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Abstract: A generalized plasma model with inertial warm ions, inertialess iso-thermal electrons,
super-thermal electrons and positrons is considered to theoretically investigate the modulational
instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schrödinger equation is derived
by applying the reductive perturbation method. It is observed that the stable domain of the IAWs
decreases with ion temperature but increases with electron temperature. It is also found that the
stable domain increases by increasing (decreasing) the electron (ion) number density. The present
results will be useful in understanding the conditions for MI of IAWs which are relevant to both
space and laboratory plasmas.
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1. Introduction

The co-existence of electrons and positrons in an electron–positron–ion (EPI) plasma
medium (EPIPM) was identified by the THEMIS mission [1] and Viking satellite [2] in both
space (viz., Saturn’s magnetosphere [3–7], early universe [4–6], pulsar magnetosphere [4–6],
solar atmosphere [8–11], active galactic nuclei [12,13], and polar regions of neutron stars [14],
etc.) and laboratory environments (viz., high intensity laser irradiation [4], semiconductor
plasmas [12], hot cathode discharge [4], and magnetic confinement systems [12], etc.).
A large number of authors studied ion-acoustic (IA) waves (IAWs) [3–6,8–10,15], positron-
acoustic waves (PAWs) [7], and electron-acoustic waves (EAWs) [11] as well as their associ-
ated nonlinear structures such as solitons [3,4], shocks, rogue waves [9], double layers, and
dark and bright envelope solitons [5] to understand the basic properties of EPIPM. Ali et al.
[7] examined the PAWs in EPI magnetoplasma. Paul et al. [16] investigated the stability of
the IAWs in the presence of positron.

Two-temperature electrons (hot and cold) were identified by the Voyager PLS [17]
and Cassini CAPS [18] observations in Saturn’s magnetosphere, and were successively
verified by several satellite missions, viz., Viking Satellite [2], FAST Auroral Snapshot
(FAST) at the auroral region [19] and THEMIS mission [1], and are governed by the super-
thermal kappa/κ-distribution rather than well-known Maxwellian distribution, and were
also considered by many authors for analyzing the propagation of nonlinear electrostatic
waves [20] in space plasmas. The super-thermal parameter (κ) in κ-distribution represents
the super-thermality of plasma species, and the small values of κ determine the large
deviation of the plasma species from the thermal equilibrium state of the plasma system,
while for the large values of κ, the plasma system coincides with the Maxwellian distribu-
tion. Shahmansouri and Alinejad [3] considered a three-component plasma model with
two-temperature super-thermal electrons and cold ions, and investigated IA solitary waves,
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and confirmed the existence of both compressive and rarefactive solitary structures in the
presence of the two-temperature super-thermal electrons. Baluku and Helberg theoretically
and numerically analyzed IA solitons in the presence of two-temperature super-thermal
electrons. Panwar et al. [8] demonstrated IA cnoidal waves in a three-component plasma
medium with inertial cold ion and inertialess two-temperature κ-distributed electrons, and
found that a cold electron’s super-thermality increases the height of the cnoidal wave.

The MI of wave packets has been considered the basic platform for the formation of
bright and dark envelope solitons in plasmas, and has also caused a number of authors
to investigate the MI of electrostatic waves and associated bright and dark envelope soli-
tons in the interdisciplinary field of nonlinear-sciences, viz., fiber telecommunications [5],
oceanic wave [9], optics [9], and plasmas [6], etc. The intricate mechanism of the MI of
various waves (viz., IAWs, EAWs, and PAWs, etc.) and the formation of the electrostatic
envelope solitonic solitons was governed by the standard nonlinear Schrödinger equation
(NLSE) [13,21]. Kourakis and Shukla [5] investigated the MI of the IAWs in a super-thermal
plasma with inertial cold ion and inertialess cold and hot electrons. Alinejad et al. [6]
studied the stability conditions of the IAWs in the presence of super-thermal electrons and
found that the stable region of the IAWs decreases with the number density of the cold
electrons. Ahmed et al. [21] examined the stability of IAWs and observed that the critical
wave number kc decreases with the increase in the value of κ.

The manuscript is organized in the following order: the governing equations of the
plasma model are presented in Section 2. The derivation of NLSE by using the reductive
perturbation method (RPM) is represented in Section 3. The MI and associated envelope
solitons of IAWs are given in Section 4. The numerical analysis is given in Section 5. Finally,
the conclusion is presented in Section 6.

2. Governing Equations

We consider a four-component unmagnetized plasma model consisting of warm ions
(with charge q+ = Z+e; mass m+), κ-distributed super-thermal electrons (with charge
qe1 = −e; mass me1), iso-thermal electrons (with charge qe2 = −e; mass me2), and super-
thermal κ-distributed positrons (with charge qp = e; mass mp). The overall charge neu-
trality at equilibrium can be expressed as µ1 + µ2 − µ3 = 1, where µ1 = ne10/(Z+n+0),
µ2 = ne20/(Z+n+0), and µ3 = np0/(Z+n+0). Now, the basic set of normalized equations
can be written in the following form:

∂n+

∂t
+

∂

∂x
(n+u+) = 0, (1)

∂u+

∂t
+ u+

∂u+

∂x
+ ηn+

∂n+

∂x
= −∂φ

∂x
, (2)

∂2φ

∂x2 + n+ = µ1ne1 + µ2ne2 − (µ1 + µ2 − 1)nP, (3)

where ns is the number density of plasma species s and u+ is the ion fluid speed. The nor-
malization is carried out by using the following variable: n+ → N+/n+0, x → X/λD, u+ →
U+/C+, t → Tωp+, ωp+ = (4πe2Z2

+n+0/m+)1/2, and λD+ = (kBTe1/4πe2Z+n+0)
1/2,

where n+ is the number density of inertial warm ions normalized by its equilibrium value,
n+0; u+ is the ion fluid speed normalized by the IAW speed C+ = (Z+kBTe1/m+)1/2(with
Te1 being the κ-distributed electron temperature, m+ being the ion rest mass, and kB
being the Boltzmann constant), and φ is the electrostatic wave potential normalized
by kBTe1/e. The parameter η is defined as η = 3T+/(Z+Te1). The ion pressure is
P+ = kBN+T+(N+/n+0)

2/N , where T+ and N is the temperature of warm ion and degrees
of freedom (N = 1 for one dimension), respectively.

In the case of super-thermal electron and positron, the super-thermal parameter
κ > 3/2 and the number density equations are as follows [6,22,23]:

ne1 = [1− 2φ/(2κ − 3)](−κ+1/2), (4)
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np =
[
1 + 2ρφ/(2κ − 3)

](−κ+1/2)
, (5)

where ρ = Te1/Tp (with Tp being the super-thermal positron temperature). We express the
number density equation of iso-thermal distributed electron as follows:

ne2 = exp($φ), (6)

where $ = Te1/Te2 is greater than 1 and Te2 is the iso-thermal electron temperature. Now,
Equation (3) can be expanded (up to φ3) by substituting Equations (4)–(6) as follows:

∂2φ

∂x2 + n+ = 1 + F1φ + F2φ2 + F3φ3 + · · ·, (7)

where

F1 =
µ2$(2κ − 3) + (2κ − 1)(µ1 + Λρ)

(2κ − 3)
, F2 =

µ2$2(2κ − 3)2 + (4κ2 − 1)(µ1 −Λρ2)

2(2κ − 3)2 ,

F3 =
µ2$3(2κ − 3)3 + (4κ2 − 1)(2κ + 3)(µ1 + Λρ3)

6(2κ − 3)3 ,

where Λ = µ1 + µ2 − 1. Equations (1), (2), and (7) represent the IAW dynamics for this
considered plasma model.

3. Derivation of the NLSE

We can employ the RPM to derive the NLSE and hence to study the MI of IAWs.
The stretched (slow) co-ordinates can be written as

ξ = ε(x− vgt), (8)

τ = ε2t, (9)

where vg and ε are denoted as the group speed and smallness parameter, respectively. So,
the dependent variables can be expanded as

 n+

u+

φ

 =

 1
0
0

+
∞

∑
m=1

εm
∞

∑
L=−∞

 n(m)
+L

u(m)
+L

φ
(m)
L

(ξ, τ) exp[iL(kx−ωt)], (10)

where ω (k) is the angular frequency (carrier wave number). The derivative operators are
employed as

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2 ∂

∂τ
, (11)

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
. (12)

Thus, the first-order (m = L = 1) equation is obtained by using Equations (1), (2) and
(7)–(12) and by selecting the co-efficients of ε; the dispersion relation for IAWs is obtained
as follows:

ω2 = k2(1 + ηk2 + ηF1)/(k2 + F1). (13)
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Now, the reduced equation for the second order (m = 2 and L = 1) can be obtained as

n(2)
+1 =

k2

β
φ
(2)
1 +

2ikω(vgk−ω)

β2
∂φ

(1)
1

∂ξ
, (14)

u(2)
+1 =

ωk
β

φ
(2)
1 +

i(vgk−ω)(ω2 + ηk2)

β2
∂φ

(1)
1

∂ξ
, (15)

where β = ω2 − ηk2, and with the compatibility condition we obtain

vg = (ω2 − β2)/ωk. (16)

when m = L = 2, second-order harmonic amplitudes are found for the coefficient of ε in
terms of |φ(1)

1 |2 as

n(2)
+2 = F4|φ

(1)
1 |

2, (17)

u(2)
+2 = F5|φ

(1)
1 |

2, (18)

φ
(2)
2 = F6|φ

(1)
1 |

2, (19)

where

F4 = k2(ηk4 + 3ω2k2 + 2F6β2)/2β3, F5 = ω(F4β2 − k4)/β2k,

F6 =
[
k4(3ω2 + ηk2)− 2F2β3

]
/2β2(4βk2 + F1β− k2).

Now, the expression of n(2)
+0, u(2)

+0, and φ
(2)
0 in terms of φ

(1)
1 is obtained for m = 3 with

L = 0 and m = 2 with L = 0 as follows:

n(2)
+0 = F7|φ

(1)
1 |

2, (20)

u(2)
+0 = F8|φ

(1)
1 |

2, (21)

φ
(2)
0 = F9|φ

(1)
1 |

2, (22)

where

F7 =
[
k2(2ωvgk + ω2 + ηk2) + F9β2

]
/β2β1, F8 = (F7vgβ2 − 2ωk3)/β2,

F9 =
[
k2(ω2 + ηk2 + 2ωvgk)− 2F2β2β1

]
/β2(F1β1 − 1),

where β1 = v2
g − η. The standard NLSE is obtained by considering m = 3 and l = 1,

i
∂Φ
∂τ

+ P
∂2Φ
∂ξ2 + Q|Φ|2Φ = 0, (23)

where Φ = φ
(1)
1 is for simplicity. In Equation (23), P is the dispersion coefficient, which can

be written as

P = β(4ηkω− 3vgω2 − vgk2η)/2ω2k, (24)

and Q is the nonlinear coefficient, which can be written as

Q =

[
β2{3F3 + 2F2(F6 + F9)} − k2

{
(ω2 + ηk2)(F4 + F7)− 2ωk(F5 + F8)

}]
/2ωk2. (25)
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4. Modulational Instability and Envelope Solitons

The evolution of a fundamental wave whose amplitude follows Equation (23) de-
pends on both P and Q, which are also dependent on η, ρ, $, µ1, and µ2. The stable
and unstable parametric regimes of IAWs are determined by the sign of P and Q of
Equation (23) [15,24–27]. When P and Q have the same sign (i.e., P/Q > 0), the evolution
of the IAW amplitude is modulationally unstable in the presence of external perturbations.
On the other hand, when P and Q have the opposite signs (i.e., P/Q < 0), the IAWs are
modulationally stable in the presence of external perturbations. The plot of P/Q against
k yields stable and unstable parametric regimes of the IAWs. The point at which the
transition of P/Q curve intersects with the k-axis is known as the threshold or critical wave
number k (= kc) [24,25].

The bright (when PQ > 0) and dark (when PQ < 0) envelope solitonic solutions,
respectively, can be written as [24,25]

Φ(ξ, τ) = ψ1/2
0 sech[(ξ −Uτ)/J1]× exp

[
i
(

Uξ + Ω0τ −U2τ/2
)

/2P
]
, (26)

Φ(ξ, τ) = ψ1/2
0 tanh[(ξ −Uτ)/J2]× exp

[
i
(

Uξ + 2PQτψ0 −U2τ/2
)

/2P
]
, (27)

where J1 = (2Pψ0/Q)1/2, J2 = (2|P/Q|/ψ0)
1/2, ψ0 is the amplitude of the localized pulse

for both bright and dark envelope soliton, U is the propagation speed of the localized
pulse, and Ω0 is the oscillating frequency at U = 0. The pulse width for the bright and
dark soliton is J1 and J2, respectively. We observed the bright (for k = 1.6) and dark (for
k = 1.2) envelope solitons, shown in Figure 1.

Figure 1. The bright (left panel) and dark (right panel) envelope solitons for k = 1.6 and k = 1.2,
respectively, along with η = 0.07, ρ = 1.2, $ = 1.5, κ = 2, µ1 = 0.8, µ2 = 0.3, τ = 0, ψ0 = 0.0005,
U = 0.2, and Ω0 = 0.4.

5. Numerical Analysis

The presence of two-temperature electrons with number density as well as temperature
can be observed in Saturn’s magnetosphere [5,6,8,10,11,28], Earth’s magnetosphere [29],
Auroral plasma [2,30], rf-heated plasma [31], tandem mirror experiments [32], and sput-
tering magnetron plasma [33], etc. Saturn’s magnetosphere has three regions: the inner
magnetosphere (R ≤ 9Rs), intermediate magnetosphere (9Rs < R < 13Rs), and outer mag-
netosphere (≥13Rs), where RS ≈ 60,300 km is the radius of Saturn. Schippers et al. [28]
analyzed the MIMI/LEMMS and CAPS/ELS data from the Cassini spacecraft orbiting
Saturn over a range of 5.4–20RS, which can be found in Table 1.
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Table 1. Parameter values derived from Schippers et al. corresponding to Saturn’s magnetosphere.

R (Rs) Te2 (eV) Te1 (eV) ne2 (cm−3) ne1 (cm−3)

5.40 1.8 300 10.5 0.02
6.30 2.0 400 10.5 0.01
9.80 8.0 1100 2.5 0.07
12.0 6.0 1200 1.0 0.11
13.1 10.2 1000 0.21 0.18
14.0 30 900 0.15 0.10
15.2 70 900 0.25 0.10
17.8 28 1000 0.15 0.07

Several authors numerically analyzed the effects of two-temperature (hot and cold)
electrons following iso-thermal [4,34] or non-thermal [3,5,6,8–11] distribution on the dynam-
ics of space [3–6,8–11] and laboratory [31,33,34] plasma systems under these assumptions:
Te1 > Te2 and ne10 > ne20 [4,8,10,11,31,34] or ne10 = ne20 [5,10,11] or ne10 < ne20 [6,8,33,34].
In our present investigation, we considered for our numerical analysis that Te1 = Tp =
(10∼1000)Te2, T+ = 0.1Te2 [10,31], Z = 1–20 [3,5,8,9], ne10 > ne20, ne10 = ne20, ne10 < ne20,
and small fraction of positrons.

We graphically examined the effects of the temperature of the warm ion and super-
thermal electron as well as the charge state of the warm ion in recognizing the stable and
unstable domains of the IAWs in the left panel of Figure 2, and it is clear from this figure
that: (a) the stable domain decreases with the increase in the value of warm ion temperature
but increases with the increase in the value of super-thermal electron temperature when
the charge state of the warm ion remains constant; (b) the stable domain increases with
Z+ for the constant value of T+ and Te1 (via η = 3T+/Z+Te1). So, the charge state and
temperature of the warm ion play an opposite role in manifesting the stable and unstable
domains of the IAWs.

Both stable (i.e., k < kc) and unstable (i.e., k > kc) domains for the IAWs can be
observed from the right panel of Figure 2, and it is obvious from this figure that: (a) when
µ1 = 0.6, 0.7, and 0.8, then the corresponding value of kc is 1.20 (dotted blue curve), 1.40
(dashed green curve), and 1.50 (solid red curve); (b) kc is shifted to higher values with the
increase (decrease) in ne10 (n+0) when the value of Z+ is constant. Finally, µ1 would cause
the stable domain of IAWs to increase.

We graphically analyzed the effect of temperature of the super-thermal electron and
positron (via ρ) on the stability conditions of IAWs in the left panel of Figure 3. It can be
observed from this figure that the stable domain increases with an increase (decrease) in
the value of super-thermal electron (positron) temperature. The right panel of Figure 3
illustrates the effects of the super-thermality of plasma species in the stable and unstable
parametric domains. It is clear from Figure 3 that for large values of κ, the IAWs become
unstable for small values of k while for small values of κ, the IAWs become unstable for
large values of k.

Figure 2. Plot of P/Q vs. k for the change of η (left panel) and µ1 (right panel) when ρ = 1.2, $ = 1.5,
κ = 2, and µ2 = 0.5.
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Figure 3. Plot of P/Q vs. k for the change of ρ (left panel) and κ (right panel) when η = 0.07, $ = 1.5,
µ1 = 0.7, and µ2 = 0.5.

6. Conclusions

We studied the stability of IAWs in an unmagnetized realistic space plasma system con-
taining warm ions, iso-thermal electrons, κ-distributed electrons and positrons. The RPM
was used to derive the NLSE. The existence of both stable and unstable regions of IAWs
was found, and the interaction between the kc with various plasma parameters (i.e., η, µ1, ρ,
and κ, etc.) was also observed. The fluid approximations (which reduce the kinetic theory
to a fluid theory) used in our present investigation are valid as long as one can neglect the
effects of individual plasma particle dynamics [12,35]. The fluid theory, which is a common
and popular approach for investigating many linear and nonlinear phenomena like our
present investigation, is suitable in understanding the latter, in interpreting most of the
experimental observations and in designing new laboratory experiments [12]. However,
the kinetic theory is essential for some plasma phenomena such as Bernstein waves, the
formation of local instabilities due to the fluctuating local electric field and the anisotropic
effects associated with ion-acoustic waves, Landau damping etc. [12,35]. One can, of course,
carry out our present work by employing the kinetic theory, but obtain the same results
with the same basic physics under some valid approximations. Finally, these results will
be applicable in understanding the conditions of the MI of IAWs and associated envelope
solitons in both space [3–6,8–11] and laboratory environments [4,12].
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