/similar meaning. Some of the more common bias terms used in current biomedical
science literature include [28]: publication bias, confounding, selection bias and response
bias. These types of biases may be important in observational studies of air quality–asthma
attack associations. Published observational studies exists that question or do not find air
quality–asthma attack associations [29–33].

1.2. Positive and Negative Predictive Values of Risk Factor–Chronic Disease Effects

Because of the prominence of disease prevention in our current health care system,
observational risk factor–chronic disease research plays a key role in providing evidence
to public health decision makers; e.g., providing advice on the intervention of asthma.
Analysis of biomedical diagnostic test results being true depends on sensitivity, specificity
and disease prevalence in a population [34–36]. Similar to this, a Bayesian simulation model
was developed to quantify the extent of non-replicability in a study (i.e., the number of
research results in a study that are expected to be “false”) [37]. This theoretical model relies
on statistical hypothesis testing, incorporating pre-study (i.e., prior) odds of a research
result being true, the number of statistical significance tests, a quantitative measure of
investigator bias and other factors. The model can be used to understand the probability of
a research finding in a single study being true in the presence of bias.

Others have critiqued the model and noted [38]: many biomedical science research
findings are less definitive than readers suspect, p-values are widely misinterpreted, bias of
various forms is widespread, multiple approaches are needed to prevent the literature
from being systematically biased, and there is a need for more data on the prevalence of
false claims. The National Academy of Science, Engineering and Medicine stated that [14]
. . . any initial results that are statistically significant [in a study] need further confirmation and
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validation. These positions support a need for independent testing of statistically significant
(positive) research claims made in published biomedical science literature.

Given the importance of bias in observational studies [39], we extended the simulation
model to estimate the probability of positive research findings (Positive Predictive Value or
PPV) and negative, or null, research findings (Negative Predictive Value or NPV) in a single
study being true for different levels of bias and prevalence rates for asthma and the other
most common chronic diseases in United States. Table 1 presents estimates of prevalence for
the most common chronic diseases of interest in United States (Supplemental Information
(SI) 1 provides details upon which estimates are based). The four most common types of
chronic diseases in the world’s population (including developed and developing countries)
are [40,41]: respiratory diseases (primarily asthma), heart and stroke disease, diabetes
and cancers.

Table 1. Estimates of prevalence for common chronic diseases of interest in United States.

Disease Category Disease Population of Interest Prevalence Rate (P) Timeframe

Respiratory diseases asthma total males and females 0.079 in 2017
chronic obstructive pulmonary

disease (COPD) adults ≥18 years 0.059 in 2014–2015

Heart diseases coronary heart disease, angina or
heart attack adults ≥18 years 0.056 in 2018

Diabetes diabetes total males and females 0.094 in 2015
Cancers breast females ≥35 years 0.037 in 2016

prostate males ≥55 years 0.072 in 2016
colorectal total males and females 0.0040 in 2016

lung and bronchus total males and females 0.0017 in 2016

Note: Prevalence (P) is represented as a fraction (e.g., 0.0079 is 79 people out of 1000 for asthma). Refer to SI 1 for references upon which the
prevalence rate (P) is based.

Using relationships we developed in SI 1, Figure 1 illustrates the theoretical probability
of a research finding in a single study being true as a function of disease prevalence within
the range 0.0001 to 0.1. In Figure 1 we show how bias affects the probability for two
situations: a study collectively influenced by relatively minor biases (0.2), and a study
collectively influenced by relatively major biases (0.8).

Bias represents the proportion of probed analyses [relationships] in a study that would
not have been “research findings,” but nevertheless end up presented and reported as such,
because of bias [37]. This definition does not distinguish among different ways researchers
can alter findings due to factors related to study design, data acquisition, analysis or
reporting of results, etc. It simply aggregates these forms of bias into a single quantity
ranging between 0 and 1. Figure 1 suggests that asthma and other most common chronic
diseases listed in Table 1 correspond with low post-study probabilities of a positive research
finding in a study being true—less than 30%. On the other hand, these diseases correspond
with high post-study probabilities of a negative (null) research finding in a study being
true—greater than 95%.

Figure 1 suggests that for asthma and the other common chronic diseases of interest—
i.e., diseases with a prevalence < 0.1—NPV (PPV) has relatively small (large) dependence
on prevalence and bias. Figure 1 also suggests that a PPV exceeding 30% is difficult to
achieve in risk factor–chronic disease epidemiological research for asthma and the other
most common chronic diseases of interest. A majority of modern biomedical science
research making positive claims may be operating in areas with very low pre- and post-
study probability for true findings [37], including asthma and other chronic diseases
listed in Table 1. This, in part, may help explain why false-positive results dominate
the epidemiologic literature in this area. This is consistent with others [9] reporting that
most traditional fields of epidemiologic research have high ratios of false-positive to false-
negative findings. It is also consistent with the general claim that false-positive results are
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common features of the biomedical science literature today, including the broad range of
risk factor–chronic disease research [42–44].
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Figure 1. Theoretical probability of a research finding in a study being true as a function of disease
prevalence rate for various levels of bias (u) (Note: For α = 0.05 and power = 80%; NPV = negative
predictive value—probability that a negative (null) relationship (i.e., risk factor does not cause disease)
is true; PPV = positive predictive value—probability that a positive relationship (i.e., risk factor
causes disease) is true. Relationships for this figure are developed in SI 1).

1.3. Ambient Air Quality–Chronic Disease Observational Studies

Many published observational epidemiology studies claim certain air quality com-
ponents are risk factors that are causal of chronic diseases [45–47]. Claims that ambient
air quality causes all the diseases listed in Table 1 have been made using meta-analysis—
asthma [48], COPD [49], heart attack [50], diabetes [51], and breast [52], prostate [53],
colorectal [54] and lung cancer [55]. However, it has been noted that, in the presence of
unmeasured confounders, causality is hard to establish for a relatively weak health risk
factor such as ambient air quality [56]. Low post-study probabilities for asthma and the
other common chronic diseases (see Table 1 and Figure 1) may offer statistical reasons to
question the reliability of these claims.

Part of this ‘reliability’ problem may arise from researchers of modern ambient air
quality–health effect observational studies performing large numbers of statistical tests and
using multiple statistical models—referred to as MTMM (multiple testing and multiple
modelling) [4,42,57,58]:

• Multiple testing involves statistical null hypothesis testing of many separate predic-
tor (e.g., air quality) variables against numerous representations of dependent (e.g.,
chronic disease) variables taking into account covariates, which may or may not act as
confounders. For example, different air quality predictor variables—nitrogen dioxide,
carbon monoxide—can be tested in the presence/absence of weather variables (e.g.,
temperature, relative humidity, etc.) against effects (e.g., heart attack hospitalizations)
in a whole population of interest, females only, males only, those greater than 55 years
old, etc.

• Multiple modelling involves testing using multiple Model Selection procedures or differ-
ent model forms (e.g., simple univariate, bivariate or multivariate logistic regression,
etc.). For example, different models can be used in a single study to test independent
predictor variables and covariates against dependent (e.g., chronic disease) variables.
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MTMM is analogous to what others call Model Selection in statistical models used to
estimate the effects of environmental impacts [59,60]. This refers to the fact that with k
potential explanatory variables in a model one can in principle run 2k possible regressions
and select one after the fact that that yields the ‘best’ or ‘most interesting’ result. p-Hacking
is multiple testing and multiple modelling without statistical correction [61–64]. It involves
the relentless search for statistical significance and comes in many forms [65]. It enables
researchers to find statistically significant results even when their samples are much too
small to reliably detect the effect they are studying or even when they are studying an
effect that is non-existent [66]. Examples of different forms of p-hacking include [67]:
increasing sample size, analyzing data subsets, increasing variables in a model, adjusting
data, transforming data (i.e., log transformations), removing suspicious outliers, changing
the control group, using different statistical tests.

1.4. Objective of the Current Study

We have previously reported on the potential for epidemiology literature, particularly
observational studies related to air quality component–heart attack associations, to be
compromised by false-positives and bias [3,4]. For the present study we were interested in
exploring whether the same sort of issues might be occurring with observational studies of
air quality component–asthma attack associations. Asthma has an estimated prevalence in
United States of 0.079 (Table 1) with any ambient air quality–chronic disease observational
study ‘positive effect’ having a low theoretical post-study probability of being true—less
than 25% (Figure 1).

A meta-analysis offers a window into a research claim, for example, that some ambient
air quality components are causal of a chronic disease. A meta-analysis examines a claim by
taking a summary statistic along with a measure of its reliability from multiple individual
ambient air quality–chronic disease studies (base papers) found in the epidemiological
literature. These statistics are combined to give what is supposed to be a more reliable
estimate of an air quality effect. A key assumption of a meta-analysis is that estimates
drawn from the base papers for the analysis are unbiased estimates of the effect of inter-
est [68]. However, as stated previously, studies with negative results are more likely to
remain unpublished than studies with positive results leading to distortion of effects in the
epidemiological literature and subsequent unreliable meta-analysis of these effects [10–15].

Here, we evaluated the meta-analysis study of Zheng et al. [48]. This meta-analysis
has received 280 Google Scholar citations as of 21 April 2021. We were interested in
evaluating two specific properties of the meta-analysis following along the lines of two
recent published studies [3,4]:

• Whether claims in the base papers of the meta-analysis are unreliable due to the
presence of multiple testing and multiple modelling (MTMM) which can give rise to
false-positive results [42,58].

• Whether heterogeneity across the base papers of the meta-analysis is more complex
than simple sampling from a single normal process [69].

2. Methods

Zheng et al. [48] undertook a systematic computerized search of published observa-
tional studies to identify those studies focusing on short-term exposures (same day and
lags up to 7 days, which are never chosen a priori) to six ambient air quality components—
carbon monoxide (CO), particulate matter with aerodynamic equivalent diameter ≤10 mi-
cron (PM10), particulate matter with aerodynamic equivalent diameter ≤2.5 micron
(PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)—and asthma exacer-
bation (hospital admission and emergency room visits for asthma attack).

Associations between air quality components and asthma-related hospital admission
and emergency room visits were expressed as risk ratios (RRs) and 95% confidence intervals
(CIs) that were derived from single-pollutant models reporting RRs (95% CIs) or percentage
change (95% CIs). They further recalculated these associations to represent a 10 µg/m3
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increase, except for CO (where they recalculated associations to represent a 1 mg/m3

increase). Zheng et al. [48] concluded that all six air quality components were associated
with significantly increased risks of asthma-related hospital admission and emergency
room visits for all air quality components:

• CO: RR (relative risk) = 1.045 (95% CI (confidence interval) 1.029, 1.061);
• PM10: RR = 1.010 (95% CI 1.008, 1.013);
• PM2.5: RR = 1.023 (95% CI 1.015, 1.031);
• SO2: RR = 1.011 (95% CI 95% CI 1.007, 1.015);
• NO2: RR = 1.018 (95% CI 1.014, 1.022);
• O3: RR = 1.009 (95% CI 1.006, 1.011).

It is generally accepted that there are two classes of causes of asthma—primary and
secondary [70]. ‘Primary’ causes of asthma relate to the increase in risk of developing
the disorder (e.g., asthma). Whereas ‘secondary’ causes relate to triggering/precipitation
of asthma exacerbation. The Zheng et al. meta-analysis focused studies of short-term
exposures to ambient air quality components and hence on secondary causes of asthma.
Zheng et al. initially identified 1099 literature reports. After screening titles and abstracts
of these reports, they selected and assessed 246 full-text articles for eligibility, of which
87 base papers were selected for their meta-analysis. Citations and summary details for the
87 base papers each used by Zheng et al. in their meta-analysis are provided in SI 2.

2.1. Analysis Search Space

Analysis search space (or search space counts) represents an estimate of the number
of exposure-disease combinations tested in an observational study. Our interest in search
space counts is explained further. During a study there is flexibility available to researchers
to undertake a range of statistical tests and use different statistical models (i.e., perform
MTMM) before selecting, using and reporting only a portion of the test and model results.
This researcher flexibility is commonly referred to as researcher degrees of freedom in the
psychological sciences [71].

Base papers with large search space counts suggest the use of large numbers of
statistical tests and statistical models and the potential for researchers to search through
and only report only a portion of their results (i.e., results showing positive, statistically
significant results). As acknowledged elsewhere [4], search space counts are considered
lower bound approximations of the number of tests possible.

A 5–20% sample from a population whose characteristics are known is considered
acceptable for most research purposes as it provides an ability to make generalizations
for the population [72]. Given the prior screening and data collection procedures used by
Zheng et al., we assumed that their 87 papers had sufficiently consistent characteristics
suitable for use in meta-analysis. Based on this assumption, we randomly selected 17 of
the 87 papers (~20%) for search space counting in the following manner. Using methods
described previously [3,4,73], we started with the 87 base papers and assigned a separate
number in ascending order to each paper (numbered 1–87). We then used the online web
tool numbergenerator.org to generate 10 random numbers between 1 and 87. We then
removed the 10 selected papers from the ordered list, renumbered the remaining papers
1–77 and used the web tool to generate another 7 random numbers between 1 and 77.
This allowed us to select 17 of the Zheng et al. base papers for further evaluation (refer
to SI 2).

Electronic copies of the 17 randomly selected base papers (and any corresponding
electronic Supplementary Information Files) were obtained and read. One change was
made from previous search space counting procedures we used [3,4]. It was apparent
that several of the base papers we selected [74–77] employed a variety of model forms in
their analysis. To accommodate this, we separately counted the number of model forms
along with the number of outcomes, predictors, time lags, covariates reported in each base
paper (covariates can be vague as they might be mentioned anywhere in a base paper).
Specifically, analysis search space of a base paper was estimated as follows:
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• The product of outcomes, predictors, model forms and time lags = number of questions
at issue, Space1.

• A covariate may or may not act as a confounder to a predictor variable and the only
way to test for this is to include/exclude the covariate from a model. As it can be in
or out of a model, one way to approximate the modelling options is to raise 2 to the
power of the number of covariates, Space2.

• The product of Space1 and Space2 = an approximation of analysis search space, Space3.

Table 2 provides three examples of search space analysis of a hypothetical observa-
tional study of ambient air quality versus hospitalization due to asthma exacerbation.

Table 2. Three examples of search space analysis of a hypothetical observational study of ambient air quality versus
hospitalization due to asthma exacerbation.

Example 1
A simple univariate analysis of childhood asthma hospital admissions is considered using 6 air quality predictors—daily average
levels of PM10, PM2.2, SO2, NO2, CO and O3, and no lags or weather covariate confounders:

• Space 1 = 1 outcome × 6 predictors × 1 model × 1 lag time (i.e., same day concentration as the event day) = 6
• Space 2 = 1 (i.e., no consideration of covariate confounding)
• Space 3 = approximation of analysis search space = 6 × 1 = 6

Example 2
For a slightly more typical analysis of the same 6 predictors with 3 lags (i.e., same day, 1 and 2 day lags), and 2 weather variables
treated as covariate confounders (daily average temperature and relative humidity), and also adjusting for possible confounding of
co-pollutants in the analysis (i.e., air quality variables are also treated as covariate confounders in the analysis), we have the
following search space counts:

• Space 1 = 1 outcome × 6 predictors × 1 model × 3 lags = 18
• Space 2 = 22 + 5 = 128 *
• Space 3 = approximation of analysis search space = 18 × 128 = 2304

Example 3
For a typical (and more in-depth) example, in addition to Example 2 characteristics, four different subgroups are used in the analysis
(e.g., children ≤4 years, children 5–14 years, boys only ≤14 years and girls only ≤14 years) along with the main study population:

• Space 1 = 5 outcomes (main + 4 subgroups) × 6 predictors × 1 model × 3 lags = 180
• Space 2 = 22 + 5 = 128 *
• Space 3 = approximation of analysis search space = 180 × 128 = 23,040

* There are 7 covariates in Space 2—daily average temperature and relative humidity are 2 covariates; 1 pollutant is treated as a predictor
adjusted with the other 5 pollutants (covariates) in the model.

2.2. p-Value Plots

It is traditional in epidemiology to use confidence intervals instead of p-values from a
hypothesis test to demonstrate or interpret statistical significance. As both confidence inter-
vals and p-values are constructed from the same data, they are interchangeable, and one can
be calculated from the other [78,79]. We first calculated p-values from confidence intervals
for data from the Zheng et al. meta-analysis. Following the ideas of others [80], p-value
plots were then developed to inspect the distribution of the set of p-values reported for
each ambient air quality component.

The p-value can be defined as the probability, if nothing is going on, of obtaining a
result equal to or more extreme than what was observed. The p-value is a random variable
derived from a distribution of the test statistic used to analyze data and to test a null
hypothesis. The p-value is distributed uniformly over the interval 0 to 1 regardless of
sample size under the null hypothesis and a distribution of true null hypothesis points in a
p-value plot should form a straight line [80,81].

A plot of p-values sorted by rank corresponding to a true null hypothesis should
conform to a near 45-degree line. The plot can be used to assess the validity of a false claim
being taken as true and, specific to our interest, can be used to examine the reliability of
base papers used in the Zheng et al. meta-analysis.
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p-Value plots for each ambient air quality component were constructed and interpreted
as follows [80]:

• p-Values were computed using the method of others [79] and ordered from smallest to
largest and plotted against the integers, 1, 2, 3, . . .

• If the points on the plot follow an approximate 45-degree line, then the p-values are
assumed to be from a random (chance) process—supporting the null hypothesis of no
significant association.

• If the points on the plot follow approximately a line with slope < 1, where most of
the p-values are small (less than 0.05), then the p-values provide evidence for a real
effect—supporting a statistically significant association.

• If the points on the plot exhibit a bilinear shape (divide into two lines), then the p-
values used for meta-analysis constitute a mixture and a general (over-all) claim is not
supported; in addition, the p-value reported for the overall claim in the meta-analysis
paper cannot be taken as valid.

To assist interpretation of the p-value plots we constructed, we also show p-value
plots for plausible true null outcomes (supporting the null hypothesis of no significant
association) and true alternative hypothesis outcomes (supporting a statistically significant
association) based on meta-analysis of observational datasets.

3. Results
3.1. Analysis Search Space

Estimated analysis search spaces for the 17 randomly selected base papers from
Zheng et al. are presented in Table 3. From Table 3, investigating multiple (i.e., 2 or more)
asthma outcomes in the selected base were as common as single outcome investigations.
In addition, use of multiple models and lags was common in their analysis, so were
adjustments for multiple possible covariate confounders. While the use of multiple factors
(i.e., outcomes, predictors, models, lags and treatment of covariates) is seemingly realistic,
these attempts to find possible exposure–disease associations among combinations of these
factors will increase the overall number of statistical tests performed in a single study (e.g.,
refer to Table 2).

Table 3. Authors, variable counts, and analysis search spaces for the 17 randomly selected base papers from Zheng et al. [48].

First Author Outcomes Predictors Models Lags Covariates Space1 Space2 Space3

Thompson 1 10 3 4 7 120 128 15,360
Andersen 3 11 1 6 8 198 256 50,688
Chardon 3 3 1 16 8 144 256 36,864
Sheppard 1 14 5 5 8 350 256 89,600
Gouveia 4 11 1 4 8 176 256 45,056
Tenias 1 24 4 4 5 384 32 12,288
Magas 4 6 1 2 5 48 32 1536

Chakraborty 1 3 2 1 4 6 16 96
Tsai 1 10 2 3 2 60 4 240

Laurent 4 4 3 6 5 288 32 9216
Lavigne 5 5 1 1 3 25 8 200

Mar 1 2 1 6 8 12 8 96
Evans 3 7 2 7 6 294 64 18,816
Abe 2 10 2 2 9 80 512 40,960

Santus 32 10 2 8 3 5120 8 40,960
Hua 2 2 8 5 4 160 16 2560
Lin 3 3 3 7 7 189 128 24,192

Note: Author name is first author listed (refer to SI 2); Space 1 = number of questions at issue = Outcomes × Predictors × Models × Lags;
Space 2 = 2k where k = number of Covariates; Space 3 = approximation of analysis search space = Space 1 × Space 2.
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Summary statistics of the possible numbers of tests in the 17 base papers are presented
in Table 4. The median number of possible statistical tests (Space3) of the 17 randomly
selected base papers was 15,360 (interquartile range 1536–40,960), in comparison to actual
statistical test results presented. Given these large numbers, statistical test results taken
from the base papers are unlikely to provide unbiased measures of effect for meta-analysis.

Table 4. Summary statistics for the number of possible tests using the three search spaces.

Statistic Space1 Space2 Space3

minimum 6 4 96
lower quartile 60 16 1536

median 160 32 15,360
upper quartile 288 256 40,960

maximum 5120 512 89,600
mean 450 118 22,866

Note: Space 1 = number of questions at issue = Outcomes × Predictors × Models × Lags; Space 2 = 2k where
k = number of Covariates; Space 3 = approximation of analysis search space = Space 1 × Space 2.

3.2. p-Values

The method we used for calculating p-values [79] recommends reporting 0.0001 for a
calculated p-value smaller than 0.0001. Consequently, p-values calculated < 0.0001 were
reported simply as 0.0001. This was done to facilitate creation of p-value plots for each air
quality component. Zheng et al. drew upon many (332) summary statistics from 87 base
papers for their meta-analysis of six air quality components. Summary statistics they used
in their meta-analysis of PM2.5 (i.e., Risk Ratio (RR), Lower Confidence Level (LCL) and
Upper Confidence Level (UCL) values) and p-values we calculated are presented in Table 5.
Summary statistics for the other air quality components (CO, NO2, O3, SO2 and PM10) and
calculated p-values are provided in SI 3. In Table 5 (and tables presented in SI 3), calculated
p-values ≤ 0.05, taken as a statistically significant result, are bolded and italicized.
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Table 5. Risk Ratio (RR), Lower Confidence Level (LCL) and Upper Confidence Level (UCL) values
and corresponding p-values calculated for base papers used by Zheng et al. [48] in their PM2.5
meta-analysis.

Study 1st Author 1 Publication Year RR LCL UCL p-Value 2

Lee SL 2006 1.024 1.014 1.035 0.0001
Ko FWS 2007 1.004 1.000 1.009 0.0803567
Jalaludin BB 2008 1.017 1.008 1.027 0.000432
Lavigne E 2012 1.000 0.909 1.121 1
Stieb DM 2009 1.011 0.987 1.037 0.3923886
Chimonas MAR 2007 0.992 0.964 1.024 0.6144624
Sluaghter JC (ER) 2005 1.030 0.980 1.090 0.279572

(H) 1.010 0.910 1.110 0.8548709
Li S 2011 1.032 1.007 1.057 0.010805
Mar TF 2010 1.000 0.957 1.043 1
Sheppard L 1999 1.034 1.017 1.059 0.001249
Yamazaki S (W) 2013 0.958 0.776 1.182 0.7025466

(C) 1.039 0.883 1.222 0.6573244
Santus P 2012 0.991 0.970 1.011 0.399061
Babin S 2008 1.000 0.990 1.020 1
Kim SY 2012 1.009 0.991 1.026 0.3161553
Paulu C 2008 1.010 0.960 1.060 0.7070236
Halonen JI (A) 2008 1.003 0.957 1.050 0.907147

(O) 1.068 1.014 1.131 0.0180712
Szyszkowicz M 2008 1.085 1.010 1.166 0.025766
Malig BJ 2013 1.020 1.010 1.030 0.0001
Evans KA 2013 0.821 0.418 1.403 0.5339787
Ito K 2007 1.060 1.052 1.072 0.0001
Chardon B 2007 1.044 0.999 1.104 0.0909348
Lin M 2002 1.011 0.925 1.065 0.7736097
Silverman RA 2010 1.075 1.050 1.100 0.0001
Barnett AG (0–4y) 2005 1.045 1.018 1.071 0.000713

(5–14y) 1.034 0.992 1.076 0.1067006
Iskandar A 2012 1.188 1.083 1.271 0.0001
Santus P 2012 0.992 0.967 1.017 0.5433122
Strickland MJ 2010 1.022 1.002 1.042 0.029066
Andersen ZJ 2008 1.300 1.000 1.640 0.037304
Hua J 2014 1.003 1.000 1.010 0.2403955
Gleason JA 2014 1.012 1.000 1.024 0.048279
Raun LH 2014 1.033 0.983 1.083 0.1901706
Cheng MH (W) 2014 1.069 1.034 1.103 0.0001

(C) 1.017 1.000 1.046 0.1420481
1 letters/numbers in brackets indicates results for different population subgroups from the same study. 2 bold,
italicized p-value < 0.05 calculated after [79].

Table 6 presents additional information on each of the air quality components (i.e.,
RR and p-value counts). Zheng et al. drew upon 37 summary statistics from 32 base papers
for their PM2.5 meta-analysis. The majority of PM2.5 summary statistics had p-values
greater than 0.05 (22 of 37), 15 of 37 were smaller than 0.05 and 8 of 37 were smaller than
0.001. Researchers often accept a p-value of 0.001 or smaller as virtual certainty [4]. If a
summary statistic has a p-value small enough to indicate certainty, one should expect
few p-values larger than 0.05 [68,82]. This is not the case as 45% or more of all summary
statistics used by Zheng et al. had p-values greater than 0.05 (refer to Table 6).

Epidemiological literature can be distorted, i.e., mostly containing studies with posi-
tive results, and any meta-analysis of these studies are summarizing information and data
from a misleading body of evidence [11–15]. Yet, even with this prevailing bias and given
the base studies selected by Zheng et al., their many null results in Table 6 for each air
quality component (third column) are not encouraging support for an effect.
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Table 6. Summary information about numbers of base papers and significant results used for meta-analysis for each air
quality component.

Air Quality
Component

Number of Risk
Ratios (RRs) Used

RRs with
p-Values > 0.05 (%)

RR with
p-Values ≤ 0.05

RRs with
p-Values ≤ 0.001

CO 42 29 (69) 13 9
NO2 66 30 (45) 36 16
O3 71 40 (56) 31 11

PM2.5 37 22 (59) 15 8
PM10 51 28 (55) 23 6
SO2 65 46 (70) 19 6

3.3. p-Value Plots

A plot of ranked p-values versus integers for a dataset of a true null relationship would
present as a sloped line going left to right at approximately 45-degrees. Whereas a plot of
ranked p-values versus integers for a dataset of a plausible true relationship should have
a majority of p-values smaller than 0.05. To support this, p-value plots of small datasets
(n < 13 base papers) taken from a meta-analysis of selected cancers in petroleum refinery
workers [83] are presented in SI 4. The distribution of the p-value under the alternative
hypothesis—where the p-value is a measure of evidence against the null hypothesis—is
a function of both sample size and the true value or range of true values of the tested
parameter [81].

The p-value plots shown in SI 4 conform to that explained above—i.e., sloped line
from left to right at an approximate 45-degrees for data suggesting a plausible true null
chronic myeloid leukemia causal relationship in petroleum refinery workers and a ma-
jority of p-values below the 0.05 line for data suggesting a plausible true mesothelioma
causal relationship in petroleum refinery workers. Another set of p-value plots of meta-
analysis datasets for large numbers of base papers (n > 65) are illustrated in SI 5 (true null
relationship [84]) and SI 6 (true relationship [85]).

Figure 2 presents p-value plots for each of the six air components in the Zheng et al.
meta-analysis. All these plots are different from p-value plot behavior of both plausible
true null and true relationships (refer to p-value plots in SI 4–SI 6). Variability among data
is apparent in p-value plots for each air component. For example, the p-value plot for
PM2.5 (lower left image) presents as a distinct bilinear (two-component) mixture. This two-
component mixture may suggest a true-positive causal relationship or a false-positive
causal relationship due to p-hacking for p-values below the 0.05 line, and random outcomes
or false-negative relationships for p-values above the 0.05 line.

p-Value plots are standard technology used by us and others [3,4,42,80,81,86–91].
A two-component mixture of p-values indicates a mix of studies suggesting an association
and no association. Both cannot be true. Given potentially large search spaces used in
the base papers (Tables 3 and 4), the two-component shapes of the p-value plots (Figure 2)
may indicate questionable research practices being used to obtain small p-values in the
base papers. The p-value plots showing these mixture relationships do not support a real
exposure–disease (air quality–asthma exacerbation) claim.
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4. Discussion

Asthma is considered an important disease that affects the airways to the lungs. It is
one of the most common types of chronic disease in the world’s population [40,41]. However,
we were interested in understanding whether independent, statistical test methods—simple
counting, p-value plots—support findings of the Zheng et al. meta-analysis, and whether
the Zheng et al. air quality–asthma exacerbation claims are reliable. If they are reliable,
the shape of the p-value plots in Figure 2 should be consistent with p-value plots presented
in SI 4–SI 6. One should be concerned if they are not.

As to the characteristics of this important disease, asthma frequently first expresses
itself early in the first few years of life arising from a combination of host and other
factors (refer to SI 7). Triggering/precipitating factors that may provoke exacerbations
or continuously aggravate symptoms (secondary causes of asthma) are multifactorial in
nature and are listed in SI 7. The underlying pathology of asthma, regardless of its severity,
is chronic inflammation of the airways and reactivity/spasm of the airways. A combined
contribution of genetic predisposition and non-genetic factors accounts for divergence of
the immune system towards T helper (Th) type 2 cell responses that include production of
pro-inflammatory cytokines, Immunoglobulin E (IgE) antibodies and eosinophil infiltrates
(circulating granulocytes) known to associate with asthma [92]. Additional information
on asthma characteristics—development of asthma, triggering/precipitating factors and
seasonality of asthma exacerbations—is provided in SI 7.

4.1. Multiple Testing Multiple Modelling (MTMM) Bias

The median (interquartile range) analytical search space count of 17 randomly selected
base papers reviewed is considered large—15,360 (1536–40,960)—indicating the poten-
tial of large numbers of statistical tests conducted in the base papers of the Zheng et al.
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meta-analysis. We also note that search space counts of air quality component–heart
attack observational studies in the published literature are similarly large (i.e., median
(interquartile range) = 6784 (2600–94,208), n = 14 [3] and 12,288 (2496–58,368), n = 34 [4].

The MTMM bias can be explained as follows. It involves researchers performing many
statistical tests; whereas a form of questionable research practices involves researchers only
selecting and reporting a portion of their findings—ones with positive associations—in a
study, possibly to support a point-of-view. Researchers then only need to describe research
designs and methods in their studies that are consistent with their reported findings (and
point-of-view) and other findings, e.g., negative associations, can be ignored.

This can be written up in a professional manner and submitted to a scientific journal.
Journal editors can overlook MTMM practices given the professional, tight presentation of
a scientific manuscript and send it off for independent review, likewise for independent
reviewers. In the end, what gets published can be based on a portion of the tests performed
(i.e., selectively reported test results) and disregarding whether these are true or false-
positive findings. Others [5,6,93] have reported that studies like these are more likely
presenting false-positive findings.

For any given set of multiple null hypothesis tests, 1 of every 20 p-value results could
be 0.05 or less even when the null hypothesis is true based on the Neyman–Pearson theory
of hypothesis testing—known as the Type I (false-positive) error rate [81,94]. A p-value less
than 0.05 does not by any means indicate that a positive outcome is not a chance finding [7].
When many null outcomes are tested, the expected number of false-positive outcomes can
be inflated compared to what one might expect or allow due to chance (typically 5%) as
the overall chance of a false-positive error can exceed the nominal error rate used in each
individual test [4,42,88,95–97]. Large numbers of null hypothesis tests were a common
feature of the 17 randomly selected base papers that we reviewed. Thus, for these base
papers, the upper limit of expected number of false-positive outcomes may even exceed
5% of the tests performed.

The problem may worsen with MTMM of observational datasets whose explanatory
(predictor) variables are not independent of each other. For example, in urban areas where
most observational air quality–effect studies draw data from, there are known correlations
between air quality components related to co-pollutant emissions from motor vehicle,
commercial and industrial activities—e.g., NO2 with CO and SO2; PM2.5 with PM10, SO2
with CO [74,75,98]. Here, the expected overall false-positive error rate can decrease or
become inflated. Any variable correlated with a false-positive variable may also be selected.
However, the effective number of variables will be reduced. On balance correlations will
reduce the number of claimed associations, but they will add to the complexity even more
among results when multiple tests (comparisons) of co-dependent explanatory variables
are made [99–104]. In addition, others have showed that employing a few common forms
of p-hacking may cause the false-positive error rate for a single study to increase from the
nominal 5% to over 60% [104].

One is unable to conclude anything of consequence by observing 1 positive (statis-
tically significant) result from 20 independent statistical null hypothesis tests based on a
5% false-positive error rate. If these tests are not independent and p-hacking is employed,
one is unable to conclude anything of consequence even observing more than 1 positive
result because of the potential for false-positive error rate inflation. The probability of
this occurrence depends on a host of factors and is almost never uniform across the tests
performed (thus violating a key assumption of the 1 in 20 error rate rule of a null hypothesis
test). If statistical null hypothesis testing is used as a kind of data beach-combing tool
unguided by clear (and ideally prospective) specification of what findings are expected
and why, much that is nonsense will be “discovered” and added to the peer-reviewed
literature [105]. Failing to correct for MTMM can be detected by estimating the number of
independent variables measured and the number of analyses performed in a study [97]—
which is why we estimated analysis search spaces (i.e., number of analyses performed).
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The MTMM bias, as stated previously, is analogous to Model Selection in statistical
models used to estimate the effects of environmental impacts [59,60]. Given k potential
explanatory variables for a model, a researcher can in principle run 2k possible regressions
using Model Selection and select one of the models that yields the ‘best’ results. Coefficient
standard errors for this model will be invalid because it does not account for model
uncertainty. Others [57,60,106] instead have recommended Bayesian Model Averaging
(BMA), which entails estimating all 2k models then generating posterior distributions of
the coefficients weighted by the support each model gets from the data.

Of interest to our study, researchers [106] used both Model Selection and BMA tech-
niques for estimating statistical associations between air quality component levels and
two respiratory health outcomes—(i) monthly hospital admission rates by age group and
(ii) length of patient days in hospital—for all lung diagnostic categories, including asthma,
in 11 large Canadian cities from 1974 to 1994. These researchers observed that when using
hospital admission rates as the dependent variable, only insignificant or negative effects
were estimated regardless of whether Model Selection and BMA were used. When using
patient days as the dependent variable, they observed that none of the air quality compo-
nents showed a significant positive effect on health (including asthma), again regardless of
whether Model Selection and BMA was used.

These findings are particularly notable given that the time period of their analysis—
1974 to 1994—represented conditions with much higher air quality component levels in
Canadian cities compared to today. Their study also highlighted the danger that incomplete
modelling efforts—such as using Model Selection techniques—could yield apparent air
quality component–health associations that are not robust to reasonable variations in
estimation methods.

4.2. Lack of Transparent Descriptions of Statistical Tests and Statistical Models

In reviewing the 17 randomly selected base papers from the Zheng et al. meta-
analysis, we observed lack of transparency in the methodology descriptions. This made it
challenging for us and, in general, for readers to understand how many statistical tests and
models were used in these studies. Consequently, our reviews required careful reading
and re-reading of the ‘Method’ section, and the ‘Results’ and “Discussion’ sections of these
base papers to understand what was done and to compile information for estimating the
analysis search spaces. As an example, in one base paper reviewed [107] only near the end
of their Discussion section did they indicate that multiple pollutants were included in the
same model—implying that multivariate models were employed along with univariate
and bivariate models that they described in their Methods section.

Why this lack of transparency is important is explained further. It is common today for
observational studies employing MTMM to seek out information on multiple exposures and
disease outcomes, and the possibility exists for researchers to test thousands of exposure–
disease combinations [19] and only report a portion of results that allow them to make
interesting claims. Several hypothetical analytical search space scenarios were presented in
Table 2. A single model form was used for these scenarios, although in practice it is not
uncommon to use multiple modelling forms [57,74–77].

As shown in Table 2, analysis search spaces can easily inflate into tests of thousands
of exposure–disease combinations. Without clear, concise descriptions about details of
outcomes, predictors, models, lags and covariate confounders used (or available) in a study,
readers will not be able to comprehend what was done relative to the few statistical results
that typically get presented in a study. The latter Examples 2 and 3 in Table 2 illustrate
opportunities for researchers to search through but only report statistically significant,
positive exposure–disease associations in a study.

Selective reporting of findings is not meaningful in the face of false-positive error
rates for a large number of tests. Specifically, theoretical expected numbers of false-
positives within a large number of tests, based on a false-positive error rate of 5% may
be = Space3 × 5% (independent variables tested) and ≥ Space3 × 5% (for correlated vari-
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ables tested) [100–102]. Given the dependency of numerous variables tested in the models,
discussed above, expected numbers of false-positive findings for Examples 2 and 3 from
Table 2 could be:

• Example 2—≥2304 × 0.05 (i.e., ≥115).
• Example 3—≥23,040 × 0.05 (i.e., ≥1152).

Performing large numbers of statistical tests without offering all findings (which is
now possible with Supplemental Materials and web posting), and how and whether the
dependency issue is dealt with among known correlated explanatory variables tested
makes it challenging to ascertain how many true or false-positive versus negative findings
might exist in an analysis. The issue of whether p-hacking was used also cannot be
disentangled when only a few of the findings are presented. It is our view that the reader
cannot make a reasoned judgment decision about the reliability of a research finding in a
study when only a few statistically significant findings are presented relative to the overall
number of tests conducted.

4.3. Heterogeneity

Heterogeneity arises because of effects in the populations which the studies represent
are not the same or even the analysis methods employed are not the same. Beyond the
role of chance, the influence of bias, confounding or both can contribute to heterogeneity
among observational studies [108,109].

The median number of possible statistical tests of the 17 randomly selected base
papers from Zheng et al. was large—a median of 15,360 (interquartile range 1536–40,960).
Further, p-value plots of the six air quality components (Figure 2) show a two-component
mixture—i.e., obvious variation—common to all the components with small p-values used
from some base papers (which may be due to p-hacking) while other p-values appear
random (i.e., > 0.05). In this case, estimating an overall effect (association) in meta-analysis
by averaging over the mixture does not make sense. The p-value plots in Figure 2 do not
directly confirm evidence of p-hacking in the base papers. However, in the presence of
possibly large numbers of statistical tests in the base papers reviewed (Tables 2 and 3),
p-hacking cannot be ruled out as an explanation for small p-values.

Heterogeneity will always exist whether or not one can detect it using a statistical
test [108]. Zheng et al. calculated statistical heterogeneity (I2)—which quantifies the pro-
portion of the variation in point estimates due to among-study differences. For their overall
analysis of the six air components, they reported I2 values of 85.7% (CO), 69.1% (PM10),
82.8% (PM2.5), 77.1% (SO2), 87.6% (NO2) and 87.8% (O3).

Low, moderate and high I2 values of 25%, 50% and 75% have been assigned for meta-
analysis [110]. Another guide to interpretation of I2 values is [108]: 0–40% might not be
important, 30–60% may be moderate heterogeneity, 50–90% may represent substantial
heterogeneity and 75–100% represents considerable heterogeneity. These criteria suggest
that meta-analysis of all air components (except PM10) by Zheng et al. are associated with
high/substantial heterogeneity (i.e., >75%).

A key source of heterogeneity in meta-analysis is publication bias in favor of positive
effects, often facilitated by use of researcher degrees of freedom (flexibility) to find a statis-
tically significant effect more often than expected by chance [8]. Zheng et al. acknowledge
that publication bias was detected in all of their analyses except for PM2.5. In addition,
Zheng et al.—as described in their Methods section—indicated the screening and data
collection procedures for identifying their base studies complied with PRISMA—Preferred
Reporting Items for Systematic Reviews and Meta-analysis [111].

PRISMA is one of dozens of quality appraisal methods that exist in research synthe-
sis studies [112]; however, we note that the PRISMA checklist is silent on MTMM bias
(and possible p-hacking). These factors cannot be dismissed as possible explanations for
their findings.
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4.4. Limits of Observational Epidemiology

All of the Zheng et al. 17 randomly selected base papers that we reviewed made
use of exposure–response models that cannot address the complexities related to real-
world air quality component exposure–asthma responses. These models represented the
population level and did not capture individual level behaviors and possible exposures to
other triggers and other real-world confounders. Admittedly, these are difficult to capture
in population-based studies due to feasibility and cost limitations.

An important criterion supporting causality of an air quality component–asthma
exacerbation association is a dose–response relationship. In the absence of flexibility in
data collection, analysis and reporting available to researchers, exposure to a true trigger
cannot both cause and not cause asthma exacerbation per equivalent unit change in air
quality component level (i.e., per 10 per µg/m3 increase) across populations tested. Of the
332 Zheng et al. summary statistics (RRs) used for meta-analysis of air quality components
(Table 5), 196 (or 59%) represented null (statistically non-significant) associations. That is to
say, they offer insufficient evidence to support an air quality component exposure–asthma
exacerbation causal relationship.

Quantitative results from observational studies (e.g., RRs, odds ratios) can figure
prominently into regulatory decisions but frequently observational studies offer RRs and
odds ratios extremely close to 1.0. A disservice to observational epidemiology is the practice
of searching for and reporting and attempting to defend weak statistical associations (e.g.,
RRs and odds ratios extremely close to 1.0)—among which the potential for distorting
influences of chance, bias and confounding is further enhanced [18]. In its simplest form,
risk factor–chronic disease observational epidemiology examines statistical relationships
(associations) between risk factors (independent variables) and chronic diseases (dependent
variables) in the presence/absence of confounders and moderating factors (covariates) that
may or may not alter these relationships. However, observational associations between
variables do not guarantee causality and they are often complex and influenced by other
variables—e.g., confounders and moderating factors [113].

The biomedical science literature is largely absent on evidence that air quality compo-
nents represent a strong risk factor to the common chronic diseases in United States unlike
evidence for factors such as unhealthy diet, physical inactivity, tobacco use and harmful
substance abuse (e.g., alcohol) [40,41]. For air quality component–chronic disease obser-
vational studies to offer meaningful statistical results and meaningful evidence for public
health practitioners, risk results (e.g., RRs, odds ratios) need to be high enough, whether in
the presence/absence of confounders and moderating factors, to be taken seriously. For ex-
ample, others recommend RRs >2 to rule out bias and confounding [114–117]. Of 332 RRs
used in the Zheng et al. meta-analysis for all six air quality components, only 2 (<1%) had
RRs >2. Thus, we are unable to rule out bias and confounding out as explanations for the
vast majority (>99%) of RRs used for meta-analysis by Zheng et al. from the 87 base papers.

Epidemiology studies that test many null hypotheses tend to provide results of limited
quality for each association due to limited exposure assessment and inadequate information
on potential confounders [118]. These studies also tend to generate more errors of false-
positive or false-negative associations [119]. The independent statistical methods that we
employed in this study—simple counting and p-value plots—do not support findings of
the base studies and meta-analysis as being reliable.

Further, we view the Zheng et al. meta-analysis as a possible example of what
is known as ‘vibration of effects’ [39,113,120]—wherein summary statistics for a weak
risk factor (i.e., ambient air quality) are combined from base studies whose outcomes
vibrate between suggesting associations/no associations dependent upon how researchers
designed the studies, collected and analyzed data and reported their results. Flexibility in
data collection, analysis and reporting available to researchers can dramatically increase
actual false-positive rates [104] and this was not considered by Zheng et al. as a possible
explanation for their findings.
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Observational studies of air quality component–health effect associations ought to
survive a battery of independent, passable tests, such as p-value plots. The same holds
true for observational studies of other risk factor–chronic disease associations. Researchers
always have the burden of proof to defend statistically significant associations. We should
be concerned that several independent inquiries of published meta-analysis studies of air
quality component–health effect associations have failed to pass p-value plot tests, which is
a standard technology used in this study and others [3,4].

We do not take a position that our findings absolutely disprove claims there are air
quality component–asthma exacerbations associations. Yet, our findings are consistent with
the general claim that false-positive results are common features of the biomedical science
literature today, including a broad range of risk factor–chronic disease research [42–44].

Epidemiologists tend to seek out small but (nominally) significant risk factor–health
outcome associations (i.e., those that are less than 0.05) in multiple testing environments.
These practices may render their research susceptible to reporting false-positives as real
results, and to risk mistaking an improperly controlled covariate for a positive association.
One should be careful when conducting multiple tests on the same data. Performing
multiple tests and reporting only those that surpass a particular significance threshold (i.e.,
p-value less than 0.05) can lead to uninterpretable p-values and wrong scientific practice.

Due to pressure to limit the length of manuscripts for publication and in part due to
predominance of hypothesis testing in statistics, there may be a tendency for researchers
to select only a subset of associations they consider worthy of reporting (reporting bias?).
If this is occurring, there may be a bias in the epidemiologic literature because “statistically
significant” associations are more likely to be published than “nonsignificant” ones [13–15].
The ability of public health practitioners to weigh evidence concerning a suspected risk
factor in the literature can be compromised by this unmeasurable bias [13].

It is therefore as important to publish findings of no effect as findings of statistically
significant associations. We also make a case for publishing studies like ours. This study
and others [3,4] show how a set of statistical techniques—simple counting and p-value
plots—can provide independent tests of epidemiology meta-analyses to detect p-hacking
and other frailties in the underlying biomedical science literature. A set of studies in a
meta-analysis whose p-values demonstrate bilinearity in a p-value plot should properly be
regarded as suspect.

4.5. Recommendations for Improvement

It is our belief that risk factor–chronic disease researchers are unaware of improper
use of statistical methods, and that positive research findings from published observa-
tional studies may be false. Additionally, there are many sources of bias currently being
underestimated by observational study researchers with selective reporting biases likely a
key issue distorting their findings, and publication bias likely a key issue distorting the
epidemiologic literature in general. Here, we offer recommendations for ways of improving
risk factor–chronic disease observational studies to address these issues.

Our recommendations have largely been advanced by others in the past [121–124].
In addition, this issue has become a topic of interest more recently [8,14,16,125–132]. Re-
garding individual researchers improving risk factor–chronic disease observational studies,
it is apparent to us that funding agencies and journal editors (and reviewers) play an
important role in research publication. Many funding agencies and journals largely empha-
size novelty of research for publication [8,131]. Researchers are aware of this bias to the
novel. Regrettably, many researchers are also aware of the possibility that you can publish
if you find a significant (positive) effect [8]. This may motivate researchers to engage in
MTMM and other questionable research practices to produce and publish positive (but
false) research findings to advance their careers [133].

A recent survey of researchers found that researchers themselves believe they are
responsible for addressing issues of reproducibility, but that a supportive institutional
infrastructure (e.g., training, mentoring, funding and publishing) is needed [14]. While the
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importance of this cannot be dismissed, we suggest there will be little incentive to change
current practices at the individual researcher-level unless there is a commitment to change
how funding agencies, journal editors (and reviewers) conduct their end of the research
publication process. Therefore, our recommendations are aimed specifically at funding
agencies and journal editors, although many helpful recommendations exist in literature
for individual researchers [9,14,71,97,125,130–132,134].

We see the following topics as being important for enabling improvements in risk
factor–chronic disease observational studies at the funding agency/journal level:

• Preregistration.
• Changes in funding agency, journal editor (and reviewer) practices.
• Open sharing of data.
• Facilitation of reproducibility research.

Preregistration—Preregistration involves defining the research hypothesis to be tested,
identifying whether the study is confirmatory or exploratory and defining the entire data collec-
tion and data analysis protocol prior to conducting an observational study [8,14,126,130,131].
Preregistration is intended to address issues of [8]: (i) hypothesizing after results are known
(HARKing), (ii) minimize researcher flexibility in data analysis and reporting of findings
(p-hacking) and (iii) publication bias.

Preregistration should be openly published, time-stamped (and should not be changed)
and be sufficiently detailed to establish that a study was actually done in line with the
hypothesis and free from biases due to how researchers analyze the data and report the
results [131]. It is crucial for descriptions of data collection and analysis protocols to be
transparent [128]; for example, to the point where readers have a clear understanding of
details about the number of independent variables measured and the number of analyses
performed in an observational study [97]. This was a key limitation that we faced in our
present evaluation of the Zheng et al. meta-analysis.

Changes in funding agency, journal editor (and reviewer) practices—Funding agencies
and research sponsors tend to emphasis novelty of research [8]. These efforts should be
reallocated towards supporting replication of important research findings for the benefit of
the scientific community. Concurrent with this is funding agencies requiring preregistration
and open sharing of data (i.e., making data available to the pubic) as a requirement for
funding observational studies.

Journals too seek novelty in research in part because of the competition for impact
factors [8]. In fact, editors are often rewarded for actions that increase the impact factor
of the journal [14]. Studies which report novel findings are more often highly cited and
thus contribute to the stature of a journal. This should not be a focus. Rather, journals and
journal editors should formalize editorial policies and practices around making decisions
to publish based on issues of scientific quality and logical reasoning by researchers and
not on novelty or the direction (i.e., positive versus negative results) and strength of study
results [124].

Open sharing of data—We consider the potential for bias to be particularly severe for
observational studies that investigate subtle/weak risk factor–chronic disease relationships.
This type of epidemiological research poses a considerable challenge for the most common
chronic diseases of interest in United States (Table 1) because this research operates in
areas with very low pre- and post-study theoretical probability for true findings (Figure 1).
Along with preregistration, another way to deal with this challenge is to make the data from
these studies openly available for independent reanalysis after publication [14,16,131,132].

Facilitation of reproducibility research—Funding agencies (and journals) are seldom
willing to fund (allow publication) of replication research, particularly when the results
contradict earlier findings [131]. As replication research fulfils an important need in the
advancement of scientific knowledge and to address publication bias [130,131], funding
agencies (and journals) should fund (publish) replication research.
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5. Summary

False-positive results and bias may be common features of the biomedical science litera-
ture today, including risk factor–chronic disease research. Included with this are observational
studies of ambient air quality as a chronic disease risk factor, which operate in areas with low
theoretical probability of positive findings being true for the most common chronic diseases,
including asthma, in United States. Because of these potential problems, we undertook an
evaluation of the reliability of observational base studies used in the Zheng et al. meta-
analysis examining whether six ambient air quality components trigger asthma exacerbation.
We observed that the median number of possible statistical tests of 17 randomly selected base
papers from Zheng et al. was large—15,360 (interquartile range 1536–40,960)—suggesting
that large numbers of statistical tests were a common feature of the base studies.

Given this, p-hacking cannot be ruled out as explanations for small p-values reported
in some of the base papers. We also observed that p-value plots of the six air quality
components showed a two-component mixture common to all components—with p-values
from some base papers having small values (which may be false-positives) while other
p-values appearing random (>0.05). The two-component shapes of these plots appear
consistent with the possibility of questionable research practices being used to obtain
small p-values in the base papers. Our interpretation of the Zheng et al. meta-analysis
is that the random p-values indicating null associations are more plausible and that their
meta-analysis is unlikely replicate in the absence of bias.

Regarding two properties of the Zheng et al. meta-analysis that we were interested
in understanding:

• As for the reliability of claims made in the base papers of their meta-analysis, we sug-
gest that the meta-analysis is unreliable due to the presence of multiple testing and
multiple modelling bias in the base papers.

• As for whether heterogeneity across the base papers of their meta-analysis is more
complex than simple sampling from a single normal process, we show that the two-
component mixture of data used in the meta-analysis (i.e., Figure 2) does not represent
simple sampling from a single normal process.

It is our belief that risk factor–chronic disease researchers are unaware many positive
research findings from published observational studies may be false. In this regard, we see
the following areas as being crucial for enabling improvements in risk factor–chronic
disease observational studies at the funding agency and journal level: preregistration,
changes in funding agency, journal editor (and reviewer) practices, open sharing of data
and facilitation of reproducibility research.
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