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Abstract: How environmental features (e.g., people, enrichment, or other animals) affect movement
is an important element for the study of animal behavior, biomechanics, and welfare. Here we
present a stationary overhead camera-based persistent monitoring framework for the investigation
of bottlenose dolphin (Tursiops truncatus) response to environmental stimuli. Mask R-CNN, a con-
volutional neural network architecture, was trained to automatically detect 3 object types in the
environment: dolphins, people, and enrichment floats that were introduced to stimulate and engage
the animals. Detected objects within each video frame were linked together to create track segments
across frames. The animals’ tracks were used to parameterize their response to the presence of
environmental stimuli. We collected and analyzed data from 24 sessions from bottlenose dolphins
in a managed lagoon environment. The seasons had an average duration of 1 h and around half of
them had enrichment (42%) while the rest (58%) did not. People were visible in the environment
for 18.8% of the total time (∼4.5 h), more often when enrichment was present (∼3 h) than without
(∼1.5 h). When neither enrichment nor people were present, the animals swam at an average speed
of 1.2 m/s. When enrichment was added to the lagoon, average swimming speed decreased to
1.0 m/s and the animals spent more time moving at slow speeds around the enrichment. Animals’
engagement with the enrichment also decreased over time. These results indicate that the presence
of enrichment and people in, or around, the environment attracts the animals, influencing habitat use
and movement patterns as a result. This work demonstrates the ability of the proposed framework
for the quantification and persistent monitoring of bottlenose dolphins’ movement, and will enable
new studies to investigate individual and group animal locomotion and behavior.
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1. Introduction

Features in an animal’s environment have the potential to influence behavior, biome-
chanics and movement patterns during daily life. For animals in managed settings, mon-
itoring movement patterns to inform welfare practices is essential [1–3]. Behavior and
movement patterns in response to common or long-term events in the surrounding environ-
ment can be predictable and identifiable [4–6]. For example, terrestrial animal studies [7]
have shown that fixed feeding times during the day can result in stable and predictable
behavior in stump-tailed macaques under human care. Previous animal studies have also
investigated how enrichment and human interaction affect dolphin behavior in managed
settings with trained observers monitoring and recording behavior [1,8]. Key to the iden-
tification of how these environmental conditions influence the animals is the ability to
measure and quantify movement without influencing behavior [9]. Traditionally, trained
researchers directly observe and manually record animal behavior, but this approach can
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be time consuming and is limited to when the animals are visible to the observer [1,8].
Observational approaches also tend to be qualitative, and are not capable of capturing the
kinematics (position, speed, acceleration) of the animals as they move in the environment.

Biologging tags, which consist of sensors that record animal movement, sound, video,
and other environmental measures, are used to provide high resolution measurements
from animals [10,11]. Tags provide direct measurements of kinematics, but do not capture
much information about the environmental context that may be driving behavior. Addi-
tionally, the animals have to be trained to wear the tags, and drag forces, high acceleration
swimming or interactions with other animals can detach the sensors [12,13]. Camera data
have been used in conjunction with direct observation to quantify swimming kinematics
and body posture [10,14]. Camera systems installed in the environment enable continuous
records of movement, environmental use, social interaction, and animal kinematics [13–19].
For shorter duration sessions, manual tracking is possible [20], however this becomes
intractable as video lengths grow. Ideally, cameras could be used to persistently monitor
animals and their environment for days or weeks at a time, but this requires robust auto-
mated object tracking methods with sufficient precision to characterize animal movement.

Here we implement an automated computer vision framework using methods from
robotics to track bottlenose dolphins, people, and enrichment in a lagoon environment, and
investigate how the presence of enrichment influences movement. Computer-automated
animal tracking in a managed environment has only been explored recently, with initial
research employing hand-crafted detection methods [6,16], later followed by a convolu-
tional neural-network approach [17]. The method used in this work, Mask R-CNN [21], is
a state-of-the-art object detection technique that is an enhancement of the Faster R-CNN
detector [22] employed in [17]. Mask R-CNN was chosen for its additional precision over
the older method, and the ability to extract object profiles. Using this algorithm to simulta-
neously mask and track the animals as they engage and respond to people and enrichment
provides important kinematic information to quantify movement during these conditions.

For the experiment, video data were recorded at midday from animals in the main
lagoon at Dolphin Quest (Oahu) during an extended period of unstructured swimming,
both with and without enrichment. Positions and contours of dolphins, people and enrich-
ment were extracted from the video frames and used to form dynamic tracks (tracklets).
Animal kinematics (position, speed, heading) from these tracks were used to investigate
how the animals move in the environment both with and without enrichment. These data
were also used to score dynamic interactions between animals and enrichment, a first step
towards quantification of animal preference for different enrichment types. Importantly,
the computer-vision-based approach presented has broad applicability, and can be imple-
mented to quantify movement and behavior as long as cameras can be installed in the
environment, e.g., [16–19].

2. Materials and Methods
2.1. Environment Setups

The proposed research was conducted in the main lagoon environment at Dolphin
Quest Oahu, Hawaii. The lagoon is ~36 m wide and ~54 m long, with two floating
docks separating the main environment from two adjacent lagoons. The docks are used
by the animal care specialists to move within the lagoon system and interact with the
animals. During the trials, the movement of the animals in the lagoon was recorded using
a stationary overhead camera (Allied Vision Manta G-319) with a wide angle lens (Kowa
LM4NCL ½” 3.5 mm F/1.4 C-Mount Lock Screw Industrial Lens) equipped with a linear
glass polarizing filter (Edmund Optics, 70 mm unmounted linear polarizer, wavelength
range 400 to 700 nm) mounted using custom 3D-printed hardware. The wide angle
lens (with polarizing filter) was calibrated using the Fisheye Camera Calibration tools in
MATLAB and was able to capture the entire lagoon, along with the animal care specialists
when present on the docks. Data from four bottlenose dolphins were collected over 24 days
during periods of free swimming at midday, with hour long sessions taking place from
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12:00 pm to 1:00 pm or from 1:00 pm to 2:00 pm. During these lunchtime sessions the
animals moved freely in the environment, and the natural lighting conditions improved
the ability to observe the dolphins when swimming underwater.

Animal care specialists were free to move within the environment during the trials.
For half of the sessions one of two types of floating enrichment was introduced into the
environment: red soft rounded jolly balls or black cylindrical buoys. Jolly Balls are smaller
and dolphins can grasp them with their mouth when swimming, while Buoys are larger and
harder for the dolphins to bring underwater. Both enrichment types have been routinely
presented to the animals by the animal care specialists on a pseudo randomized schedule
prior to this study as a means to promote welfare.

2.2. Target Detection

Three objects were detected and tracked in this study to explore how environmental
stimuli affect animal movement: dolphins, people (animal care specialists) and floating
enrichment. A convolutional neural network, Mask R-CNN [21], was implemented and
trained to detect the object types from multi-hour video recordings. Mask R-CNN outputs
include instance detection, classification and pixel-level object segmentation. Objects in
the overhead video data are small and lack detail. Mask R-CNN was selected for this
work because it is a well developed and validated object segmentation method, making it
possible to reliably detect and mask objects using a more limited set of image features.

The model was trained using a dataset composed of 1200 frames selected from two
1-h sessions in August 2020. An additional 50 labeled frames for each type of enrichment
were selected from 2 days to supplement the original training dataset. Objects (dolphins,
people, enrichment) were manually annotated using the VGG Image Annotator [23], a
stand-alone software package for manually annotating images. Each annotated object was
also manually traced for the masking. Half of the labeled data were used to train the Mask
R-CNN model, and the other half were used to test the classification results. The assessment
results of the prediction confidence coefficient for the three detectors were greater than 80%
(Figure 1). The camera frame rate was down sampled to 5 Hz, and the detectors were used
to process 24 data sets collected in August, September, and October 2020.

The position of each detected object was estimated as the geometric center point of its
mask and was transformed to correct for fisheye lens distortions using the Fisheye Camera
Calibration tools in MATLAB. The corrected detections were mapped from the camera
reference frame to the world reference frame by implementing a perspective transformation
homography [24] and then used for the kinematic analysis.

Figure 1. Example detections of a dolphin, floating enrichment (a buoy), and people in the la-
goon environment. Each detected object is shown with its corresponding mask and the likelihood
of detection.

2.3. Tracklet Formation and Kinematics

The world reference frame detections were initially independent for each image frame.
To extract dynamic information from the targets, continuous tracklets were generated by
applying a prediction-association constant velocity Kalman filter framework [16,24] to
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the detections across video frames, Figure 2. This prediction-association process forms
a tracklet by identifying a detection in the next frame that could be associated with the
current track. Based on the detection information in the current frame at time t, where
p(k,t) = [p(k,t)

x , p(k,t)
y ] is the filtered position and v(k,t) = [v(k,t)

x , v(k,t)
y ] is the corresponding

velocity of the k-th tracklet, the target’s predicted position (p̂(k,t+1)) and velocity (v̂(k,t+1))
in the next frame (t + 1) is obtained using a constant velocity model:

v(k,t) = (p(k,t) − p(k,t−1))/∆t, (1)

p̂(k,t+1) = p(k,t) + v(k,t)∆t, (2)

v̂(k,t+1) = v(k,t). (3)

If the position of the closest detection (d(k,t+1)) in the next frame falls into the proximity
region drawn from Kalman-predicted position p̂(k,t+1), it is identified as an associated
point for tracklet k at the time (t + 1) and used to generate the next filtered position
p(k,t+1) = f ilter(p̂(k,t+1), d(k,t+1)). If there are no detections within the proximity region
at time step (t + 1), the predicted position (p̂(k,t+1)) and velocity (v̂(k,t+1)), are used to
propagate the model forward, i.e., p(k,t+1) = p̂(k,t+1) and v(k,t+1) = v̂(k,t+1). If the number
of unassociated frames grows larger than five time steps, the tracklet is considered inactive
and is truncated at the last confirmed association. The speed (|v|) and heading (h) of an
animal at time t correspond to the magnitude and direction of the filtered velocity vector
v(k,t), respectively. Although heading rate (ḣ) is the derivative of heading:

|v| =
√

v2
x + v2

y, (4)

h = arctan
vy

vx
, (5)

ḣ(t) = (h(t) − h(t−1))/∆t. (6)

Figure 2. (Left) Detections and tracklets are shown for four animals in the lagoon. (Right) An
illustration of the tracklet prediction-association-filtering process. Where for tracklet k the current
filtered position is p(k,t), the current filtered velocity is v(k,t), the Kalman-predicted future position
is p̂(k,t+1) and the detection selected for filtering is d(k,t+1), while the filtered position of the animal
at the next step is p(k,t+1). d(i,t+1) is another detection at (t + 1) that is not associated with the
k-th tracklet.

2.4. Movement in the Environment
2.4.1. Occupancy Heatmaps and Flow in the Environment

Occupancy heatmaps were use to characterize where the animals tended to spend
time during the experiment [5]. The heatmaps were generated by integrating the occupancy
probability distribution for all detections onto a blank map. The maximum occupancy
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density was then scaled to 1 for each heatmap, resulting in a relative habitat use for each
condition. Percentage Use of the habitat was then calculated as:

Percentage Use =
A(0,1]

A
, (7)

where, A denotes the whole lagoon area and A(0,1] is the area where detections occurred
(Probability greater than 0). Quiver plots were used to visualize the flow of the moving
animals [24]. The environment was first subdivided into individual 2 m × 2 m cells. Vector
headings for all tracklets that fell within an individual cell were then summed. If the
animals tended to travel in the same direction as they passed through a cell, the summation
adds and the resulting flow vector will have greater magnitude. Similarly, if the animals
rarely move through a cell or if they move through a cell in many different directions, the
resulting magnitude of the flow will be small.

2.4.2. Probability Density

Probability density functions for speed and heading rate were numerically determined
for each experimental condition. A two-sample Kolmogorov-Smirnov (K-S) test [25] was
used to compare the numerically derived distributions for movement in the presence of
people and enrichment with the baseline condition. Comparing the density functions pro-
vides insight into trends present in the animals’ movements during different environmental
conditions. The K-S test statistic returns the maximum absolute difference between the
empirical cumulative distributions of the two compared datasets. Critical values were
determined using a 0.05 significance level, and the numbers of data points used to generate
the density functions were: 416,257 for the baseline condition, 213,631 for the enrichment,
and 196,185 when people were present. If a K-S statistic is greater than its critical value, the
null hypothesis, that the two datasets share the same distribution, is rejected.

2.5. Engaging with Enrichment

A scoring system was used to evaluate how attractive enrichment introduced into the
environment was for the dolphins. Data from four trails, two with buoys and two with jolly
balls, were examined for this analysis. The number of observed interactions, and the time
taken by the animals to engage with enrichment, waiting time, were used to parameterize
enrichment attractiveness. Using this parameter we would expect animals to engage with
an attractive piece of enrichment quickly and frequently, while a less attractive object will
‘wait’ longer for an interaction. Waiting time was calculated as the difference between the
start time of an enrichment tracklet and the time when an animal tracklet passes within
2 m of the enrichment. The example in Figure 3 illustrates a single interaction where
the waiting time is the difference between t1 and t5 for the orange enrichment tracklet.
To summarize the data, the hour long sessions were partitioned into eighteen 200 s bins.
Average waiting time was calculated for all animal–enrichment interactions within that
bin. Only enrichment tracklets with recorded interactions were included in the average.
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Figure 3. An illustration of how waiting time was defined for the enrichment. Eight time steps are
shown for a dolphin (blue) and a piece of enrichment (orange). A point of interaction occurs at t5
when the dolphin detection is within 2 m of the enrichment at the same time. The waiting time is
then defined as the time from the initial detection (t1) to the point of interaction (t5).

3. Results
3.1. Kinematic Analysis

During the experiment, ∼9.5 h of baseline data and ∼10 h of data with enrichment
were collected. Over the course of all the trials, people were present in the environment for
∼4.5 h, with∼1.5 h of which involved no enrichment. The remaining∼3 h of data had both
enrichment and people present, and was excluded from the analysis. During this time, there
were around 825,000 detections of the three objects in the environment. Figure 4a presents
the flow of the animals, and indicates a general counter-clockwise movement during all
three conditions. The pattern of movement does vary between conditions, with a less
defined center of rotation when enrichment or people were present. During the experiment
the animals had a preference for areas in the environment near the docks for all three
conditions, Figure 4b. The normalized probability was highest, the yellow areas, near
both docks during the baseline and people conditions, and near the right dock when
enrichment was present. During the baseline condition, the animals had a larger and more
defined circular area of use in the center of the environment, indicating more time spent
in the circular counter-clockwise motion present in the flow. The percentage use of the
environment was also the largest for the baseline condition, with an 89.3%, 72.6%, and
79.7% use for the baseline, enrichment, and people, respectively.

The probability density functions calculated for speed and heading rate are presented
in Figure 4c,d. All three conditions had mean heading rates of 5 deg/s, confirming
the counter-clockwise motion observed in the flow. Mean speed during the baseline
condition (1.2 m/s) was higher than when either enrichment or people were present in the
environment. The peaks in the density functions at the lower speeds (>0.5 m/s) indicate
periods with little forward motion. This first peak is highest when people were present
and lowest during the baseline condition. The density for baseline speed was used for
comparison with the other two conditions (people and enrichment) in the two-sample
Kolmogorov-Smirnov test. The resulting difference between the cumulative distribution of
the baseline condition and the enrichment condition was 0.07, while the difference with
people present was 0.08. The differences with the baseline distribution were small for
both conditions, but both test statistics are greater than the corresponding critical values
(Table 1).
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Figure 4. Results comparing the three environmental conditions: baseline, enrichment, and people.
(a) Quiver plots for all three conditions show counter-clockwise movement in the lagoon, with the
most concentric pattern occurring during the baseline condition. (b) Position heatmaps for the
conditions show how the presence of enrichment or people modified where the animals spent time
in the environment. (c,d) Probability density functions for the speed and heading rate of the animals
derived from the tracklets. The animals tended to swim faster during the baseline condition, and
spent more time stationary when people where present in the environment. Mean heading rates for
all three conditions were positive, indicating counter-clockwise swimming trend.
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Table 1. Summary measures calculated from the tracklets for the three conditions (baseline, enrich-
ment, and people). Mean, standard deviation, and the results of the K-S tests are reported. The
enrichment and people conditions are compared with Baseline in the K-S tests.

Parameter (Condition) Mean Standard Deviation K-S Test Statistic Critical Values

Speed (Baseline) 1.20 m/s 0.74 0 0
Speed (Enrichment) 1.01 m/s 0.73 0.07 0.0036

Speed (People) 1.09 m/s 0.81 0.08 0.0037
Heading Rate (Baseline) 5.63 deg/s 43.01 0 0

Heading Rate (Enrichment) 5.33 deg/s 54.65 0.03 0.0036
Heading Rate (People) 5.94 deg/s 55.18 0.04 0.0037

3.2. Enrichment

The first 20%, middle 20%, and final 20% of the enrichment trials were examined
to investigate how movement patterns change over time with enrichment present in the
environment. The ∼2 h of data for each period were used to generate quiver plots and
heatmaps, Figure 5. The motion of the animals was more variable when enrichment was
first introduced, with a more defined counter-clockwise movement pattern returning by the
last 20 % of the trials. The heatmaps indicate that the animals were more likely to be present
in the bottom half of the lagoon between the docks during the first 20%, with hotspots near
the right dock as the trials progressed. By the last 20% of the trials the circulate motion of
the animals was again visible in the heatmap. The percentage use of the environment for
the three periods were 75.33%, 61.79%, 67.06%. The mean speed of the animals increased
from 1 m/s to 1.33 m/s over the course of the trials. The mean heading rate was around
5 deg/s for all three periods, Table 2.

The density functions for the three periods are compared to the baseline distribution
in Figure 5c,d. The probability distribution for the speed during the first 20% of the
enrichment trials is visibly different from the other three, with slower overall speeds
and a higher probability of slow forward motion (>0.5 m/s). The density for baseline
speed was again used for comparison with the other two conditions in the two-sample
Kolmogorov-Smirnov test. The K-S tests indicate that as the enrichment trials progressed,
the probability distributions for speed and heading rate both became more similar to the
baseline distributions, Table 2. All K-S test statistics for speed exceeded the critical values,
but the difference between the cumulative distribution of the baseline condition and the
first 20% was the largest at 0.21, and decreased to 0.03 for the last 20% of the trials. The
K-S test statistics for the heading rate were all small and ranged from 0.07 to 0.01, but all
exceeded their corresponding critical values.

Table 2. Report the statistic of the tracklets’ speed and heading rate for the first 20%, middle 20%,
and last 20% time sessions under enrichment condition. All three sessions were compared with the
Baseline condition in the K-S tests.

Parameter (Condition) Mean Standard Deviation K-S Test Statistic Critical Values

Speed (First 20%) 1.00 m/s 0.57 0.21 0.0064
Speed (Middle 20%) 1.20 m/s 0.69 0.06 0.0058

Speed (Last 20%) 1.33 m/s 0.72 0.03 0.0062
Heading Rate (First 20%) 4.26 deg/s 54.89 0.07 0.0064

Heading Rate (Middle 20%) 5.56 deg/s 74.04 0.05 0.0058
Heading Rate (Last 20%) 5.95 deg/s 52.77 0.01 0.0062
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Figure 5. Animal movement when enrichment was present in the environment. (a) The quiver plots
show a more varied movement pattern when enrichment is initially introduced. (b) The heatmaps
also indicate that the use of the environment during the first 20% of the time with enrichment was
more variable. For all three heatmaps, 1 in color bar represents the maximum occupancy density
based on the corresponding conditions. (c,d) Probability density of tracklet speed and heading rate
show that the animals tended to move faster during the middle and last 20%, and preference for
counter-clockwise swimming was not as strong when the enrichment was initially introduced.

3.3. Enrichment Engagement

Waiting time was used to further investigate interactions between the animals and
enrichment. A 4-trial subset of the data, two hours with buoys and two hours with jolly
balls, was used to evaluated engagement with the enrichment. Figure 6 presents waiting
time and interaction counts for both types of enrichment. The average waiting time for
the buoys was 2.0 s (4.7 SD), with the average waiting time per bin never exceeding
10 s. However, the number of interactions decreased throughout the trial, beginning with
interaction counts as high as 20, but ending with counts between 1 and 5 for the 200-second-
wide bins. The waiting time for the jolly balls had a higher average, 22.1 s (41.7 SD), and
was more variable, with times ranging from 0.2 to 193.6 s. The number of interactions
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with the jolly balls was lower than the buoys (144 vs. 42), but the same decreasing trend is
present in the data.

Figure 6. Average waiting time and standard deviation (top) and number of enrichment interactions
(bottom) are shown for each 200-second-wide bins for two types of enrichment (Buoys and Jolly
Balls). The waiting time for buoys is lower than that for Jolly Balls in general (note that the y-axes
for waiting time are on different scales). The numbers of interactions for both enrichment show
decreasing trends as the trials progress.

4. Discussion

The ability to monitor how animals move in their environment while also identifying
contextual factors that may influence movement is a challenging problem. In this work,
we presented a computer vision based persistent monitoring and analysis framework to
quantify bottlenose dolphin movement. Direct monitoring by trained behaviorists and
observers provides important information about the animals in their environments. These
observations are qualitative, and can be supplemented with information from cameras
and other sensors placed in or around the environment. As sensing becomes integrated
into more environments, the ability to efficiently and effectively extract information from
sensor data will be key to maximizing the benefits of these systems. In this work, more
than 21 h of data were examined, resulting in over 850,000 detected objects for the analysis.
This detection density enabled the extraction of important animal kinematics (speed,
heading, heading rate) that were used to characterize motion. If a trained observer were
able to manually score one detection every second, it would take more than nine days of
continuous work to label the entire dataset presented here. Further, the trained network can
be used to classify objects from additional datasets, creating the opportunity to investigate
behavior over the course of months or even different seasons.

To demonstrate the approach, we analyzed video data from four animals observed
during hour long unstructured swimming trials in a lagoon environment at midday. En-
richment was present for half the sessions, and animal care specialists were free to move in
the environment during the recordings. Qualitative differences from baseline are visible
in the directional quiver plots and occupational heatmaps when enrichment or people
were present. A general counter-clockwise flow was observed in the animal movement
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during all environmental conditions (i.e., baseline, enrichment, and people), Figure 4. This
flow pattern is consistent with the previous observations that dolphins tend to swim in
a counter-clockwise direction in the Northern Hemisphere when staying in a defined
environment [26]. Although clockwise preferential swimming biases have been observed
for dolphins in the Southern Hemisphere, it is speculated that the dominating flow direction
is the result of global forces rather than individual dolphin anatomy [27].

Proximity to the docks occurred more frequently in the baseline condition than when
enrichment was present. During baseline, the animals were observed swimming, inter-
acting with another animal (e.g., paired swimming), or inspecting the adjacent lagoons
separated by the floating docks. In the heatmaps, there were no people present on the
docks, but the increased time spent near these areas could be driven by multiple reasons.
It could be the result of their inspection of animals in neighboring lagoons, their inter-
action with the structure of the dock, an association of the docks with the trainers, or
an anticipatory behavior. When enrichment was present the average speed decreased
from 1.2 m/s (baseline) to 1.0 m/s, and the animals spent more time in the bottom half
of the lagoon. Overall area of use also decreased from 89.3% to 72.6%. These changes in
spacial distribution could be due to enrichment distribution in the lagoon. Enrichment was
introduced from the docks, and wind would push the floating enrichment to the edges of
the lagoon biasing distribution and the resulting animal movement.

The K-S statistics indicate that the speed and heading rate probability distributions
when enrichment or people were present are different from the baseline condition, Table 1.
Speed distributions have two sets of peaks: a first peak between 0 and 0.5 m/s and a second
set of peaks between 0.5 and 4 m/s, Figure 4c. The first peak indicates a distinct period of
time when the animals were swimming slowly or were stationary. The highest first peak
probability occurred when people were present in the environment. A higher probability
might be expected because this condition includes periods of time at the start and end of
the trials when the animals were at station with the animal care specialists. Additional
peaks in the probability functions around 1 m/s and 2 m/s are present during the baseline
condition and when people are present. The distribution for the enrichment condition
has a single peak around 1 m/s, which is in accordance with the overall drop in speed
when enrichment is present. The probability distributions for the heading rate all indicate
that the animals are turning counter-clockwise, confirming the direction of the flow in the
quiver plots, Figure 4d.

Engagement with the enrichment was further investigated by calculating how often
the animals interacted with the enrichment floats and how this changed over the course
of the trial, Figures 5 and 6. When enrichment was introduced, the first 20% of the trial,
there is less circularity in the movement flow and the animals tended to remain between
the two docks in the bottom part of the lagoon. The K-S test statistic for speed distribution
during the first 20% of the enrichment condition (0.21) shows the largest difference with
baseline movement of and condition, Tables 1 and 2. However, as the trial progressed
distributions for speed and heading rate reverted towards baseline behavior with K-S
differences of 0.3 and 0.1, respectively. These temporal changes were also seen in the
analysis of enrichment engagement.

Interactions between the animals and two types of enrichment floats (Buoys and Jolly
Balls) were examined to demonstrate how this approach can be used to quantify animal
movement and environmental features simultaneously. Engagement with the enrichment
was quantified using interaction counts, and time duration between an interaction and the
initial detection (waiting time). For the buoys, the average waiting time (2 s vs. 22 s) was
shorter than for the Jolly Balls and the total number of interactions (144 vs. 42) was higher.
The interaction counts for the first 20% of the trials (0–720 s) were the highest for both
enrichment types, Buoys = ∼56 and Jolly Balls = ∼21, and dropped off considerably for
the last 20% of the trials (2880–3600 s), Buoys = ∼11 and Jolly Balls = ∼4. These temporal
changes could again be due to the distribution of the enrichment in the environment as
wind tended to gradually blow the enrichment to the edges of the lagoon. Because the
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animals spend more time in the center of the lagoon environment, reducing the likelihood
of encountering enrichment at the edge of the environment. Additionally, accessing the
enrichment at the shallow rocky edges of the lagoon could be more difficult for the animal
further reducing the opportunity for engagement. On the other hand, the animals ‘letting’
the enrichment be slowly blowing to the edges of the lagoon could also indicate habituation
to the specific enrichment. The two types of floating enrichment were physically similar
when compared to other enrichment categories (e.g., food dispensing enrichment, trainer
involved enrichment, etc. [28–31]), yet the animals could still prefer one over the other. Jolly
Balls are small and round with light colors that can be carried by mouth when swimming,
while Buoys are larger and more difficult to bring underwater. The animals’ variable
response to the two types of floating enrichment could result from the different interaction
mechanisms or simply the physical appearance of the objects. It is of great interest to extend
this work to investigate and compare animals’ response to other types of enrichment (e.g.,
food dispensing enrichment, trainer involved enrichment, etc. [28–31]) as a means to detect
improvements in welfare.

The results of the computer vision based monitoring and analysis framework are
promising, but there are limitations to consider. If different types of enrichment are
introduced, new detectors will have to be trained using labeled data. Additionally, the
detectors for this work were trained on data collected from the same time of day. To use
these detectors with images from other periods of time, it may be necessary to retrain the
network with images that cover a wide range of lighting conditions with the objects of
interest. A single overhead camera mounted towards the bottom of the lagoon was used
to collect the data for this work. A second camera placed to better observe the top half of
the lagoon would improve the coverage of the environment. Biologging tags could also be
used in conjunction with the monitoring cameras to achieve continuous monitoring of the
animal [16,17] at the cost of the introduction of biologging tags.

5. Conclusions

A computer vision based persistent monitoring and analysis framework was pre-
sented to efficiently and effectively extract dolphin kinematics, and track the movement of
people and enrichment in the environment. This ability to simultaneously extract animal
kinematics and the factors that may influence movement is an important complement to
direct monitoring by trained behaviorists and observers. The framework was used to in-
vestigate bottlenose dolphin movement during three conditions: baseline, with enrichment
and with people. Animal kinematics (position, speed, heading, heading rate) were auto-
matically extracted from over 21 h of video footage, at a resolution that would be infeasible
to label manually. A general counter-clockwise swimming flow was observed during the
three conditions, and the presence of both enrichment and people in the environment did
modify the observed kinematics. These changes were largest when enrichment was first
introduced, with animal movement largely returning to baseline by the final 20% of the
trials. The proposed framework is flexible and can be implemented in other facilities where
overhead video data can be collected, enabling new data streams for the investigation of
animal movement in these environments.
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