Previous Issue
Volume 1, September

Macromol, Volume 1, Issue 4 (December 2021) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Aspects of the Synthesis of Poly(styrene-block-isobutylene-block-styrene) by TiCl4-Co-initiated Cationic Polymerization in Open Conditions
Macromol 2021, 1(4), 243-255; https://0-doi-org.brum.beds.ac.uk/10.3390/macromol1040017 - 01 Oct 2021
Viewed by 351
Abstract
The cationic polymerization of isobutylene and its block copolymerization with styrene using DiCumCl/TiCl4/2,6-lutidine initiating system has been studied in open conditions. It was shown that a higher concentration of proton trap is required in open conditions as compared to the glove [...] Read more.
The cationic polymerization of isobutylene and its block copolymerization with styrene using DiCumCl/TiCl4/2,6-lutidine initiating system has been studied in open conditions. It was shown that a higher concentration of proton trap is required in open conditions as compared to the glove box technique in order to have good control over molecular weight and polydispersity. Polyisobutylenes with Mn ≤ 50,000 g mol−1 and low polydispersity (Đ ≤ 1.2) were prepared at [Lu] = 12 mM. The synthesis of poly(styrene-block-isobutylene-block-styrene) triblock copolymer (SIBS) in open conditions required the addition of proton trap into two steps, half at the beginning of the reaction and the second half together with styrene. Following this protocol, a series of triblock copolymers with different length of central polyisobutylene block (from Mn = 20,000 g mol−1 to 50,000 g mol−1) and side polystyrene blocks (Mn = 4000 g mol−1–9000 g mol−1) with low polydispersity (Đ ≤ 1.25) were synthesized. High molecular SIBS (Mn > 50,000 g mol−1) with low polydispersity (Đ < 1.3) containing longer polystyrene blocks (Mn > 6000 g mol−1) demonstrated higher tensile strength (~13.5 MPa). Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop