
Article

Doxorubicin Enhances Procoagulant Activity of
Endothelial Cells after Exposure to Tumour
Microparticles on Microfluidic Devices

Abdulrahman Algarni, John Greenman and Leigh A. Madden *

Department of Biomedical Science, The University of Hull, Hull HU6 7RX, UK;
a.e.algarni-2013@hull.ac.uk (A.A.); j.greenman@hull.ac.uk (J.G.)
* Correspondence: l.a.madden@hull.ac.uk; Tel.: +44-148-246-6031

Received: 11 June 2020; Accepted: 21 July 2020; Published: 23 July 2020
����������
�������

Abstract: The majority of cancer patients undergoing chemotherapy have a significantly increased
risk of venous thromboembolism via a mechanism not yet fully elucidated but which most probably
involves tumour microparticles (MP) combined with damaged/activated endothelium. Tumour cell
lines (ES-2 and U87) were cultured as 3D spheroids and transferred to biochips connected through
to a second chip precultured with an endothelial cell layer (human umbilical vein endothelial cells
[HUVECs]). Media were introduced with and without doxorubicin (DOX) to the spheroids in parallel
chips under constant flow conditions. Media samples collected pre- and post-flow through the biochip
were analysed for tissue factor microparticles (TFMP) and procoagulant activity (PCA). HUVECs
were also harvested and tested for PCA at a constant cell number. TFMP levels in media decreased
after passing over HUVECs in both conditions over time and this was accompanied by a reduction
in PCA (indicated by a slower coagulation time) of the media. The relationship between PCA and
TFMP was correlated (r = −0.85) and consistent across experiments. Harvested HUVECs displayed
increased PCA when exposed to tumour spheroid media containing TFMP, which was increased
further after the addition of DOX, suggesting that the TFMP in the media had bound to HUVEC cell
surfaces. The enhanced PCA of HUVECs associated with the DOX treatment was attributed to a loss
of viability of these cells rather than additional MP binding. The data suggest that tumour MP interact
with HUVECs through ligand-receptor binding. The model described is a robust and reproducible
method to investigate cytotoxic agents on tumour spheroids and subsequent downstream interaction
with endothelial cells.
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1. Introduction

Cancer is considered a prothrombotic or hypercoagulable state commonly attributed to the ability
of malignancy to activate the hemostatic system and interfere with blood clotting [1]. The haematological
balance between pro- and anti-coagulation factors is tipped in favour of a more procoagulant phenotype,
particularly in patients with pancreatic or ovarian tumours. This haematological procoagulant state
is thought to be driven, or compounded, by tumour-derived microparticles (MP) that are released
into the blood; surgical removal of the tumour has been shown to significantly reduce circulating
MP levels in pancreatic cancer patients [2]. Chemotherapy is an independent risk factor for venous
thromboembolism (VTE) in patients and a current hypothesis is that the increased risk of VTE is due to
an increased release of tumour MP into the blood via tumour apoptosis.

Initially, MP were believed to be little more than inert cellular debris or dust [3–5], sometimes called
“platelet dust” [6]. However, the reality is that MP play many roles depending on their parental cells
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and the antigens the MP retain [7,8]. Extracellular vehicles (EVs) are either released by cells through
multivesicular bodies, broken off from the cell surface, or a combination of both [9]. EV in the blood
circulation can be subdivided by size, i.e., MP are larger (100–1000 nm) whereas exosomes are typically
< 100 nm. Human blood contains circulating tissue factor which is mainly in the form of microparticles
(TFMP) [10], and we have previously shown that the procoagulant activity of in vitro-released tumour
MP is dependent upon the concentration of the TFMP [11].

Date et al. (2013) reported that precise mechanisms of cancer-associated VTE are largely
uncharacterised, though several have been postulated [12]. One mechanism is that chemotherapy
induces the release of cytokines and procoagulant molecules, such as TF, during treatment-induced cell
damage and associated tumour lysis [12–14]. This process causes damage to the vascular endothelium,
prompting the coagulation cascade. Chemotherapy is also capable of causing reductions in the
production of endogenous anticoagulant proteins such as protein C and protein S [15,16]. Without these
critical anticoagulant proteins, the cellular environment becomes more procoagulant which further
promotes the development of thrombi. It is well established that patients treated with chemotherapy
have a two- to six fold increased risk for VTE [17,18]. An earlier study reported that cisplatin-based
chemotherapy is associated with a 9% risk of thromboembolic events [19]. Moreover, hypertension
induced by cisplatin might result in acute cardiovascular complications [20]. Finally, it has also been
shown that the procoagulant activity of endothelial cells and macrophages is influenced by doxorubicin
(DOX), which changes the fluidity of the membrane and promotes TF activation [21,22]. Further studies
have shown that DOX-induced apoptosis in endothelial cells results in a hypercoagulable state [23,24].

Microfluidic technology offers new opportunities to investigate the tumour microenvironment,
having been recently reviewed in a number of articles [25,26]. To further investigate the interaction
between tumour MP, chemotherapy and the endothelium, an in vitro microfluidic flow model
system was developed wherein tumour spheroids maintained on one device could be treated with
chemotherapy agents, and the effluent media directly flowed over a second chip precoated with viable
endothelial cells. The procoagulant activity (PCA) was assessed both pre- and post-treatment for both
the spheroid and endothelial cells.

2. Materials and Methods

2.1. Cell Lines and Culture

The ovarian carcinoma cell line ES2 (ATCC, Scotland, UK) and glioblastoma U87 cell line (ATCC,
UK were seeded at 1 × 106/mL cells into 25 cm2 tissue culture flask (Sarstedt, Leicester, UK) and
left to adhere overnight at 37 ◦C in a 5% CO2 incubator and maintained in McCoy’s 5A media or
DMEM media respectively, supplemented with 10% (v/v) foetal bovine serum (FBS) and 100 units
of both penicillin and streptomycin (all Lonza, Slough, UK). Spheroids were formed using ultra-low
adherence 96-well plates (ThermoFisher, Loughborough, UK) seeded with 2 × 105 cells and cultivated
over 5–7 days prior to use. Primary human umbilical vein endothelial cells (HUVECs; PromoCell,
Heidelberg, Germany) were cultured in complete endothelial cell growth media (ECGM) (PromoCell).
HUVECs were seeded at 1 × 106/mL cells into 25 cm2 cell tissue culture flasks (Sarstedt) and cultured
at 37 ◦C in a 5% CO2 incubator. HUVECs were purchased as a growing culture (passage 1) and utilised
for experiments when enough cells had grown, between passages 3–6.

2.2. Dual Chip Microfluidic Setup

HUVECs were cultured on a µ-Slide I Luer (Ibidi, Gräfelfing, Germany). Slides were treated with
UV irradiation for 20 min and coated by dispensing approximately 12 µL of type B 2% v/v gelatin
(Sigma Aldrich, Gillingham, UK) into the channel. Then, the biochips were incubated for 24 h at 4 ◦C.
Cultured HUVECs (2000 cells) were added into each channel and the reservoirs filled with 60 µL of
media. The biochips were incubated in the CO2 incubator for 24 h at 37 ◦C. A µ-slide III 3D perfusion
was used to hold the spheroids, then flow was applied via a Harvard infusion PHD22/200 syringe
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pump (4 µL/min). The µ-Slide I Luer was attached to the output of the µ-slide III 3D chip as shown in
Figures 1 and 2A–C. Samples were then collected via the output of the µ-Slide I Luer into sterile 1.5 mL
polypropylene tubes.
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Figure 1. Schematic showing the dual microfluidic setup. Media with or without doxorubicin was
perfused though a chip containing established spheroids of ES-2 or U87 tumour cells and subsequently
a second chip coated with a human umbilical vein endothelial cell (HUVEC) monolayer. Samples were
then collected and HUVECs harvested after 24 h for analysis.
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application of flow.

2.3. Procoagulant Activity

The procoagulant potential of cell-free supernatant or cells (300,000 per assay) was measured
using the semi-automated Thrombotrack SOLO coagulometer. Samples (100 µL) were placed into a
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cuvette containing a steel ball and 25 mM CaCl2 (100 µL) was added; finally, 100 µL of control plasma
(NormTrol, Helena Biosciences, Gateshead, UK) was added and the time taken for clot formation
(prothrombin time) was automatically determined.

2.4. Flow Cytometry

TF labelled MP released from ES2 and U87 tumour cells were quantified by flow cytometry
before and after, being passed through the dual chips. MP were analysed immediately, directly from
samples of effluent media which was centrifuged to remove any larger cell debris (1000× g, 5 min)
prior to addition of antibodies. Samples of supernatant (50 µL) were incubated with 5 µL of anti-TF:
FITC (Bio-Rad, clone CLB/TF-5) for 30 min then analysed by flow cytometry by adding an equal
volume of Accucheck beads (Invitrogen, UK) and 150 µL of 0.2 µm-filtered sterile PBS [27,28]. A flow
cytometer (BD FACSCalibur) was set up with Megamix SSC beads (Biocytex, France) that were used to
define an MP gate from 200–500 nm according to side-scatter characteristics of the beads following the
International Society of Thrombosis and Haemostasis current recommendation for standardisation
of MP measurement by flow cytometry [29]. An FITC-conjugated isotype negative control antibody
(murine IgG1, MCA928F, Bio-Rad) was used to establish parameters (Figure 3).
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Figure 3. Representative fluorescence scatter plots for positive microparticle (MP) events showing
(A) tumour-spent media alone, (B) tumour-spent media with isotype-matched negative control and
(C) tissue factor (TF)-labelled MP within tumour-spent media. The lower right quadrant in (C) was
established and used for quantification of positive events.

2.5. Doxorubicin Treatment

Spheroids, in 180 µL of cell culture media, were transferred to 96-well sterile tissue culture plates.
Various concentrations of doxorubicin were added in a volume of 20 µL into the cells and incubated
for 24 and 48 h in an incubator (37 ◦C, 5% CO2). Cell proliferation, relative to the controls (no drug),
was determined by a cytotoxicity assay according to the manufacturers’ instructions (CellTitre Aqueous One,
Promega, Southampton, UK). MTS reagent (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-
2-[4-sulfophenyl]-2H-tetrazolium) uses a colorimetric method for the sensitive quantification of viable
cells. After incubation, plates were centrifuged at 400× g for 5 min and the supernatant was removed.
Fresh medium (180µL) was then added followed by MTS reagent (20µL) and the plates incubated (at 37 ◦C,
5% CO2) for 4 h. The absorbance was determined at 490 nm using a microplate reader (BioTek synergy
HT, BioTeK, Swindon, UK). For on-chip experiments, DOX was added to media at a final concentration of
0.75 µM prior to perfusion by syringe pump (Figure 2A).

2.6. Statistical Analysis

Pearson correlation coefficients were calculated and analyses of variance were used to compare
conditions. p values less than 0.05 were considered significant.
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3. Results

3.1. Cytotoxicity of Doxorubicin on Cells

To investigate the effects of a cytotoxic agent on the interaction between tumour MP and HUVECs,
doxorubicin (DOX) was used. Initially the minimum concentration of DOX that would have an effect
on cell viability was determined using a cell proliferation assay (MTS); various concentrations of
DOX were used on U87 and ES-2 tumour cells (Figure 4) and a concentration of 0.75 µM DOX was
selected for further study. At this concentration, HUVEC viability also decreased to 71% as compared
with control.
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Figure 4. Cell viability (n = 2) in various static cancer cell cultures when applying between 0 and
100 µM of doxorubicin (DOX) to 3D tumour spheroids of ES-2(•) or U87(•). Dashed line represents a
concentration 0.75 µM of DOX.

3.2. Tumour Spheroid Flow Experiments

Further experiments were carried as follows: U87 and ES-2 tumour spheroids were formed
and then transferred into 3D Ibidi chips and media with or without the addition of DOX (0.75 µM),
which was then flowed across the spheroids, collected and analysed for procoagulant activity (PCA)
and TFMP prior to the commencement of the experiment and then every hour for 6 h. A continual
loss of PCA (reflected as a slower coagulation time) was observed in the collected media over the 6 h
window for both U87 and ES-2 (Figure 5A,B). The relationship between PCA and concentration of
TFMP observed in the collected media showed a correlation which was unaltered by the presence of
DOX. Overall a consistent negative correlation was observed between TFMP and PCA with an average
Pearson’s rank correlation of −0.85 ± 0.05. To further confirm this relationship, the loss of PCA and
loss of TFMP was calculated as a percentage of the initial values prior to the start of the experiments.
Again, a negative correlation was observed (Figure 6, r = −0.70) for all data, independent of time.
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3.3. Flow Experiments Analysing HUVECs’ Response

Having observed no differential loss of PCA or TFMP from media flowed over HUVECs in
the absence or presence of DOX (Figure 5A,B and Figure 6), a further series of experiments were
undertaken in which the HUVECs themselves were subsequently harvested from the chips at the
completion of each experiment for cell analysis. Firstly, TFMP and PCA in the media were again
assessed, and the gradual loss of TFMP and PCA were observed across this series of independent
experiments, confirming the previous experiments. The largest reduction in TFMP concentration was
generally observed within the first 3 h, when there was an approximate loss of 50%; following this
a plateau was seen from 3 (ES-2) or 4 (U87) to 6 h where less TFMP per hour were lost (Figure 7).
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This was most pronounced for ES-2, where there was practically no further loss of MP from 3–6 h,
whereas the U87 TFMP continued to slowly decline.Bloods 2020, 1, FOR PEER REVIEW 7 
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A decrease in PCA was associated with the loss of TFMP, and the relationship between these
factors was again consistent with the TFMP in the media most likely being responsible for PCA
(r = −0.87, Figure 8).
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Finally, HUVECs from these experiments were subsequently harvested from the chips and
analysed for PCA at a constant cell number, after 24 h. Control chips containing HUVECs were
subjected to flow without the presence of tumour spheroids in the upstream 3D Ibidi chip. DOX controls
are described as “no DOX” within the dual chip setup and finally the same experiments in the presence
of DOX were all run in parallel on five separate occasions. The PCA of HUVEC cells was shown to
be significantly increased (faster clotting time) when tumour media from the spheroids was flowed
through for 24 h (p < 0.001, Figure 9), compared with HUVECs with media alone. Furthermore,
in the presence of DOX the HUVECs were shown to have a significantly increased PCA over both the
control HUVECs and the no DOX (but tumour-spent media) conditions. No significant differences
were observed in PCA of HUVECs in response to exposure to media from the two different cell lines,
most likely due to ES-2 and U87 possessing similar PCA properties.
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Figure 8. The relationship between loss of PCA and loss of TFMP from media collected after perfusion
with HUVECs from tumour spheroid 3D culture of ES-2 or U87 cells in the presence of DOX (0.75 µM);
r = −0.87.

The viability of HUVECs after 24 h of direct flow with tumour spheroid-derived MP with or
without DOX was assessed by trypan blue exclusion. In the absence of DOX, HUVEC viability was
88.5 ± 3.4%, whereas in the presence of the drug viability decreased to 69.3 ± 4.0%. In static (no flow)
conditions, the viability of HUVECs in the presence of DOX was found to be 77.6 ± 6.0%. This increased
loss of viability under flow conditions could be due to the fact the DOX is perfused over the HUVECs
at a constant concentration rather than being added at a single time and thus is continually replenished.
Another factor to consider is the concentration of DOX that comes into contact with the HUVECs is
unknown as the tumour spheroids are exposed first in the dual chip flow-through model.
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4. Discussion

Chemotherapy is an independent risk factor for VTE in cancer patients. Here we showed that
TFMP, released from 3D tumour spheroids under flow, decreased in concentration after perfusion
through biochips coated with HUVECs and this effect is associated with a concurrent, proportional
increase of procoagulant activity (PCA) of the endothelial cells (reflected as a faster coagulation time).
The increased PCA of the HUVECs was further increased in the presence of doxorubicin treatment
of the tumour spheroids. We have previously shown that tumour MP are able to bind to endothelial
cells, transfer and increase the PCA of endothelial cells in static and flow conditions [27,28], and here
we demonstrate that the incubation of a cytotoxic agent with the tumour spheroids further increased
the PCA of endothelial cells when exposed to tumour MP in flow conditions. The average loss of MP
over the HUVEC layer was similar but slightly enhanced in the presence of DOX compared to media
alone. As the DOX concentration used was the lowest that caused an effect on viability of the tumour
spheroids and HUVECs, the increased PCA of HUVECs harvested after 24 h perfusion can most likely
be attributed to a loss of viability (increased procoagulant phospholipid exposure) rather than any
significant increase in MP binding.

Perhaps the most interesting finding observed was the cessation of loss of TFMP from media
perfused over HUVECs after 3 h (Figure 7, indicated by blue arrow). This may well suggest that MP
are binding to HUVECs through a specific receptor-mediated mechanism which becomes saturated
or sterically inaccessible due to the number of MP attached to the cell surface. MP are known to
interact with target cells via multiple mechanisms; direct ligand-receptor interaction, membrane fusion
leading to internalisation and acquisition of MP cargo by the target cell or by transferring surface
receptors [30,31]. The data herein suggest that the interaction between tumour MP and endothelial
cells is the former. Additionally, if this was indeed the case then it may be expected that a proportional
response of the recipient endothelial cells may be observed and we have recently shown a positive
correlation between endothelial cell MP release in response to exposure of increasing concentrations of
tumour MP [32].

It has previously been proposed that ligand-receptor interaction between MP and target cells
accounts for subsequent biological effects showing the role of MP in cell–cell communication [33].
This has been demonstrated in endothelial cells where MP carrying Sonic Hedgehog were shown
to induce nitric oxide production in endothelial cells and improve endothelial function after
ischaemia/reperfusion [34] and also modulate neovascularisation [35]. Platelet MP have also been
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shown to activate endothelial cells [36] and are able to transfer the adhesion molecule CD41. The data
presented add to this body of work suggesting that endothelial cells are receptive to MP binding via
specific mechanisms.

Here we describe a dual chip microfluidic flow model for study of cytotoxic agents on tumour
spheroids and endothelial cells. Doxorubicin treatment of tumour spheroids resulted in an enhanced
PCA of an endothelial cell layer under flow. This increased PCA was not MP-associated but due to the
presence of doxorubicin within the media which reduced HUVECs’ viability by 20% and could have
relevance to the mechanism by which cancer patients undergoing chemotherapy have an increased risk
of VTE. Endothelial cell damage by chemotherapy agents may contribute to the hypercoagulable state.

5. Conclusions

Doxorubicin treatment of tumour spheroids resulted in enhanced PCA of an endothelial cell layer
under flow. This increased PCA may have relevance to the mechanism by which cancer patients
undergoing chemotherapy have an increased risk of VTE.

Author Contributions: Conceptualisation, L.A.M.; methodology, L.A.M., A.A.; formal analysis, A.A., L.A.M.;
investigation, A.A..; writing—original draft preparation, L.A.M.,. A.A.; writing—review and editing, L.A.M.,.
A.A., J.G.; supervision, L.A.M., J.G.; project administration, L.A.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded through a PhD scholarship from the Northern Border University (Saudi Arabia)
to A.A.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Seaman, S.; Nelson, A.; Noble, I. Cancer-associated thrombosis, low-molecular-weight heparin, and the
patient experience: A qualitative study. Patient Prefer. Adherence 2014, 8, 453–461.

2. Echrish, H.; Xiao, Y.; Madden, L.; Allgar, V.; Cooke, J.; Wedgwood, K.; Dasgupta, D.; Greenman, J.;
Maraveyas, A. Effect of resection of localized pancreaticobiliary adenocarcinoma on angiogenic markers and
tissue factor related pro-thrombotic and pro-angiogenic activity. Thromb. Res. 2014, 134, 479–487. [CrossRef]

3. Aleman, M.M.; Gardiner, C.; Harrison, P.; Wolberg, A.S. Differential contributions of monocyte- and
platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J. Thromb.
Haemost. 2011, 9, 2251–2261. [CrossRef]

4. Shai, E.; Varon, D. Development, cell differentiation, angiogenesis—Microparticles and their roles in
angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 10–14. [CrossRef]

5. Campello, E.; Spiezia, L.; Radu, C.M.; Bulato, C.; Castelli, M.; Gavasso, S.; Simioni, P. Endothelial, platelet,
and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism.
Thromb. Res. 2011, 127, 473–477. [CrossRef]

6. Brodsky, S.V.; Zhang, F.; Nasjletti, A.; Goligorsky, M.S. Endothelium-derived microparticles impair endothelial
function in vitro. Am. J. Physiol. -Heart Circ. Physiol. 2004, 286, H1910–H1915. [CrossRef]

7. Barteneva, N.S.; Fasler-Kan, E.; Bernimoulin, M.; Stern, J.N.H.; Ponomarev, E.D.; Duckett, L.; Vorobjev, I.A.
Circulating microparticles: Square the circle. BMC Cell Biol. 2013, 14, 23. [CrossRef]

8. Nomura, S.; Shimizu, M. Clinical significance of procoagulant microparticles. J. Intensive Care 2015, 3, 2. [CrossRef]
9. Gold, B.; Cankovic, M.; Furtado, L.V.; Meier, F.; Gocke, C.D. Do Circulating Tumor Cells, Exosomes, and

Circulating Tumor Nucleic Acids Have Clinical Utility? J. Mol. Diagn. 2015, 17, 209–224. [CrossRef]
10. Manly, D.A.; Boles, J.; Mackman, N. Role of tissue factor in venous thrombosis. Annu. Rev. Physiol. 2011, 73,

515–525. [CrossRef]
11. Yates, K.R.; Welsh, J.; Echrish, H.H.; Greenman, J.; Maraveyas, A.; Madden, L.A. Pancreatic cancer cell and

microparticle procoagulant surface characterization: Involvement of membrane-expressed tissue factor,
phosphatidylserine and phosphatidylethanolamine. Blood Coagul. Fibrinolysis 2011, 22, 680–687. [CrossRef]
[PubMed]

12. Date, K.; Hall, J.; Greenman, J.; Maraveyas, A.; Madden, L.A. Tumour and microparticle tissue factor
expression and cancer thrombosis. Thromb. Res. 2013, 131, 109–115. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.thromres.2014.05.022
http://dx.doi.org/10.1111/j.1538-7836.2011.04488.x
http://dx.doi.org/10.1161/ATVBAHA.109.200980
http://dx.doi.org/10.1016/j.thromres.2011.01.002
http://dx.doi.org/10.1152/ajpheart.01172.2003
http://dx.doi.org/10.1186/1471-2121-14-23
http://dx.doi.org/10.1186/s40560-014-0066-z
http://dx.doi.org/10.1016/j.jmoldx.2015.02.001
http://dx.doi.org/10.1146/annurev-physiol-042210-121137
http://dx.doi.org/10.1097/MBC.0b013e32834ad7bc
http://www.ncbi.nlm.nih.gov/pubmed/21941170
http://dx.doi.org/10.1016/j.thromres.2012.11.013
http://www.ncbi.nlm.nih.gov/pubmed/23237339


Hemato 2020, 1 33

13. Haddad, T.C.; Greeno, E.W. Chemotherapy-induced thrombosis. Thromb. Res. 2006, 118, 555–568. [CrossRef]
[PubMed]

14. Swystun, L.L.; Shin, L.Y.Y.; Beaudin, S.; Liaw, P.C. Chemotherapeutic agents doxorubicin and epirubicin
induce a procoagulant phenotype on endothelial cells and blood monocytes. J. Thromb. Haemost. 2009, 7,
619–626. [CrossRef]

15. Furie, B.C.; Furie, B. Cancer-associated thrombosis. Blood Cellsmolecules Dis. 2006, 36, 177–181. [CrossRef]
16. Falanga, A.; Russo, L. Epidemiology, risk and outcomes of venous thromboembolism in cancer. Hamostaseologie

2012, 32, 115–125.
17. Barni, S.; Labianca, R.; Agnelli, G.; Bonizzoni, E.; Verso, M.; Mandalà, M.; Brighenti, M.; Petrelli, F.;

Bianchini, C.; Perrone, T. Chemotherapy-associated thromboembolic risk in cancer outpatients and effect of
nadroparin thromboprophylaxis: Results of a retrospective analysis of the PROTECHT study. J. Transl. Med.
2011, 9, 179. [CrossRef]

18. Moore, R.A.; Adel, N.; Riedel, E.; Bhutani, M.; Feldman, D.R.; Tabbara, N.E.; Soff, G.; Parameswaran, R.;
Hassoun, H. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy:
A large retrospective analysis. J. Clin. Oncol. 2011, 29, 3466–3473. [CrossRef]

19. Nuver, J.; Smit, A.; Sleijfer, D.T.; Van Gessel, A.; Van Roon, A.; Van Der Meer, J.; van den Berg, M.; Burgerhof, J.;
Hoekstra, H.; Sluiter, W. Microalbuminuria, decreased fibrinolysis, and inflammation as early signs of atherosclerosis
in long-term survivors of disseminated testicular cancer. Eur. J. Cancer 2004, 40, 701–706. [CrossRef]

20. Soultati, A.; Mountzios, G.; Avgerinou, C.; Papaxoinis, G.; Pectasides, D.; Dimopoulos, M.-A.;
Papadimitriou, C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and
clinical implications. Cancer Treat. Rev. 2012, 38, 473–483. [CrossRef]

21. Hoshi, A.; Matsumoto, A.; Chung, J.; Isozumi, Y.; Koyama, T. Activation of coagulation by a thalidomide-based
regimen. Blood Coagul. Fibrinolysis 2011, 22, 532–540. [CrossRef] [PubMed]

22. Walsh, J.; Wheeler, H.R.; Geczy, C.L. Modulation of tissue factor on human monocytes by cisplatin and
adriamycin. Br. J. Haematol. 1992, 81, 480–488. [CrossRef] [PubMed]

23. Kim, E.J.; Lim, K.M.; Kim, K.Y.; Bae, O.N.; Noh, J.Y.; Chung, S.M.; Shin, S.; Yun, Y.P.; Chung, J.H.
Doxorubicin-induced platelet cytotoxicity: A new contributory factor for doxorubicin-mediated
thrombocytopenia. J. Thromb. Haemost. 2009, 7, 1172–1183. [CrossRef]

24. Ben Aharon, I.; Bar Joseph, H.; Tzabari, M.; Shenkman, B.; Farzam, N.; Levi, M.; Shalgi, R.; Stemmer, S.M.;
Savion, N. Doxorubicin-Induced Vascular Toxicity—Targeting Potential Pathways May Reduce Procoagulant
Activity. PLoS ONE 2013, 8, e75157. [CrossRef]

25. Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips.
Nat. Rev. Cancer 2019, 19, 65–81. [CrossRef]

26. Garcia-Cordero, J.L.; Maerkl, S.J. Microfluidic systems for cancer diagnostics. Curr. Opin. Biotechnol. 2020,
65, 37–44. [CrossRef]

27. Adesanya, M.A.; Maraveyas, A.; Madden, L.A. Cancer microvesicles induce tissue factor-related procoagulant
activity in endothelial cells in vitro. Blood Coagul. Fibrinolysis 2017, 28, 365–372. [CrossRef]

28. Algarni, A.; Greenman, J.; Madden, L.A. Procoagulant tumor microvesicles attach to endothelial cells on
biochips under microfluidic flow. Biomicrofluidics 2019, 13, 064124. [CrossRef]

29. Cointe, S.; Judicone, C.; Robert, S.; Mooberry, M.; Poncelet, P.; Wauben, M.; Nieuwland, R.; Key, N.;
Dignat-George, F.; Lacroix, R. Standardization of microparticle enumeration across different flow cytometry
platforms: Results of a multicenter collaborative workshop. J. Thromb. Haemost. 2017, 15, 187–193. [CrossRef]

30. Benameur, T.; Osman, A.; Parray, A.; Ait Hssain, A.; Munusamy, S.; Agouni, A. Molecular mechanisms
underpinning microparticle-mediated cellular injury in cardiovascular complications associated with diabetes.
Oxidative Med. Cell. Longev. 2019, 6475187. [CrossRef]

31. Camussi, G.; Deregibus, M.C.; Bruno, S.; Cantaluppi, V.; Biancone, L. Exosomes/microvesicles as a mechanism
of cell-to-cell communication. Kidney Int. 2010, 78, 838–848. [CrossRef] [PubMed]

32. Faulkner, L.G.; Alqarni, S.; Maraveyas, A.; Madden, L.A. Isolated tumour microparticles induce endothelial
microparticle release in vitro. Blood Coagul. Fibrinolysis 2020, 31, 35–42. [CrossRef] [PubMed]

33. Maas, S.L.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles.
Trends Cell Biol. 2017, 27, 172–188. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.thromres.2005.10.015
http://www.ncbi.nlm.nih.gov/pubmed/16388837
http://dx.doi.org/10.1111/j.1538-7836.2009.03300.x
http://dx.doi.org/10.1016/j.bcmd.2005.12.018
http://dx.doi.org/10.1186/1479-5876-9-179
http://dx.doi.org/10.1200/JCO.2011.35.5669
http://dx.doi.org/10.1016/j.ejca.2003.12.012
http://dx.doi.org/10.1016/j.ctrv.2011.09.002
http://dx.doi.org/10.1097/MBC.0b013e328348629d
http://www.ncbi.nlm.nih.gov/pubmed/21670663
http://dx.doi.org/10.1111/j.1365-2141.1992.tb02978.x
http://www.ncbi.nlm.nih.gov/pubmed/1390232
http://dx.doi.org/10.1111/j.1538-7836.2009.03477.x
http://dx.doi.org/10.1371/journal.pone.0075157
http://dx.doi.org/10.1038/s41568-018-0104-6
http://dx.doi.org/10.1016/j.copbio.2019.11.022
http://dx.doi.org/10.1097/MBC.0000000000000607
http://dx.doi.org/10.1063/1.5123462
http://dx.doi.org/10.1111/jth.13514
http://dx.doi.org/10.1155/2019/6475187
http://dx.doi.org/10.1038/ki.2010.278
http://www.ncbi.nlm.nih.gov/pubmed/20703216
http://dx.doi.org/10.1097/MBC.0000000000000876
http://www.ncbi.nlm.nih.gov/pubmed/31789658
http://dx.doi.org/10.1016/j.tcb.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27979573


Hemato 2020, 1 34

34. AgouTii, A.; Ahmed Mostefai, H.; Porro, C.; Carusio, N.; Favre, J.; Richard, V.; Henrion, D.; Carmen
Martinez, M.; Andriantsitohaina, R. Sonic hedgehog carried by microparticles corrects endothelial injury
through nitric oxide release. FASEB J. 2007, 21, 2735–2741. [CrossRef]

35. Benameur, T.; Soleti, R.; Porro, C.; Andriantsitohaina, R.; Martínez, M.C. Microparticles carrying Sonic
hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PLoS ONE 2010,
5, e12688. [CrossRef]

36. Barry, O.P.; Praticò, D.; Lawson, J.A.; FitzGerald, G.A. Transcellular activation of platelets and endothelial
cells by bioactive lipids in platelet microparticles. J. Clin. Investig. 1997, 99, 2118–2127. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1096/fj.07-8079com
http://dx.doi.org/10.1371/journal.pone.0012688
http://dx.doi.org/10.1172/JCI119385
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Lines and Culture 
	Dual Chip Microfluidic Setup 
	Procoagulant Activity 
	Flow Cytometry 
	Doxorubicin Treatment 
	Statistical Analysis 

	Results 
	Cytotoxicity of Doxorubicin on Cells 
	Tumour Spheroid Flow Experiments 
	Flow Experiments Analysing HUVECs’ Response 

	Discussion 
	Conclusions 
	References

