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Abstract: This is a study concerning the use of Machine Learning (ML) techniques to ascertain the
impacts of particle ionizing radiation (IR) on cell survival and DNA damage. Current empirical
models do not always take into account intrinsic complexities and stochastic effects of the interactions
of IR and cell populations. Furthermore, these models often lack in biophysical interpretations
of the irradiation outcomes. The linear quadratic (LQ) model is a common way to associate the
biological response of a cell population with the radiation dose. The parameters of the LQ model are
used to extrapolate the relation between the dosage and the survival fraction of a cell population.
The goal was to create a ML-based model that predicts the α and β parameters of the well known and
established LQ model, along with the key metrics of DNA damage induction. The main target of this
effort was, on the one hand, the development of a computational framework that will be able to assess
key radiobiophysical quantities, and on the other hand, to provide meaningful interpretations of the
outputs. Based on our results, as some metrics of the adaptability and training efficiency, our ML
models exhibited 0.18 median error (relative root mean squared error (RRMSE)) in the prediction
of the α parameter and errors of less than 0.01 for various DNA damage quantities; the prediction
for β exhibited a rather large error of 0.75. Our study is based on experimental data from a publicly
available dataset of irradiation studies. All types of complex DNA damage (all clusters), and the
number of double-stranded breaks (DSBs), which are widely accepted to be closely related to cell
survival and the detrimental biological effects of IR, were calculated using the fast Monte Carlo
Damage Simulation software (MCDS). We critically discussed the varying importance of physical
parameters such as charge and linear energy transfer (LET); we also discussed the uncertainties of
our predictions and future directions, and the dynamics of our approach.

Keywords: machine learning; ionizing radiation; cell survival; DNA damage; computational
modeling

1. Introduction

When a population of living cells is exposed to ionizing radiation (IR), an array of complex
responses takes place. Our main aim was to predict the irradiation’s effect on the survival of cells
and its impact on the cell’s DNA. In order to achieve this, we employed various Machine Learning
(ML) techniques and fast Monte Carlo simulations [1] to calculate the DNA damage. The study was
based on an extended dataset of cell irradiation studies: PIDE [2]. This introduction aims to illustrate
the biophysical importance of the dataset’s features and their impacts on the biological outcome of
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the computational model itself. Additionally, the basic rationale of the ML approach is outlined.
A common way of modeling and quantifying the relation between radiation dosage and fraction of
surviving cells is the established linear quadratic (LQ) model.

1.1. LQ Model

The LQ model [3] is among several empirical and less mechanistic mathematical formalisms that
have been proposed to describe the relation between cell survival and radiation dose absorption by
cells or tissues. It is also among the most prevalent models in this field, and its basic assumption is
that there are two parameters that contribute to cell killing: the first, α, is mainly the linear component
and relates to the dosage D, while the second β, a quadratic component relates to the square of the
dosage D2 [4]. This relation is expressed in the equation: S(D) = e−(αD+βD2) where S represents the
fraction of cells that survived dose D. In Figure 1 below, a typical response curve of a cell population
to ionizing radiation based on the LQ model is presented as an example.
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Figure 1. Linear quadratic model

The α and β parameters represent the linear and quadratic contributions to cell death, respectively.
The LQ model’s widespread usage lies in the fact that it has only two parameters and it is not
computationally demanding. These parameters also have some associated biophysical importance
and biophysical interpretations [4]. Single hits of radiation (one particle) may cause cell death by
inducing breaks in two adjacent chromosomes (αD component). When two or more particles induce
two chromosomal breaks, injuries become cumulative. Irradiation’s mechanism behind cell death is
believed to be strongly related to DNA damage, and double-stranded breaks (DSBs) especially [5].
The probability of this multiple-hit event is proportional to the square of the dose, which is represented
by the β parameter. A significant part of this study is the determination of the dose–response of a cell
population, by predicting the α and β parameters of the LQ model.

1.2. Radiation Properties

Linear energy transfer (LET) is a quantity that signifies the average amount of energy that ionizing
radiation conveys to a material, per unit of distance. It describes the transfer of radiation’s energy to
matter; it depends on the nature of the irradiated matter, and the type of radiation and its characteristics,
such as particle kinetic energy and charge, but it is strictly positive. Energy transfer causes damage
to the structure of the material, as near the radiation track the ionizing particle contacts the material.
In biological systems, such microscopic failures increase the chance of a large scale failure, such as
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a double-stranded DNA break or cell apoptosis. LET’s importance stems from the fact that DNA
damage is not proportional to the absorbed dose and it is typically measured in KeV/µm or MeV/mm.
Another aspect of the impact of IR on cells is the number of DSBs induced by that radiation. In this
study, we predict DSBs and all types of complex DNA damage (all clusters). Both all clusters and
DSBs are measured in number of lesions per Gray per 109bp i.e., Gray−1 ∗ Gbp−1. DNA damage was
calculated through fast Monte Carlo simulations. There are several different ways to quantify the
complexity of DNA damage, from defining a single DSB as a region in which two DNA lesions exist
within a span of less than 10 base pairs (bp), to incorporating other types of critical damage to the DNA
molecule in a region sufficiently close to a DSB, which amounts to what we describe as all clusters.
The all clusters metric is described in detail in the Methods section.

1.3. Biophysical Background

This study includes two categories of features. On one hand, there are physical features related
to the radiation itself, such as LET and ion species. On the other hand, there are biophysical
features related to the cell, such as cell cycle phase, cell line and cell type (i.e., normal or tumor).
A high LET value denotes quick attenuation of the radiation inside the material, lower radiation
penetration and increased complexity of damage [6]. From a biological standpoint, such microscopic
failures increase the chances of large-scale failures, such as double-stranded DNA breaks and cell
apoptosis. Radiation affects cells in multiple ways, including cellular damage, apoptosis, mutations and
chromosome aberrations, i.e., genomic instability. Cells exhibit varying responses to low doses of
radiation which cannot be extrapolated accurately from high-dose responses to low dose radiation,
a state that can lead to low-dose hyper-radiosensitivity (HRS) and increased radio resistance (IRR).
The phase of the cell cycle and whether the cell is tumorous or not are considered to play major roles
in radiosensitivity.

1.4. Machine Learning Approach

In the case of cell irradiation there can be no specific hypothesis for the variable distribution,
as features exhibit complex multicollinearities and there is also a strong element of randomness
(intrinsic noise) in the studied data. Based on the above, we are compelled to implicate ML methods.
ML, in contrast to classical statistics, does not impose a preconceived relation between dependent
and independent variables. ML aims to “learn” the dataset itself. In this study, we will adhere to
what in statistics are called independent and dependent variables as features and targets respectively,
in compliance with ML lingo. The random forest [7] (RF) algorithm that was chosen is typical for
ML models, but it produces a “black box” model. This means that it does not offer any biophysical
explanations for its predictions. In order to overcome this opaqueness of ML models and interpret
the relations between the features and the outcome, various interpretation methods are employed,
such as surrogate models and partial dependencies. In fact, predictive performance is used as a quality
indicator for the interpretations.

2. Results

Model assessment is organized into two sections. Firstly, several metrics and graphs that quantify
the predictive performance of our model are presented. Evaluation of the implementation of the model
can be done along various lines. Here, some basic evaluation aspects are presented, such as confidence
intervals and the distribution of true vs. predicted values. The next section of results accommodates
their interpretation, such as feature importance, interactions and individual prediction interpretation
graphs. The terms a_paper, b_paper, a_fit and b_fit below refer to the way that α and β parameters
are represented in the dataset. The difference between paper and fit targets is that the former refer to
parameters as they were measured and calculated by the authors in the original studies of the dataset,
while the latter refer to their calculations through fitting, based on cell survival data from the creators
of the PIDE database [2]. In this section, two kinds of result plots are presented:
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• True vs. predicted graphs show the evolutions of key statistics in every ML model. These graphs
consist of pairs of actual and predicted values from the test set, on which the model was not
trained (holdout set). The closer these points are to the y = x line, the better the predictive
performance of the estimator. Additionally, a linear regression line was plotted based on the
points in order to quantify the distance from the identity line, with the corresponding equation
being given on the plot. p-values represent the probability that, given the sampled data, the slope
of the regression line is zero—i.e., that the two variables are unrelated.

• Mean and standard deviation graphs depict the ways in which the means and the standard
deviations (STD) of error change. The pairs of true and predicted values were sorted with respect
to the true value and they were separated into four groups containing equal numbers of pairs.
For each group, the means and the STD of distance between the two parts of the pair (i.e., error)
were calculated. This graph aims to examine whether the error of the ML model follows a specific
trend. The x-axis corresponds to the four groups of errors, while the y-axis has the same units as
the target studied.

For brevity, only the figures related to a_paper and b_paper are included, because based on the
results of Table 1, the performance falls significantly in the fitted cases.

2.1. Predictive Performance

2.1.1. α and β Parameters

To describe the performance of estimator, the relative root mean squared error (RRMSE) metric is
provided along with bootstrapped [8] 95% confidence intervals. The results in all tables that contain
confidence intervals, for instance, see Table 1 below, are dimensionless and can be compared in
each case.

Table 1. Predictive performance for α and β parameters.

Targets Lower Percentile Median Upper Percentile

a_paper 0.13 0.18 0.31

b_paper 0.41 0.75 1.0

a_fit 0.21 0.33 0.5

b_fit 0.63 0.85 1.0

What should become apparent from the above table is the better performance of our ML-based
model regarding the α parameter, especially regarding the α parameter derived from experimental
values of previous studies compared to those derived from the fitting process, as performed by
the authors of PIDE database. The same trend was observed for the β parameter, with the notable
difference that in both paper and fit cases, predictions were altogether relatively bad, which is very
informative about the nature of β. This is indicative of the fitting process, in which both of parameters
increase the error. It also shows that the mean magnitude of the β parameter is comparable to the
measurement error and the fitting process error. The same picture arises when visualization of the
estimator’s behavior is attempted. Especially for β parameter, both the error and the graphs show a
relation between the features and a value of β that is close to random noise. The mean and standard
deviation plots in all cases illustrate the same trend, namely, that the STD of distance between true
and predicted values becomes larger, meaning that as the value that we are trying to predict increases,
the error increases too. Figures 2 and 3 depict the predictive performance of α and β parameters.
Additional results regarding the β parameter that are related to further investigation of the model,
such as partial dependence and various interpretation plots, are kept in the supplementary section
(Figures S1 and S2).
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(A) (B)
Figure 2. (A) α predictive performance; (B) evolution of the difference between true and predicted values.

(A) (B)
Figure 3. (A) β predictive performance; (B) evolution of the difference between true and predicted values.

2.1.2. DNA Damage

Similarly, the same metrics and visuals are provided for the predicting of DSB clustering damage
of the DNA molecules (Table 2).

Table 2. Predictive performance for DNA damage types.

Targets Lower Percentile Median Upper Percentile

All Clusters (hypoxic) 0.076 0.089 0.100

All Clusters (oxic) 0.0005 0.0013 0.0029

DSBs (hypoxic) 0.059 0.066 0.073

DSBs (oxic) 0.031 0.034 0.036
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These results show a significant improvement of the quality of predictions in relation to α and
β parameters. This happened mainly due to the fact that the breaking of a DNA strand is more
attributable to a small number of radiation features and has a less complex nature, in contrast to cell
apoptosis, which is affected by a numerous factors, including biological DNA repair mechanisms and
genes’ functions or possible deficiencies. Therefore, it is easier to predict the damage of DNA molecule.
In Figures 4–6 below, corresponding plots for the DNA damage features that underline the effect of the
improvement shown in the previous table are provided. Additionally, it is apparent that the error of
prediction increases for greater values of all clusters.

(A) (B)
Figure 4. (A) All clusters hypoxic (All Clusters_hy) predictive performance, (B) evolution of difference
between true and predicted values. Hypoxic refers to 3% oxygen conditions.

(A) (B)
Figure 5. (A) All clusters oxic (All Clusters_ox) predictive performance, (B) evolution of difference
between true and predicted values. Oxic refers to normal 20% oxygen conditions.
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(A) (B)

(C) (D)
Figure 6. Predictive performance and difference between true and predicted values.
(A,B) Double-stranded breaks (DSBs) hypoxic (DSBs_hy) and (C,D) oxic (DSBs_ox). An interesting
fact is that the uncertainty decreases for bigger values of both DSBs, meaning that DSBs are more
predictable and exhibit a less stochastic behavior while they increase.

2.2. Interpretation

2.2.1. Feature Importance

In this section, the relative importance of features in the dataset is presented. In the first case
(Figure 7) of the α parameter, LET and cell line features seem to be the most determinant factors to the
prediction of the estimator, followed by energy and ion species features. In Figure 8, LET seems to be
by far the most instrumental feature (as expected) in predicting the number of all clusters in both oxic
and hypoxic cases.
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Figure 7. Feature importance for α parameter.

(A) (B)
Figure 8. (A) Feature importance for all clusters (3% oxygen). (B) Feature importance for all clusters
(20% oxygen).

2.2.2. Partial Dependence

In this section, partial dependence plots are presented concerning all the predicted targets for
the three most important features. A partial dependence plot depicts the impact of one or multiple
features on the predicted target. It can also reveal whether the relation is linear or more complex.
In linear regression, the plot should be a straight line. In this way, partial dependence plots can give
valuable insights to biophysical modeling. Additionally, for continuous features, the value of the
feature where the predicted outcome is maximum is provided. We will discuss results regarding the α

parameter, so as to illustrate how plots like these should be interpreted. LET, cell lines and Energy
partial dependence plots are shown below (Figure 9). Concerning LET, the predicted outcome is
reaching a maximum value of 163.1 KeV/µm and falls rapidly into a steady state. For the cell line,
it appears that there are groups of cell lines which have the same or very similar predicted outcome,
which reaches a maximum for cell lines xrs5, KS-1 and IGR.
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(A) (B)

(C)
Figure 9. Partial Dependence for α parameter. (A) LET, (B) energy, (C) cell line.

Below in Figures 10 and 11, the partial dependences of all clusters DNA damage in hypoxic and
oxic cells on the LET and specific energy features are presented.
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(A) (B)
Figure 10. Partial dependence for all clusters (hypoxic—3% oxygen). (A) LET, (B) energy.

(A) (B)
Figure 11. Partial dependence for all clusters (oxic—20% oxygen). (A) LET, (B) energy.

Below (Figure 12), several two-way Partial Dependence plots between LET and energy features,
which are both continuous features and its comparison is meaningful, are shown, illustrating how
the two features influence in tandem the predicted outcome. This produces a three dimensional plot
where the two base axes correspond to the two features, and the vertical axis corresponds to the
predicted outcome.
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(A) (B)

(C)
Figure 12. Two way partial dependence (energy—LET). (A) α, (B) all clusters (hypoxic—3% oxygen),
(C) all clusters (oxic—20% oxygen).

2.2.3. Local Interpretation

Here, (Figure 13) a local rule-based interpretation of individual predictions is shown. The plots
depict an explanation of the predictions of four irradiation experiments, based on specific values of the
features in a descending order of significance. The direction of the bar, signifies whether the feature
has a negative or positive effect on the predicted outcome (left being negative and right positive).
In Table 3 below, the exact values predicted in comparison to the true values on which the local
prediction interpretations were made, are shown.

Table 3. prediction of individual sample.

Targets Prediction True Value

α parameter 1.92 2.2

DSBs oxic 13.7 13.7

All Clusters (hypoxic cells) 231.8 231.0

All Clusters (oxic cells) 367.1 367.8
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(A) (B)

(C) (D)

Figure 13. Local interpretations. (A) α, (B) DSBs oxic, (C) all clusters (hypoxic 3% oxygen), (D) all
clusters (oxic—20% oxygen). Explanation of a single prediction. The impact of each feature is
depicted as part of the predicted value. On each bar in the charts, the values that features take in the
specific sample are displayed, and value ranges for continuous variables that the local interpretable
model-agnostic explanations (LIME) algorithm has decided are important for the predicted outcome.
The sum of the weights of features amounts to the value predicted by the linear regression model
which was trained in the neighborhood of sample instance. Local prediction usually is very close to the
value predicted by the the global random forest model.

2.3. Significance Analysis

To establish whether the ML model has statistically significant better performance than a
classic statistical method, several statistical models were also fitted and compared to the ML model.
Here (Table 4), the results from this comparison with the statistical model that fared better, which is
the generalized linear model [9] with Poisson link function, are presented.

Several link functions were tried, among which the Poisson fared better. Linear regression
assumes that the dependent variable is normally distributed. GLMs can have dependent variables
distributed in other ways, not necessarily by following Normal distribution and the relationship
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between independent and dependent variables can have a non-linear form. The link function links the
mean of the dependent variable Yi which is E(Yi) = µi to the linear term xT

i through a link function
g(µi) = xT

i . This approach seems to be the most appropriate for our task, given the nature of the
responses of Cells to radiation, which is not linear.

The ML model consistently produced lower mean errors. The question is, whether there is
significant difference in the error distribution, and by what margin. Hypothesis H0 is that the means
of error distributions do not differ significantly. For all targets, the ML model displayed significantly
better performance compared to any classic statistical model, as indicated by the respective p-values by
orders of magnitude, with the exception of the ML model trained for β parameter, where the rejection
of H0 hypothesis indicates that our model does not manage to improve the prediction in relation to
the statistical model, with a cutoff value of 0.05. This last point is another sign of the inherent noise
and large uncertainty in β parameter and indicates that both ML and statistical models are similarly
bad at predicting the β parameter

Table 4. Statistical significance. H0: the means of the error distribution that ML model produces are
significantly different from that of a classic statistical model.

Targets p-Value Result

α parameter 1.8× 10−5 reject H0

β parameter 9.4× 10−1 fail to reject H0

All Clusters (hypoxic cells) 1.5× 10−7 reject H0

All Clusters (oxic cells) 4.2× 10−11 reject H0

DSBs (hypoxic cells) 5.4× 10−6 reject H0

DSBs (oxic cells) 1.0× 10−9 reject H0

3. Materials and Methods

3.1. The Data

The dataset originates from a compilation of cell survival studies, spanning decades, gathered and
curated by the Particle Irradiation Data Ensemble (PIDE) dataset provided by the GSII [2].
Dataset pide_3.2 consists of 1150 samples of radiobiological studies, including key cellular and
radiation features. Among results, there are the α and β parameters of LQ model. The dataset
is complemented with DNA damage features, calculated for each sample by the Monte Carlo
method cited below. The α and β values are dimensionless, while all clusters and DSB values are
measured in (clusters)/Gray ∗Gbp. Terms hypoxic and oxic refer to the concentration of oxygen in the
simulation, where hypoxic corresponds to 3% oxygen conditions and oxic to 20% oxygen conditions.
Three randomly chosen experiments are given below (Tables 5–7). The majority of samples were found
to be related to oxic cells.

Table 5. Data Sample (features).

Features

Cell Type Origin Phase Genl Ion Charge Irmods LET E

HF19 n h a 6.0 4He 2.0 m 20.0 8.80

R-1 t r a 5.6 12C 6.0 s 11.0 389.00

V79 n r a 5.6 1H 1.0 m 31.0 0.76

https://www.gsi.de/work/forschung/biophysik/forschungsfelder/radiobiological_modelling/pide_project.htm
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Table 6. Data Sample (targets).

Targets

α β
All Clusters Hypoxic
(Gray−1 ∗ Gbp−1)

All Clusters Oxic
(Gray−1 ∗ Gbp−1)

1.090 0.000 354.5 355.9

0.402 0.054 407.5 412.6

1.030 0.000 394.0 398.0

Table 7. Data explanation.

Var_Name Description Categorical\Numeric

Cells Name of cell line categorical

Type Tumor cells (t) or normal cells (n) categorical

Origin human (h) or rodent cells (r) categorical

Phase Cell cycle phase (phases are given explicitly, or a for
asynchronous) categorical

Genl Genomic length of diploid cells (in 10 bp, 5.6 for rodent and 6 for
human cells) numeric

Ion Ion species categorical

Charge charge of ions numeric

Irrmods Irradiation modalities: monoenergetic (m) or spread out Bragg
peak (s) categorical

LET Linear energy transfer in water (in keV/µm, for irradiation in
spread out Bragg peak dose mean or track averaged LET) numeric

E Specific energy of ions (in MeV/u), evaluated at the target numeric

Each study reports its statistical errors, which indicates a lower limit to the uncertainty of the
data. There is not a uniquely established way of reporting error in survival studies, which is why
a broader uncertainty analysis is needed, for both statistical and systemic errors. The overall uncertainty
could be determined by compiling larger datasets of experimental data from different laboratories,
obtained under similar conditions. From such a dataset, the scatter of data would lead to an empirical
measure of the uncertainty. This informs us that we deal with a task of learning a noisy dataset,
which would be a good use case for a ML model.

3.2. Monte Carlo Damage Simulations (MCDS)

Based on the original dataset, a series of Monte Carlo simulations were performed in order
to determine the amount of all clustering DNA damage. The MCDS fast MC software [1] was
used, which provides a fast quasi-phenomenological method to interpolate damage yields from
computationally taxing, but more detailed, track-structured simulations. To begin with, we used
MCDS version 3.10a in order to make simulations using data from PIDE. For each simulation, we had
to insert the input file certain parameters, such as the oxygen pressure of target cells (20% for oxic, 3%
for hypoxic), the ions and its kinetic energy (in MeV), for each row. If the experiment included both
oxic and hypoxic cells, we ran the simulation twice and saved both results. The DNA content of cell
nucleus (in Gbp) and its diameter (in um) were constant, 1 and 5 for all the simulations. Nocs and
seed, the “simulation control” parameters were constant too, 10,000 and 987,654,321. Consequently,
we ran the program and focused on the number of clusters per cell from the output file, which means
that our results were per Gbp and per Gray. The features of interest each time were the total number of
all clusters, which can be divided as:
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• DSB+ (DSB accompanied by one (or more) additional SB within 10 bp separation);
• DSB++ (more than one DSB whether within the 10bp separation or further apart);
• SSBc (fraction of complex damage (SSB+ and 2SSB) among SSBs);
• SSBcb (fraction of complex damage (SSB+ and 2SSB) among SSBs; base damage included);
• DSBc (fraction of complex damage (DSB+ and DSB++) among DSBs);
• DSBcb (fraction of complex damage (DSB+ and DSB++) among DSBs; base damage included).

3.3. Model Building Process

The process that we followed in order to build the estimator (Figure 14) is based on a classic
approach in ML context, which involved:

• Find oxygen concentration from literature for each study in PIDE dataset.
• Perform Monte Carlo simulations to assess DNA Damage and complement dataset with

corresponding metrics.
• Map categorical features to numerical values (categorical encoding) and remove null values.
• To optimize the model, i.e., to find the optimal hyper-parameters, we perform 5-fold

cross-validation using a grid of possible hyper-parameters.
• Hyperopt algorithm is used to find the best parameters.
• Split the dataset to train and test subsets at 80/20 ratio.
• Calculate performance metrics of the optimized model and provide interpretations.
• Fit model to train set and compare results to test set, so as to assess performance and

provide interpretation.

Figure 14. Model building Process.

3.4. The Algorithm

To tackle the problem of predicting multiple continuous values from a single dataset,
three methods were employed: Regression Chains, Stacking and Clustering [10]. The first two
are similar and train a model to predict a single target at a time, while combining the predictions
at a later stage. Clustering regression approach attempts to predict all the variables at once. These
methods did not offer any significant advantage, while adding to training time. For this reason a single
target regression model was used. The core of our method is the Random forest algorithm (RF) [7],
as implemented in Scikit-Learn [11]. RF is a powerful and popular supervised learning algorithm.
The “forest” that it builds, is an ensemble of decision trees usually trained with the “bagging” method.
The general idea of the bagging method is that a combination of learning models improves the overall

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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performance. It allows quick identification of significant information from extremely large datasets.
The most important advantage of RF is that it relies on a collection of various decision trees to arrive at
any solution. RF also adds additional randomness to the model, while growing the trees. Instead of
searching for the most important feature when splitting a node, it searches for the best feature among
a random subset of features. This results in a wide diversity that generally leads to a better model.
While one of the biggest problems in ML is over-fitting, RF algorithm is particularly insensitive to it.
Provided that there are enough trees in the forest, the model will not be subject to over-fit. RF is also
robust to outliers and works well with non-linear data too.

3.5. Model Optimization

ML algorithms typically involve numerous user-defined parameters (hyper-parameters) that
must be tuned in order to optimize their predictive performance. All possible combinations of
hyper-parameters of a model form a parameter space or parameter grid. We chose not to brute-force
our way through all possible permutations of the parameter space, assessing their performance. Instead,
a bayesian method [12] that keeps track of previous evaluations was employed. The method uses past
results to build a probabilistic model that maps hyper-parameters on the objective function that outputs
the score of the model P(score|hyperparameters). These probabilistic models are called “surrogate”
models and in our case the Tree-Structured Parzen Estimator [13] was used through the hyperopt
library [14]. This method manages to find better hyper-parameters than random search or exhaustive
grid search approaches in less time. Each trial was validated through a 5-fold cross-validation [15].
Typical examples of hyper-parameters are the number of estimators and the maximum tree depth for
decision trees. The resulting parameters of the optimization that was performed for each target are
referenced in the supplementary material (Table S1).

3.6. Categorical Encoding

In our case where the decision trees in RF ensemble are trained based on their reduction of their
total variance, the model’s input must be numeric. Thus, we performed a mapping from categorical
features i.e., cell line, cell type, cell phase, cell origin, ion species and Irrmods (Table 7) to numerical
ones, by using the binary encoding method [16]. The main reason why we used this method is because
it does not produce sparse matrices of data that are harder to train on, while not being dependent
on the target values as supervised methods that map categorical features to numerical calculating
statistics on the target values, which can lead to target information leakage [17]. Its disadvantage is
that the new feature columns are not meaningful in themselves, so they have to be decoded in order to
interpret a prediction.

3.7. Interpretation Frameworks

There are certain statistical learning problems, where only the predictive performance is relevant.
However in the case at hand, estimator’s performance is of secondary nature. The main goal is to
interpret the model in order to suggest causal relations between various features and the output
quantity, and rank the features in an order of importance as to the predicted outcome. In this sense,
predictive performance is important as to validate our interpretations of the model and consequently
of the biophysical phenomena. There are algorithms that are intrinsically interpretable like linear
regression, where the weights of independent features correspond to their respective contribution.
Another case is a decision tree, where the bifurcation points of the tree provide an explanation to the
predictions. Given the nature of the RF model (ensemble architecture), we are confined to post hoc
interpretations, because we cannot provide an intrinsic interpretation of the algorithm.

3.7.1. Feature Importance

Feature importance is a generic term for the degree to which a predictive model relies on a
particular feature. In the context of RF algorithm, feature importance signifies the sum that the
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weighted impurity decreases (variance in the case of regression) for all the nodes of an individual
randomized tree [7].

3.7.2. Partial Dependence

Partial dependence describes the marginal impact of a feature on model prediction, while holding
other features in the model constant. The derivative of partial dependence describes the impact
of a feature (analogous to a feature parameter in a regression model) [18]. In tree-based models,
partial dependence is calculated in the following way: For a given point, a weighted tree traversal is
performed: if a split node involves a “target” feature, the corresponding left or right branch is followed;
otherwise both branches are followed, each branch being weighted by the fraction of training samples
that entered that branch. Finally, the partial dependence is given by a weighted average of all the
visited leaves values.

3.7.3. Local Interpretations

In order to explain individual predictions, local surrogate models are employed.
Local interpretable model-agnostic explanations (LIME) [19] is a framework that uses surrogate
models that need to be reasonably valid only in the vicinity of the prediction. The goal is to understand,
given the input features why a black box model made a certain prediction. LIME framework generates
a new dataset, consisting of permuted samples and the corresponding predictions of the black box
model. On this new dataset, LIME trains an interpretable model which is weighted by the proximity of
the sampled instances to the instance of interest. The interpretable model can be anything, from Lasso
to decision tree. The learned model should be a good approximation of the ML model predictions
locally, but it does not have to be a good global approximation. This kind of accuracy is also called
local fidelity.

3.7.4. Bootstrap Confidence Intervals

We calculated a population of errors from 100 bootstrap samples to calculate a 95% non-parametric
confidence interval [20]. The error metric for this process was RRMSE, which is the root mean square

error divided by the mean of the true values, RRMSE = 1
ȳ

√
∑N

1 (ypred−ytrue)2

N . We chose this error metric
because it provides a dimensionless ratio that can be cross-examined with results of all the other targets
that are either measured in different units or span in different scales.

3.7.5. Statistical Significance

To quantify the statistical significance of the difference in performance between ML model and
a classic statistical model, models are trained and tested 10 times on different train/test split points
which results into different training and test datasets. In turn, process gives two error distributions
and then a t-test is performed on the two related samples, in order to determine whether the two
samples represent two distributions with a common average. In this study, 10 repeated experiments
were performed and the statistical models that were employed so as to find the best among them,
were the General Linear Model with various link functions (Gamma, Gaussian, Poisson) and Ordinary
Least Squares model.

4. Discussion

The results include multiple key findings. Firstly, the better and safer prediction of α parameter
compared to β parameter in the survival studies, indicates the difficulty of measuring the latter.
This happens probably due to the fact that its magnitude is small enough that is comparable to the
experimental error of measurement, which results in a very noisy and near random picture for the β

parameter. This is also merely a statistical effect: a small absolute value of β (and correspondingly large
absolute value of β/α) indicates that the tumor has a very low sensitivity to the effects of fractionation.
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All tumors with β/α close to zero have low fractionation sensitivity, while tumors with a large β/α are
sensitive to fractionation [21]. The lack of an adequate prediction for β parameter does not allow the
establishment of major causal interpretations.

Additionally, the most important features for predicting cell survival, as seen by the importance
of α parameter, are the LET and cell line features. This is a fact that shows up in other cell survival
studies [22] too. In partial dependence plots, specific cell lines that have the greatest impact on the α

parameter are shown, which translates to cell lines that are more prone to suffer higher death rates for
the same amount of radiation, while others exhibit significant radiation resistance. The interesting
fact is that cell line is marginally more significant than LET when talking about ion irradiation.
Furthermore, the results of all clusters are similar in their dependence, mainly involving a small
number of radiation features.

Another important fact is the non-linear relation between the most important features and the
predicted in all cases, which supports even more the fact that a classic statistical model would be either
not suitable or computationally expensive to implement and therefore impractical. Partial dependence
plots can provide valuable biophysical insights to the phenomenon and explanatory power to the
model. Examples of these aspects are the maxima displayed in the partial dependence plots, which are
open to biological interpretation, and the behavior of cell lines in the same plots, where distinct cell
lines cause the predicted outcome to rise sharply. Additionally, there are several cell lines that exhibit a
very similar biological response.

The way in which β changes with increasing LET is less well documented than for larger and
easier to measure changes in α with increasing LET. Increasing LET must initially enhance the
intrinsic radiosensitivity parameters, where the increment in α far exceeding that in β. This happens
because a greater proportion of clustered damage is non-repairable by non-homologous end joining
process, although the repair of sub-lethal damage continues, probably with lower fidelity and even the
recombination repair mechanism may also be overwhelmed by increasingly complex lesions affecting
the same sites on sister chromatids [23].

Another interesting fact is that for the energy and LET features, dependence starts from a peak
early on and then decreases rapidly, which is a clue that above a threshold of LET and energy,
any further increase is irrelevant to the outcome of either survival (α and β parameters) or DNA
damage (all clusters). As far as we know, the severity of complex damage increases with LET,
especially when it is higher than 150 KeV/µm [24]. This means that repairability is decreased with an
increase in LET up to 150 keV/µm or higher, reaching an apparent minimum of “zero.” Additionally,
the decreasing portion in LET versus α relation would be due to overkill [25]. The overkill effect is
sometimes called the phenomenon when there is an optimal LET for cell inactivation, after which there
is a reduced effectiveness in cell inactivation per unit dose, with the effect that the slope of the survival
curve decreases again [26].

This study aimed to showcase that there can be an ML-based computational framework that
will provide both good predictive performance along with interpretation. A future step would be
to enrich the dataset with more studies and different types of IR, apart from particles and radiation
regimens, and therefore increase the accuracy and predictive power of our ML-model. We envision
applications of our methodology in various areas such as radiation protection and in the medical field
where high-LET particles are to be used for tumor treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com//1/1/5/s1 , Figure S1:
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Abbreviations

The following abbreviations are used in this manuscript:
ML Machine Learning
IR Ionizing Radiation
LQ Linear Quadratic
LET Linear Energy Transfer
bp Base Pairs
PIDE Particle Irradiation Data Ensemble
RRMSE Relative Root Mean Squared Error
RMSE Root Mean Squared Error
STD Standard Deviation
DSB Double Strand Break
GLM Generalized Linear Model
LIME Local Interpetable Model-Agnostic Explanations
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