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Abstract: Tumor-associated macrophages (TAMs) of the immune microenvironment play an im-
portant role in the Diffuse Large B-cell Lymphoma (DLBCL) pathogenesis. This research aimed to 
characterize the expression of macrophage colony-stimulating factor 1 receptor (CSF1R) at the gene 
and protein level in correlation with survival. First, the immunohistochemical expression of CSF1R 
was analyzed in a series of 198 cases from Tokai University Hospital and two patterns of histological 
expression were found, a TAMs, and a diffuse B-lymphocytes pattern. The clinicopathological cor-
relations showed that the CSF1R + TAMs pattern associated with a poor progression-free survival 
of the patients, disease progression, higher MYC proto-oncogene expression, lower MDM2 expres-
sion, BCL2 translocation, and a MYD88 L265P mutation. Conversely, a diffuse CSF1R + B-cells pat-
tern was associated with a favorable progression-free survival. Second, the histological expression 
of CSF1R was also correlated with 10 CSF1R-related markers including CSF1, STAT3, NFKB1, Ki67, 
MYC, PD-L1, TNFAIP8, IKAROS, CD163, and CD68. CSF1R moderately correlated with STAT3, 
TNFAIP8, CD68, and CD163 in the cases with the CSF1R + TAMs pattern. In addition, machine 
learning modeling predicted the CSF1R immunohistochemical expression with high accuracy using 
regression, generalized linear, an artificial intelligence neural network (multilayer perceptron), and 
support vector machine (SVM) analyses. Finally, a multilayer perceptron analysis predicted the 
genes associated with the CSF1R gene expression using the GEO GSE10846 DLBCL series of the 
Lymphoma/Leukemia Molecular Profiling Project (LLMPP), with correlation to the whole set of 
20,683 genes as well as with an immuno-oncology cancer panel of 1790 genes. In addition, CSF1R 
positively correlated with SIRPA and inversely with CD47. In conclusion, the CSF1R histological 
pattern correlated with the progression-free survival of the patients of the Tokai series, and predictive 
analytics is a feasible strategy in DLBCL. 
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1. Introduction 
Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent histological sub-

types of non-Hodgkin lymphoma (NHL) in the Western countries, representing approxi-
mately 25% of the cases. DLBCL not-otherwise specified (NOS) is characterized for being 
a heterogeneous disease because of the morphological characteristics, the biological back-
ground, and the genetic alterations [1]. In the current classification of the World Health 
Organization (WHO) [2], DLBCL has some separate diagnostic categories including the 
T-cell/histiocyte rich large B-cell lymphoma, the primary DLBCL of the mediastinum, and 
the intravascular lymphoma, etc. 

DLBCL can be cured in around 50% of the cases with current therapy, mainly based 
on the R-CHOP (Rituximab, cyclophosphamide, doxorubicin, vincristine, and predni-
sone). Due to the clinical heterogeneity, it is important to identify the patients with a worse 
outcome. The International Prognostic Index (IPI) and its derivatives are the main tools 
being used to stratify the prognosis of the patients with DLBCL. The IPI includes the fol-
lowing variables: age, serum lactate dehydrogenase, Eastern Cooperative Oncology 
Group (ECOG) performance status, clinical stage, and the number of extranodal disease 
sites. The variants of the original IPI include the age-adjusted, the stage-adjusted, and the 
National Comprehensive Cancer Network International Prognostic Index (NCCN IPI) [3]. 
The gene expression analysis (GEP) classified the DLBCL patients according to the cell-
of-origin as germinal centre B-cell-like (GCB) associated with a good prognosis, and as 
activated B-cell-like (ABC) associated with a poor prognosis [4–6]. Importantly, the role 
of the immune microenvironment was also highlighted [7]. 

The microenvironment is comprised of several immune cells including CD8 + cyto-
toxic T-lymphocytes, CD4 + helper T-lymphocytes, natural killer (NK) cells, FOXP3 + reg-
ulatory T-lymphocytes (Treg), and macrophages, among others [8]. The tumor-associated 
macrophages (TAMs) are of special interest because the ones with an M2-like phenotype 
have tumor-promoting capabilities [9], which involve tumor proliferation, invasion, angi-
ogenesis, metastasis, and suppression of anti-tumor immunity [10,11]. In DLBCL, it has 
been reported that high numbers are associated with a poor prognosis of DLBCL [9,12]. 

Macrophage colony-stimulating factor 1 receptor (CSF1R) is a tyrosine-protein kinase 
that functions as a cell-surface receptor for CSF1 and IL34 and regulates the survival, pro-
liferation, and differentiation of macrophages [13]. Due to the association of TAMs with 
tumorigenesis and the suppression of the anti-tumor immunity, CSF1R is of great interest 
as a target for cancer treatment using small molecules CSF1R inhibitors [14,15]. In case of 
Hodgkin Lymphoma, an abstract report by Moskowithz CH et al. described the use of a 
CSF1R inhibitor (PLX3397) in patients with relapsed or refractory disease, a phase 2 single 
agent clinical trial, and concluded that the efficacy of single agent PLX3397 in that study 
population was modest, and that the manageable safety profile and evidence of target 
inhibition might warrant further testing in combination therapy trials. To the best of our 
knowledge, the use of CSF1R inhibitors in DLBCL has not been performed [16]. 

The purpose of this work was to analyze the expression of CSF1R in DLBCL. First, 
we analyzed the immunohistochemical protein expression of CSF1R in a series of 198 
cases of DLBCL from Tokai University Hospital and performed several clinicopathologi-
cal correlations. Then, we analyzed the gene expression of CSF1R in DLBCL using a robust 
series from western countries of 414 from the Lymphoma/Leukemia Molecular Profiling 
Project (LLMPP), and we focused on the identification of genes associated with the CSF1R 
as a dichotomic variable (high vs. low levels) and then with other relevant cancer-related 
genes. 
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2. Materials and Methods 
2.1. Subjects of Study 
DLBCL Series from the Tokai University Hospital 

For the immunohistochemical analysis of CSF1R, we used a Japanese series of 198 
cases of DLBCL from the Tokai University Hospital. The complete clinicopathological 
characteristics of this series are shown in Table 1. In summary, this series has the charac-
teristics of a conventional series of DLBCL not-otherwise specified. The disease location 
is nodal (+spleen) and Waldeyer’s ring is in around half of the cases. The treatment was 
R-CHOP (rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine, and 
prednisolone) or R-CHOP-like in 96% of the cases, and a 75% had a clinical response to 
treatment. The immunophenotype showed CD10 positivity in 30% of the cases, CD5 pos-
itivity in 16%, MUM1 positivity in 74%, BCL2 positivity in 74%, and a cell-of-origin, ac-
cording to the Hans’ classifier of non-GCB, in 64% of the cases. Epstein-Barr virus (EBER) 
was found in 9% of the cases. The clinicopathological variables were correlated with the 
overall survival and progression-free survival. In Table 2, the correlation with the overall 
survival is shown. Relevant variables that correlated with the overall survival were IPI, 
clinical response to treatment, some immunohistochemical markers (CD10, MUM1, BCL2, 
Ki67 and RGS1), cell-of-origin Hans’ classification, and Epstein-Barr virus (EBER). The 
correlations with the progression-free survival was like the ones of the overall survival. 
Of note, the original series for the immunohistochemistry was around 130 cases. This is 
the reason why some variables such as the fluorescence in situ hybridization (FISH) is 
only available in around 130 cases. Later, the series was expanded up to 198 to increase 
the statistical power. 

The study was conducted according to the guidelines of the Declaration of Helsinki 
and approved by the Institutional Review Board and the Ethics Committee of Tokai Uni-
versity, School of Medicine (protocol code IRB14R-080 and IRB-156). 

Table 1. Clinicopathological characteristics of the DLBCL series of the Tokai University Hospital 
(Japan). 

Variables and Frequencies Univariate Cox Overall Survival 
Analysis 

Variable Num. % p-Value Hazard 
Risk 

95.0% CI for HR 
Lower Upper 

Sex Male 114/198 57.6 0.977 1.0 0.7 1.5 
Age >60 141/198 71.2 0.002 2.3 1.4 4.0 

LDH high (>219) 123/195 63.1 0.000008 3.4 1.9 5.7 
sIL2R high (>530) 155/186 83.3 0.001 5.2 1.9 14.2 

ECOG Performance Status ≥2 26/143 18.2 0.000034 3.3 1.9 5.7 
Clinical stage III or IV 85/182 46.7 0.003 1.9 1.3 3.1 

Extranodal disease site >1 38/126 30.2 0.000003 3.7 2.1 6.4 
B symptoms 39/159 24.5 0.037 1.7 1.0 2.9 

IPI       
Low risk 56/163 34.4 Reference - - - 

Low-intermediate risk 49/163 30.1 0.004 2.9 1.4 5.9 
High-intermediate risk 31/163 19.0 0.000022 5.1 2.4 10.8 

High risk 27/163 16.6 0.000018 5.5 2.5 11.8 
Location       

Nodal (+spleen) 85/198 42.9 Reference - - - 
Waldeyer’s ring 25/198 12.6 0.277 0.7 0.3 1.4 
Gastrointestinal 25/198 12.6 0.074 0.5 0.2 1.1 

Other extranodal 63/198 31.8 0.449 1.2 0.8 1.9 
Treatment       
R-CHOP 138/185 74.6 Reference - - - 

R-CHOP-like 39/185 21.1 0.044 1.7 1.0 2.7 
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Others 8/185 4.3 0.042 2.6 1.0 6.5 
Response to treatment       

CR 131/174 75.3 Reference - - - 
PR + PD + SD + NC 43/174 24.7 1.5 × 10−16 7.5 4.6 12.1 
Immune phenotype       

CD3 positive 0/195 0 - - - - 
CD5 positive 31/194 16.0 0.783 1.1 0.6 1.9 

CD20 positive 193/197 98.0 - - - - 
CD10 positive 59/195 30.3 0.01 0.5 0.3 0.9 

MUM1 (IRF4) positive 145/195 74.4 0.027 1.8 1.1 3.1 
BCL2 positive 145/195 74.4 0.000440 3.0 1.6 5.6 
BCL6 positive 134/195 68.7 0.612 0.9 0.6 1.4 

Ki67 high (>44%) 23/117 19.7 0.001 2.6 1.5 4.7 
MYC high (>22%) 62/119 60.1 0.245 1.4 0.8 2.3 

Cell-of-origin Molecular Subtype       
Germinal center B-cell (GCB) 69/194 35.6 Reference - - - 

Non-GCB 125/194 64.4 0.003 2.1 1.3 3.4 
Epstein-Barr virus, (EBER) positive 17/190 8.9 0.007 2.5 1.3 4.8 

RGS1 high 83/166 50.0 0.039 1.7 1.0 2.7 
BCL2 split positive (FISH) 13/122 10.7 0.879 0.9 0.4 2.2 
MYC split positive (FISH) 18/129 14.0 0.776 1.1 0.6 2.3 

BCL2 MYC double hit (FISH) 2/120 1.7 - - - - 
MYD88 L265P mutation 12/121 9.9 0.915 1.0 0.5 2.3 

CI, confidence interval; HR, hazard risk; LDH, lactate dehydrogenase; IPI, International Prognostic 
Index; R-CHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine, and pred-
nisolone; CR, complete response; PR, partial response; PD, progressive disease; SD, stable disease, 
NC, no change. 

2.2. Immunohistochemistry and Digital Image Quantification 
The immunohistochemistry was performed on formalin-fixed paraffin embedded 

whole-tissue sections (FFPET) in a Leica Bond-Max automatic equipment and Bond rea-
gents (Leica K.K., Tokyo, Japan). The immunophenotype included the following markers 
of CD3, CD5, CD20, CD10, MUM1 (IRF4), BCL2, BCL6, Ki67, and RGS1 (Novocastra pri-
mary antibodies, Leica K.K.), and MDM2 (IF2, Invitrogen, Life Technologies K.K., Tokyo, 
Japan). The slides were visualized in an Olympus BX63 microscope and DP73 camera 
(Olympus K.K, Tokyo, Japan). More than 30% expression by the tumoral B-cells was as-
sessed as positive. CSF1R was initially evaluated in an ordinal manner as 0, 1+, 2+, and 3+. 
Then, digital image quantification of the CSF1R was performed using the Fiji software. 
The CSF1R expression was calculated using an ROI in the tissue. This ROI was representa-
tive of the overall CSF1R expression in the entire tissue section. Additional characteriza-
tion included testing for Epstein-Barr virus (EBER in-situ hybridization #PB0589, Leica 
K.K.), BCL2 and MYC FISH (split probes, #Y5407 and #Y5410, Dako/Agilent), and a 
MYD88 (L265P) mutation [17–22]. 

The additional markers related to CSF1R were used in a set of 100 cases of DLBCL 
form the same series. The primary antibodies were the following: CSF1 (2D10, LSBio, To-
kyo, Japan), phospho-STAT3 (Tyr705, D3A7, Cell Signaling, Tokyo, Japan), NF-KB 
p105/p50 (#3035, Cell Signaling), MYC (Y69, ab32072, Abcam, Tokyo, Japan), PD-L1 (E1J2J, 
Cell Signaling), TNFAIP8 (#14559-MM01, Sino Biological, Beijing, P.R. China), IKAROS 
(D6N9Y, #14859, Cell Signaling), CD163 (10D6, Leica), and CD68 (514H12, Leica). 

The CSF1R monoclonal antibody was developed by Dr Juan Fernando Garcia (De-
partment of Pathology, MD Anderson Cancer Center, Madrid, Spain) and created by Dr. 
Giovanna Roncador from the Monoclonal Antibodies Unit, Spanish National Centre for 
Cancer Research (Centro Nacional de Investigaciones Oncologicas, CNIO, Madrid, 
Spain). This mouse monoclonal primary antibody targets human CSF1R, of which the 
clone name is FER216, and the isotype is IgG1, and the antibody used the antigen 
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ecCSF1R-Fc-6His recombinant protein (84kDa-extracellular portion). The FER216 mAb 
can detect human CSF1R protein by Western Blotting, immunoprecipitation, immunocy-
tochemistry, immunohistochemistry (frozen, paraffin, and immunofluorescence), and 
flow cytometry [23]. 

GSE10846 DLBCL Series of the Lymphoma/Leukemia Molecular Profiling Project 
(LLMPP) 

For the gene expression analysis of CSF1R, we used a robust and well characterized 
series of 414 cases of DLBCL from Western countries, the GSE10846 of the Lym-
phoma/Leukemia Molecular Profiling Project (LLMPP) [24,25]. 

The clinicopathological characteristics of this series are shown in Table 2. In sum-
mary, the age ranged from 14 to 92 years old, with a mean of 61 and a median of 62.5 
years. The male/female ratio was 1.3 (224/172). The 1, 3, 5, and 10-year overall survival 
was 78%, 63%, 57%, and 47%. According to the National Comprehensive Cancer Network 
International Prognostic Index (NCCN IPI), low risk patients represented a 16.8% of the 
series (54/321), low-intermediate represented a 47.4%, high-intermediate represented a 
30.5%, and high represented a 5.3%. According to the cell-of-origin molecular classifica-
tion, a 44.2% (183/414) were germinal center B-cell-like (GCB), a 40.3% were activated B-
cell-like (ABC), and a 15.5% were unclassified. The variables age, LDH ratio, ECOG per-
formance status, clinical stage, number of extranodal sites, NCCN IPI, and cell-of-origin 
molecular classification correlated with the overall survival of the patients. Therefore, this 
is a conventional series of DLBCL (Table 2). 

Table 2. Clinicopathological characteristics of the diffuse large B-cell lymphoma (DLBCL) series of 
the GEO GSE10846 dataset of the lymphoma/leukemia molecular profiling project (LLMPP). 

Variables and Frequencies Univariate Cox Overall Survival 
Analysis 

Variable Num. % p-Value Hazard 
Risk 

95.0% CI for HR 
Lower Upper 

Sex Male 224/414 54.6 0.9 1.0 0.7 1.4 
Age >60 226/414 54.6 0.000002 2.2 1.6 3.1 

LDH ratio >1 182/351 51.9 5.1 × 10−08 2.7 1.9 3.9 
LDH ratio >3 32/351 9.1 2.9 × 10−08 3.7 2.3 5.8 

ECOG Performance Status ≥2 93/389 23.9 3.1 × 10−10 2.8 2.1 3.9 
Clinical stage III or IV 218/406 53.7 0.000245 1.8 1.3 2.5 

Extranodal disease site >1 30/383 7.8 0.013702 1.9 1.1 3.3 
NCCN IPI       

Low risk 54/321 16.8 5.2 × 10−08 - - - 
Low-intermediate risk 152/321 47.4 0.0004 5.2 2.1 13.0 
High-intermediate risk 98/321 30.5 0.000004 8.7 3.5 21.9 

High risk 17/321 5.3 6.9 × 10−08 17.8 6.2 50.5 
Cell-of-origin molecular subtype       

Germinal center B-cell (GCB) 183/414 44.2 2.8 × 10−08 - - - 
Activated B-cell (ABC) 167/414 40.3 1.1 × 10−08 2.8 1.9 3.9 

Unclassified 64/414 15.5 0.2 1.4 0.8 2.3 
Treatment       

RCHOP-like 233/414 56.3 0.00008 0.5 0.4 0.7 
CHOP-like 181/414 43.7 - - - - 

Note: The GSE10846 dataset represents previously published data of the LLMPP [24,25], which is 
not the authors’ own work. This dataset is publicly available as the Gene Expression Omnibus 
data repository of the National Center for Biotechnology Information (NCBI). NCCN, National 
Comprehensive Cancer Network. 

  



Hemato 2021, 2 187 
 

 

2.3. Bioinformatics and Statistical Analysis 
The GSE10846 data was downloaded from the National Center for Biotechnology In-

formation (NCBI) Gene Expression Omnibus (GEO) public functional genomics data re-
pository (https://www.ncbi.nlm.nih.gov/gds; accessed on 9 April 2021). The gene expres-
sion array used in this series is the GPL570, Affymetrix Human Genome U133 Plus 2.0 
Array (HG-U133_Plus_2). The data was normalized and log2 transformed. The probes 
were collapsed to a one expression value per gene using the maximum probe values. 
Therefore, the series was comprised of 414 cases and 20,684 genes. 

All the analyses were performed using the following software according to the man-
ufacturers’ instructions: R programming language with R version 3.6.3 (https://www.r-
project.org/; accessed on 9 April 2020) and R Studio (version 1.3.959; https://rstudio.com/; 
accessed on 9 April 2020), the Gene set enrichment analysis software (GSEA 4.1.0, build: 
27, Broad Institute, Cambridge, MA 02142, USA), IBM SPSS statistics (version 26; New 
Orchard Road Armonk, NY, 10504-1722, USA), IBM Modeler (version 18), Xlstat (version 
2018.1, Addinsoft, Suite E100, NY, 10001, USA), Excel (version 16.0.13127.21062, Mi-
crosoft, Redmond, WA 98052-7329, USA) and EditPad Lite (version 8.1.2 x64, Just Great 
Software Co. Ltd., Rawai Phuket 83130, Thailand). 

The gene expression values of CSF1R in the series were selected and an appropriate 
cut-off value for prediction of the overall survival was found. The series of cases was di-
vided into two groups of cases: high versus low CSF1R gene expression. Then, the genes 
associated with the high or low CSF1R groups were searched using the multilayer per-
ceptron analysis. The multilayer perceptron analysis was performed as thoroughly de-
scribed in our recent publications [26–28]. First, the 20,683 genes were ranked according 
to their normalized importance for their association with the high or low CSF1R expres-
sion groups. Second, a predefined set of 1825 genes was also ranked, according to the 
association with the two groups. This defined set of 1825 is a cancer transcriptome atlas 
panel (LBL-10809-2) designed for comprehensive profiling of the tumor, microenviron-
ment, and immune response. The genes are summarized as follows: adaptive and innate 
immunity, immune response, cell function, metabolism, physiology and disease, signal-
ing pathways, tissue compartment (tumor, immune, and stroma), and biological catego-
ries (tumor biology, immune response, and microenvironment). For example, in the cate-
gory apoptosis, the genes ACTB, AKT1, AKT2, AKT2, APC, ATM, BAD, BCL2, etc. are 
found. The FOXP3 gene belongs to the Treg differentiation. PDCD1 (PD-1) belongs to the 
immune exhaustion and T-cell checkpoints. PAX5 belongs to the epigenetic modification. 
SETD2 belongs to ammino acid synthesis and transport. Of note, one gene can be present 
in more than one category. 

The criteria for overall survival and progression-free survival were standard values 
[29,30]. The survival was calculated with the Kaplan-Meier with the Log rank (Mantel-
Cox) test (in the calculation, the Breslow and Tarone-Ware test were also included) and 
the Cox regression (enter method). Comparisons between groups were performed with 
nonparametric tests (independent samples, Mann-Whitney U-test for 2 samples, or Krus-
kal-Wallis one-way ANOVA for k samples, if necessary), and crosstabulations with Pear-
son Chi-Square, Likelihood Ratio, and Fisher’s Exact Test. Bivariate correlations was per-
formed by Pearson and Spearman correlations (2-tailed). 

3. Results 
3.1. Immunohistochemical Expression of CSF1R in Reactive Tonsils 

The staining for CSF1R was performed in 10 reactive tonsils using an autostainer and, 
under the microscope, the slides showed that the CSF1R-positive cells had a morphology 
macrophage. CSF1R-positive cells were distributed both in the follicular and in the inter-
follicular compartments. In the germinal centers, the CSF1R-positive cells had a morphol-
ogy compatible with tangible body macrophages. In the interfollicular area, the CSF1R-
positive cells had a morphology compatible with macrophages/dendritic cells (Figure 1). 
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Figure 1. Immunohistochemical expression of CSF1R in reactive tonsils. The CSF1R expression was characteristic of 
macrophages. Their distribution was mainly interfollicular. In the germinal centers, a weak expression could be found in 
the tangible body macrophages. The B-lymphocytes were negative for CSF1R. 

3.2. Correlation between the Immunohistochemical Expression of CSF1R and Prognosis of the 
Patients in the Tokai DLBCL Series 

The CSF1R staining was performed in a series of 198 cases of DLBCL. The CSF1R-
positive cells had a morphology of tumor-associated macrophages (TAMs). In addition, 
in some cases, the staining was diffuse (B-cell pattern). 

The cases were initially evaluated as an ordinal variable as 0 (no staining, <5%), 1+ 
(an estimated 5–10% of CSF1R + TAMs), 2+ (10–15%), 3+ (25–50%), and 4+ (diffuse pat-
tern/B-cell pattern). The CSF1R staining in TAMs was of macrophages with dendritiform-
like elongations. Conversely, the B-cell pattern showed a diffuse staining of the B-lym-
phocytes of the DLBCL. After that, the slides were digitalized and a representative area 
for each case was kept for digital image quantification using Fiji software. The CSF1R ex-
pression ranged from 0.37% to 87.45%, with a median of 19.9% and a mean of 29.4% ± 
25.6%. The relationship between the ordinal evaluation and the digital image quantifica-
tion is shown in Figure 2. At 60% cut-off, the TAMs vs. the B-cell pattern could be differ-
entiated [a receiver operating characteristic (ROC) analysis was not performed in this 
case]. 
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Figure 2. Quantification of Macrophage colony-stimulating factor 1 receptor (CSF1R) in the samples of Tokai University. 
In diffuse large B-cell lymphoma (DLBCL), the CSF1R expression was characteristic of tumor-associated macrophages 
(TAMs). In addition, a CSF1R-positive B-cells pattern was also found. 
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The expression of CSF1R was correlated with several clinicopathological characteris-
tics of the patients from the Tokai series of DLBCL. Using the cut-off of 60% that differen-
tiate the TAMs with the B-cells patterns, two groups of patients with different progres-
sion-free survival could be identified. The patients with CSF1R B-cells pattern were char-
acterized with a more favorable progression-free survival (Cox regression, Hazard Risk 
(HR) = 0.5, 95% confidence interval (CI) for HR 0.2–0.9, p = 0.049). Conversely, a CSF1R 
TAMs pattern was associated with an unfavorable progression-free survival (HR = 2.2, 
95% CI for HR 1.0–4.8, p = 0.049) (Figure 3). Of note, when the group of TAMs pattern was 
divided into two subgroups, high vs. low, the low CSF1R + TAMs subgroup had a trend 
of more favorable progression-free survival than the group of high CSF1R + TAMs. When 
a multivariate Cox regression analysis was performed including the histological pattern 
of CSF1R (TAMs vs. B-cells patterns) and the IPI (low + low-intermediate vs. high-inter-
mediate + high), only the IPI kept the prognostic relevance for the progression-free sur-
vival. 

The survival analysis was repeated by stratifying the cases according to the cell-of-
origin molecular subtypes based on the Hans’ classifier both for the overall survival and 
progression-free survival. In case of the overall survival, the CSF1R expression patterns 
did not correlated with the outcome. Conversely, the progression-free survival tended to 
keep the prognostic relevance for both the GCB and non-GCB, but this difference was not 
statistically significant (p = 0.079 and 0.148, respectively). Of note, our interpretation is 
that, in a larger series, if the proportion is kept, the difference would be significant because 
the groups are well separated in the graphs (Figure 3). 

The CSF1R with the 60% cut-off was also correlated with the rest of clinicopatholog-
ical characteristics of the patients and the samples (Tables 3–7). High CSF1R expression 
(i.e., >60%, B-cells pattern) was associated with a lower MYC proto-oncogene immuno-
histochemical expression (p = 0.038), higher MDM2 immunohistochemical expression (p = 
0.051), lower DNA-binding protein IKAROS immunohistochemical expression (p = 0.042), 
an absence of BCL2 translocation (p = 0.026), an absence of mutation of MYD88 L265P (p = 
0.028), and lower disease progression (p = 0.028). No other correlations were found with 
the other variables, including the cell-of-origin classification (Hans’ classifier). 

Table 3. Correlation between the histological patterns of CSF1R and the clinical characteristics of 
the patients (Tokai series). 

Variable CSF1R + TAMs Pattern CSF1R + B-Cells Pattern p-Value 
Sex Male 90/162 (56%) 24/36 (67%) 0.265 
Age >60 115/162 (71%) 26/36 (72%) 1.000 

LDH high (>219) 101/159 (64%) 22/36 (61%) 0.849 
sIL2R high (>530) 125/152 (82%) 30/34 (88%) 0.610 

ECOG Performance Status ≥2 23/121 (19%) 3/22 (14%) 0.766 
Clinical stage III or IV 69/150 (46%) 16/32 (50%) 0.701 

Extranodal disease site >1 33/105 (31.4%) 5/21 (24%) 0.607 
B symptoms 30/133 (22.6%) 9/26 (35%) 0.215 

IPI High/High-intermediate 49/135 (36%) 9/28 (32%) 0.829 
Location, extranodal 73/162 (45%) 15/36 (41%) 0.333 

Dead outcome 76/162 (47%) 12/36 (33%) 0.194 
Disease progression 66/151 (43.7%) 7/32 (21.9%) 0.028 

LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; IPI, International 
Prognostic Index. 
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Figure 3. Correlation between CSF1R protein levels and survival of the patients (Tokai series). A correlation with the 
progression-free survival was found according to the CSF1R expression. Correlation between the CSF1R protein levels 
and the progression-free survival according to the cell-of-origin molecular classification (Hans‘ classifier) was also 
performed. Despite that, the curves are separated. No statistically significant correlation with the progression-free survival 
was found. OS, overall survival; PFS, progression-free survival; GCB, germinal center B-cell-like. 
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Table 4. Correlation between the histological patterns of CSF1R and the pathological characteris-
tics of the samples (Tokai series). 

Variable CSF1R + TAMs pattern CSF1R + B-Cells Pattern p Value 
CD5 positive 28/161 (17%) 3/33 (9.1%) 0.304 

CD10 positive 50/162 (31%) 9/33 (27%) 0.836 
MUM1 positive 121/161 (75%) 24/34 (71%) 0.666 
BCL2 positive 121/161 (75%) 24/34 (71%) 0.666 
BCL6 positive 114/161 (71%) 20/34 (59%) 0.221 

Ki67 high (>44%) 20/97 (21%) 3/20 (15%) 0.760 
MYC high (>10%) 18/75 (24%) 1/23 (4%) 0.038 
Non-GCB (Hans) 103/161 (64%) 22/33 (67%) 0.844 

EBER+ 11/157 (7%) 6/33 (18.2%) 0.085 
RGS1 high 63/134 (47%) 20/32 (63%) 0.168 

MDM2 high 57/71 (80.3%) 22/23 (96%) 0.051 
BCL2 split positive (FISH) 13/102 (13%) 0/20 (0%) 0.026 
MYC split positive (FISH) 15/108 (14%) 3/21 (14%) 1.000 

BCL2 MYC double hit (FISH) 2/100 (2%) 0/20 (0%) 1.000 
MYD88 L265P mutation 12/100 (12%) 0/21 (0%) 0.028 

TAMs, tumor-associated macrophages; MYC, Myc proto-oncogene protein. 

Table 5. Correlation between the histological patterns of CSF1R and the markers of the CSF1R-
pathway of the samples (Tokai series). 

Variable CSF1R + TAMs Pattern CSF1R + B-Cells Pattern p Value 
CSF1 high 50/101 (50%) 7/22 (32%) 0.160 

STAT3 high 29/102 (28%) 8/22 (36%) 0.453 
NFKB1 high 46/92 (50%) 12/21 (57%) 0.632 

Ki67 high 20/97 (21%) 3/20 (15%) 0.760 
MYC high 18/75 (24%) 1/23 (4%) 0.038 

PD-L1 high 23/84 (27%) 8/23 (35%) 0.604 
TNFAIP8 high 55/73 (75.3%) 19/23 (82.6%) 0.577 
IKAROS high 21/73 (29%) 2/22 (9.1%) 0.042 

IKAROS, DNA-binding protein Ikaros (IKZF1). 

The expression of CSF1R was correlated with other markers of the CSF1R-pathway 
including macrophage markers in each of the two histological patterns: The TAMs and 
the B-cell patterns. In the TAMs pattern group (n = 162), CSF1R positively correlated with 
STAT3, TNFAIP8, CD163, and CD68. In the B-cell pattern group (n = 36), CSF1R inversely 
correlated with TNFAIP8 and CD163 (Table 6). 

Table 6. Correlation between CSF1R and the markers of the CSF1R-pathway for each of the histo-
logical pattern (Tokai series). 

Marker CSF1R + TAMs Pattern CSF1R + B-Cells Pattern 
 n = 162 n = 36 
 Coefficient p value Coefficient p value 

CSF1 0.015 0.885 0.292 0.187 
STAT3 0.200 0.044 −0.151 0.502 
NFKB1 0.105 0.320 −0.252 0.271 

Ki67 0.017 0.866 −0.196 0.394 
MYC −0.100 0.312 −0.078 0.728 

PD-L1 0.132 0.230 0.089 0.687 
TNFAIP8 0.226 0.054 −0.494 0.017 
IKAROS 0.197 0.099 −0.224 0.303 
CD163 0.171 0.032 −0.291 0.051 
CD68 0.212 0.027 0.047 0.836 
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The same type of analysis was performed for each histological pattern using predic-
tive analytics with 12 models including regression, generalized linear, KNN algorithm 
(nearest neighbor analysis, the number of nearest neighbors to examine is called k), linear-
AS (namely, linear analytic server), LSVM (linear support vector machine), random trees, 
SVM (support vector machine), tree-AS, linear, CHAID (Chi-squared automatic interac-
tion detection), C&R tree (classification and regression tree), and a neural network (Fig-
ures 4 and 5). We aimed to predict the CSF1R expression as a quantitative variable by the 
previous 10 markers (CSF1, STAT3, NFKB1, Ki67, MYC, PD-L1, TNFAIP8, IKAROS, 
CD163, and CD68). 

In the TAMs pattern group (n = 162), good correlation was found using the neural 
network (multilayer perceptron), regression, and generalized linear model (correlation 
accuracy >0.70). In the multilayer perceptron analysis, the target CSF1R was predicted by 
the 10 markers. From most important to least important, the markers were MYC, STAT3, 
TNFAIP8, CSF1, CD163, Ki67, IKAROS, CD68, NFKB1, and PDL1. The regression analysis 
showed that CSF1R expression could be calculated as TNFAIP8*0.3 + IKAROS*-3.7 +PD-
L1*0.05 + CD163*-0.2 + Ki67*-0.1 + MYC*-0.4 + CSF1*0.04 + NFKB1*-0.1 + CD68*0.4 + 
STAT3*-0.3 + 35.9. 

In the B-cells pattern group (n = 36), a good correlation was found using regression 
(accuracy 100), generalized linear (100), neural network (0.92), and SVM (0.73). The re-
gression analysis showed that the CSF1R expression could be calculated as TNFAIP8*0.05 
+ IKAROS*-14.2 + PD-L1*-0.07 + Ki67*-0.3 +CSF1*0.5 + NFKB1*0.1 + CD68*-1.2 + STAT3*0.5 
+ 125.1. In the multilayer perceptron analysis, the target CSF1R was predicted by the 10 
markers. From most important to least important, the markers were IKAROS, NFKB1, 
CD163, STAT3, TNFAIP8, Ki67, CSF1, MYC, CD68, and PD-L1. 

3.3. Identification of the Genes Associated with CSF1R Expression Levels in the LLMPP DLBCL 
Series 

The series of 414 cases was divided into two groups, according to the CSF1R expres-
sion: ≤11.62 (n = 309, 64.7%), and ≥11.63 (n = 105, 46.7%). The cut-off was found using the 
“transform variable“ and the “visual binding“ function of the SPSS software (version 26). 
When making the cutpoints, equal percentiles were used based on the scanned cases, and 
the intervals corresponded to the number of desired cutpoints. As a start, 3 cutpoints were 
set (25% for each interval). Then, the binned variable was subjected to overall survival 
analysis and a compromise between the statistical significance and a balanced distribution 
of the samples was found. A multilayer perceptron neural network analysis was per-
formed to identify the most relevant genes associated with the CSF1R expression (Figures 
6 and 7). Using this technique, all the genes of the array (n = 20,683) were ranked according 
to their normalized importance for predicting the CSF1R expression as a dichotomic var-
iable (high vs. low, using the cut-off value of 11.63). The neural network performance was 
good, with an area under the curve of 0.92 and a model with only a 12.2% of incorrect 
predictions in the training and a 14.9% in the testing set. In this model, the most relevant 
genes (with a normalized importance >70%) were as follows: AC067852.2, CD99P1, ACAN, 
SMYD3, MVB12A, NABP2, PRH1, C2orf74, RFX7, IKZF1, and CEBPD. 
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Figure 4. Prediction of the immunohistochemical expression of CSF1R in each of the histological expression groups by a 
set of 10 markers using Artificial Neural Network (Tokai series). In each of the CSF1R histological expression groups, the 
expression of CSF1R could be predicted by modeling using a multilayer perceptron analysis. According to their 
importance, the markers are ranked as the most important in the model on the top, MYC proto-oncogene and IKAROS 
(DNA-binding protein Ikaros), and less important on the bottom (PD-L1, Programmed cell death 1 ligand 1). In order to 
understand how the different markers interact between them, a protein-protein interaction analysis was also perfomed, 
using a basic (left) or an extended network (right). 
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Figure 5. Immunohistochemical expression of CSF1R and some of the CSF1R-related markers. 
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Figure 6. Identification of the genes associated with CSF1R expression levels (LLMPP data, all genes set). The use of 
artificial intelligence analysis, based on the multilayer perceptron analysis allowed to predict the genes associated with 
the CSF1R expression (high vs. Low). The 20,683 genes of the array were ranked according to their normalized importance 
for predicting the CSF1R expression. The neural network performance was good, with an area under the curve of 0.92. 
CSF1R High, red color. CSF1R Low, blue color. 
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Figure 7. Multilayer perceptron between the top 10 genes and CSF1R expression levels (LLMPP data, all genes set). This 
figure shows the neural network diagram for the top 10 most relevant genes that predict the CSF1R expression. 

A logistic regression was performed to ascertain the effects of the most relevant 
genes, that were previously identified in the multilayer perceptron neural network anal-
yses, on the likelihood that the patients have a high CSF1R expression. The genes with a 
normalized importance >70% were selected and the analysis included univariate and mul-
tivariate (backward conditional) tests. 

In the multivariate analysis, increasing expression of CD99P1, MVB12A, IKZF1, and 
CEBPD was associated with an increased likelihood of exhibiting high CSF1R expression, 
but increasing PRH1 and C2orf74 was associated with a reduction in the likelihood of ex-
hibiting high CSF1R expression (Table 7). 

Table 7. Correlation between the gene expression of the top genes of the multilayer perceptron 
(MLP) with CSF1R (high vs. low). 

MLP NI Gene B SE Wald df p Value Odds Ratio 
95% CI for OR 

Lower Upper 
0.83 CD99P1 0.678 0.226 8.969 1 0.003 2.0 1.3 3.1 
0.75 MVB12A 0.581 0.262 4.907 1 0.027 1.8 1.1 3.0 
0.72 PRH1 −0.768 0.186 16.987 1 0.000038 0.5 0.3 0.7 
0.72 C2orf74 −0.61 0.223 7.505 1 0.006 0.5 0.4 0.8 
0.71 IKZF1 0.514 0.249 4.243 1 0.039 1.7 1.0 2.7 
0.71 CEBPD 1.513 0.201 56.397 1 5.92x10−14 4.5 3.1 6.7 

Multivariate binary logistic regression (backward conditional). MLP, multilayer perceptron; NI, 
normalized importance; B, beta; SE, standard error; df, degrees of freedom; CI, confidence interval; 
OS, Odds Ratio. 
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3.4. Identification of the Genes of the Cancer Transcriptome Atlas Panel Associated with CSF1R 
Levels of the LLMPP DLBCL Series 

A multilayer perceptron neural network analysis was performed to identify the most 
relevant genes of the transcriptome atlas panel associated with the CSF1R expression (Fig-
ures 8 and 9). Using this technique, all the genes of the array (n = 1790) were ranked ac-
cording to their normalized importance for predicting the CSF1R expression as a dicho-
tomic variable (high vs. low, using the cut-off value of 11.63). The neural network perfor-
mance was good, with an area under the curve of 0.99 and a model with only a 3.3% of 
incorrect predictions in the training and an 11.2% in the testing set. In this model, the most 
relevant genes (normalized importance >70%) were 42. In order from most to least im-
portant were as follows: FADD (normalized importance 100%), PPP2R2C (91%), MSRB2 
(85%), MSH2, PIN1, MDM2, ZEB1, PIK3CB, CREBBP, CBLC, GAGE1, KRT6A, POLD4, 
ITGA8, TXN2, IL5RA, A2M, RRAD, BTK, GPX1, SPINK1, FOLH1, PLA2G4C, DUOX1, 
COL2A1, KRAS, RIN1, NFATC2, MGMT, APOC3, HSPB1, TBL1XR1, GNG12, AR, ITGA6, 
MYCN, IBSP, NTHL1, PRKCE, PRUNE1, CD19, and TAF3 (70%). 

A logistic regression was performed to ascertain the effects of the most relevant genes 
of the cancer panel, which were previously highlighted in the multilayer perceptron neu-
ral network analyses, on the likelihood that the patients have a high CSF1R expression. 
The genes with a normalized importance >70% were selected and the analysis included 
univariate and multivariate (backward conditional) tests. 

In the multivariate analysis, increasing expression of PLA2G4C, RIN1, NFATC2, and 
HSPB1 was associated with an increased likelihood of exhibiting high CSF1R expression, 
but increasing PIN1, TXN2, IL5RA, SPINK1, FOLH1, KRAS, ITGA6, PRKCE, and TAF3 was 
associated with a reduction in the likelihood of exhibiting high CSF1R expression (Table 
8). 

Table 8. Correlation between the gene expression of the top cancer panel genes of the multilayer 
perceptron (MLP) with CSF1R (high vs. low). 

MLP NI Gene B SE Wald df p Value Odds Ratio 
95% CI for OR 

Lower Upper 
0.83 PIN1 −0.929 0.34 7.443 1 0.006 0.4 0.2 0.8 
0.79 TXN2 −0.952 0.41 5.402 1 0.02 0.4 0.2 0.9 
0.79 IL5RA −0.334 0.175 3.659 1 0.056 0.7 0.5 1.0 
0.77 SPINK1 −0.233 0.108 4.63 1 0.031 0.8 0.6 1.0 
0.77 FOLH1 −0.64 0.252 6.448 1 0.011 0.5 0.3 0.9 
0.77 PLA2G4C 0.622 0.238 6.82 1 0.009 1.9 1.2 3.0 
0.76 KRAS −0.861 0.375 5.286 1 0.021 0.4 0.2 0.9 
0.75 RIN1 0.886 0.325 7.454 1 0.006 2.4 1.3 4.6 
0.75 NFATC2 0.656 0.244 7.211 1 0.007 1.9 1.2 3.1 
0.75 HSPB1 1.181 0.222 28.3 1 1.04x10−7 3.3 2.1 5.0 
0.74 ITGA6 −0.351 0.177 3.922 1 0.048 0.7 0.5 1.0 
0.71 PRKCE −0.375 0.176 4.556 1 0.033 0.7 0.5 1.0 
0.70 TAF3 −1.12 0.311 12.946 1 0.000321 0.3 0.2 0.6 

Multivariate binary logistic regression (backward conditional). NI, normalized importance. 
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Figure 8. Identification of the genes of the cancer panel associated with CSF1R expression levels (LLMPP data). The 
multilayer perceptron neural network analysis was also performed using an immuno-oncology cancer panel of 1790 genes. 
In this analysis, the Receiver Operating Characteristic (ROC) area under the curve was 0.99. Therefore, these genes are 
highly associated and are capable of predicting the CSF1R expression with high accuracy. 
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Figure 9. Multilayer perceptron between the top 10 genes of the cancer panel and CSF1R expression levels (LLMPP data). 
This figure shows the neural network diagram for the top 10 most relevant genes of the immuno-oncology cancer panel 
that predict the CSF1R expression. 

3.5. Correlation Between Expression Levels of CSF1R and CD47 in the LLMPP DLBCL Series 
The CD47 was one of the genes present in the transcriptome atlas panel set that be-

longs to the immune checkpoint pathway. It is related to the macrophages’ pathway and 
it is associated with the prognosis of DLBCL [31–34]. An immunohistochemical study 
showed that CD47 was expressed by the B-lymphocytes of DLBCL, while its receptor 
SIRPA (namely Tyrosine-protein phosphatase non-receptor type substrate 1) was ex-
pressed by the tumor-associated macrophages (TAMs) [34]. SIRPA (is a relevant immune 
checkpoint marker because it mediates negative regulation of phagocytosis [13]. 

In the 233 DLBCL cases of the LLMPP series with R-CHOP treatment, high gene ex-
pression of CD47 correlated with an unfavorable overall survival of the patients (cut-off 
value = 13.94, Hazard Risk = 1.82, p = 0.021) (Figure 10). Conversely, high expression of 
SIRPA correlated with a favorable overall survival (cut-off value = 9.34, Hazard Risk = 
0.55, p = 0.02). Of note, CD47 and SIRPA gene expression levels inversely correlated be-
tween them (Pearson Correlation = −0.3, p < 0.001). Both markers were correlated with the 
CSF1R expression (Figure 10). CSF1R inversely correlated with CD47 (Pearson Correla-
tion = −0.31, p < 0.001). Conversely, CSF1R strongly correlated positively with SIRPA 
(Pearson Correlation = 0.71, p < 0.001). Finally, in order to identify which genes of the 
transcriptome atlas panel were more associated with the expression of both CD47 and 
SIRPA, a multilayer perceptron artificial neural network analysis was performed (Figure 
10). The most relevant markers were the following: PIK3CB, FADD, MLPH, PTPRC, 
AKT2, MUC1, SOX10, PLCB1, DMBT1, and FANCC. Of note, the predictive modeling by 
the neural network had a high efficiency with an area under the curve (ROC) of 0.91 for 
both markers. 
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Figure 10. Gene expression analysis with CD47 and SIRPA in the LLMPP DLBCL series. The series of DLBCL of the LLMPP 
was used to analyze the gene expression of CD47 and SIRPA, and to correlate with CSF1R. In this analysis, only the cases 
treated with R-CHOP were selected (n = 233). These two markers belong to the immune checkpoint pathway, and mediate 
a negative regulation of phagocytosis. In DLBCL, CD47 is expressed by the B-lymphocytes and SIRPA is expressed by the 
tumor-associated macrphages (TAMs) [31–34]. We found that high CD47 expression was associated with a poor overall 
survival of the DLBCL patients. Conversely, high SIRPA is associated with a favorable overall survival. Of note, these two 
markers inversely correlated between them. When correlated with CSF1R, SIRPA positively correlated with CSF1R, and 
inversely with CD47. CSF1R moderately correlated with CD163 as well. Finally, the expression of both CD47 and SIRPA 
were predicted using a multilayer perceptron artificial neural network and the transcriptome atlas cancer panel set as 
predictive variables. A simplified visualization of the neural network with this top 20 genes is shown. This model 
predicted the two genes with high efficiency as shown in the ROC curve, with an area under the curves of 0.91. The top 
20 most relevant genes are shown in the normalized importance figure. ROC, Receiver Operating Characteristic; R-CHOP, 
Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone  

4. Discussion 
Colony stimulating factor 1 receptor (CSF1R), also known as macrophage colony-

stimulating factor receptor (M-CSFR) and CD115, is a cell surface protein that functions 
as a receptor for colony stimulating factor 1 (CSF1) and the Interleukin-34 (IL-34). CSF1R 
has a role in regulating the homeostatic survival of the tumor-associated macrophages 
(TAMs). TAMs are relevant because they promote tumorigenesis of many types of cancer, 
including non-Hodgkin lymphomas [23,35–38]. Therefore, CSF1R is a potentially relevant 
oncological target. 

CSF1R expression was initially thought to be characteristic of myeloid cells, but re-
cent research has shown that non-myeloid cells can also express CSF1R, including malig-
nant B-lymphocytes and classical Hodgkin Lymphoma [23,35–37]. In this research about 
DLBCL, we have found that the immunohistochemical expression of CSF1R was variable. 
The most characteristic pattern was of TAMs, present in 82% of the cases. These CSF1R-
positive TAMs had a morphology that was like the one seen in M2-like TAMs, with a 
higher shape and dendritiform elongations, especially when the concentration was high 
in the tumor immune microenvironment. In addition, a CSF1R-positive B-cells pattern 
was seen in 18% of the cases. This CSF1R pattern affected the B-lymphocytes of DLBCL 
and the expression was diffuse. The CSF1R pattern correlated with the prognosis of the 
patients. The CSF1R-positive TAMs pattern was associated with a poor progression-free 
survival. Conversely, the B-cells pattern correlated with a favorable progression-free sur-
vival. Interestingly, although not statistically significant, the pattern of low CSF1R-posi-
tive TAMs had a better survival than the cases with high CSF1R-positive TAMs. 

The start point of this research was to check if the gene expression of CSF1R corre-
lated with the prognosis of the patients with DLBCL. We used the LLMPP series that is 
comprised of 414 DLBCL cases. This series from western countries is robust and very well 
annotated. Using a cut-off, two groups with different overall survival could be found. The 
group with low CSF1R expression, ≤11.62 (n = 309, 64.7%), was associated with favorable 
survival. Conversely, the group with high CSF1R expression, ≥11.63 (n = 105, 46.7%), was 
associated with a poor outcome. We also correlated the CSF1R with other markers, includ-
ing CD163 and PD-L1 that are markers of M2-like TAMs. The correlation was moderate 
and positive. Therefore, the hypothesis was that CSF1R in DLBCL identified only TAMs. 
In DLBCL, high CD163-positive TAMs have been associated with poor prognosis of the 
patients [9,10,12], which is the same result seen by gene expression in the LLMPP series. 
Nevertheless, the presence of a B-cell pattern was not expected. This B-cell pattern was a 
new finding in the Tokai University Hospital series. Of note, in the reactive tonsils, CSF1R-
positive B-cells were not identified. Therefore, this B-cells pattern in DLBCL may be 
pathological, as seen in Hodgkin Lymphoma. 

In the Tokai series, a correlation between the two CSF1R patterns was made with 
several clinicopathological characteristics of the series. Initially, not many associations 
were found, but the B-cells pattern was associated with a lower MYC immunohistochem-
ical expression, absence of BCL2 translocation, absence of mutation of MYD88 L265P, and 
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higher MDM2 immunohistochemical expression. These characteristics point to a lower 
pathological background in this group of patients. Correlation with the clinical features 
of the patients also showed that the CSF1R + TAMs pattern was associated with a poor 
progression-free survival of the patients, disease progression, higher MYC expression, 
lower MDM2 expression, BCL2 translocation, and MYD88 L265P mutation. In addition, 
the histological expression of CSF1R was also correlated with 10 CSF1R-related markers 
including CSF1, STAT3, NF-KB, Ki67, MYC, PD-L1, TNFAIP8, IKAROS, CD163, and 
CD68, and predictive modeling with high accuracy for CSF1R was found using regression, 
generalized linear, an artificial intelligence neural network (multilayer perceptron), and 
SVM. Of note, CSF1R moderately correlated with STAT3, TNFAIP8, CD163, and CD68. 
Therefore, our results agree with groups that showed that, in DLBCL, high CD163-posi-
tive TAMs were associated with poor prognosis of the patients [9,10,12]. 

Finally, we used artificial intelligence analysis to identify the genes that predicted the 
CSF1R expression in the LLMPP series. Many data mining applications use neural net-
works because of their power, flexibility, and ease of use in situations where the underly-
ing process is complex [26]. Among them, the multilayer perceptron analysis predicts one 
or more target variables based on the values of several predictors [26]. In this research, we 
performed two types of analysis. First, we used all the genes of the array and the result 
ranked the genes according to their importance to predict the CSF1R expression (high vs. 
low). This analysis was technically successful, as shown by the low percentage of incorrect 
predictions and the high area under the curve. Second, we used an immune-oncology 
cancer panel and the multilayer perceptron managed to predict the CSF1R expression 
with even better performance. Therefore, it is expected that those genes are not only re-
lated to the CSF1R expression mechanisms but also related to the prognosis of DLBCL. 

If the gene CSF1R is checked in the cBioPortal webpage for cancer genomics and a 
combined study for DLBCL with 1295 samples is performed, the result shows that there 
are no alterations in this gene. We think that CSF1R is not relevant in DLBCL for the mu-
tational status or other genomic changes, but it is relevant for their association to macro-
phage signature. Of note, the relevance of CD163 in DLBCL is well established as a marker 
for an inferior prognosis [9,10]. 

CSF1R may be relevant in other subtypes of cancer. According to the Human Protein 
Atlas (http://www.proteinatlas.org; accessed on 9 April 2021) [39] that used the TCGA 
dataset, the RNA expression of CSF1R shows low cancer specificity. Among the different 
types of tumors that are being tested, glioma is the subtype that shows more CSF1R ex-
pression. High CSF1R expression correlated with a poor prognosis of renal and testis can-
cer. Nevertheless, no information is provided regarding lymphoma and CSF1R in the Hu-
man Protein Atlas. According to the Kaplan-Meier Plotter (http://kmplot.com/analysis/in-
dex.php?p=background; accessed on 9 April 2021) [40], high expression of CSF1R is asso-
ciated with favorable overall survival of breast cancer and unfavorable overall survival of 
ovarian, lung, and gastric cancer. Therefore, CSF1R seems to be relevant in the pathogen-
esis of other subtypes of cancer as well. Due to the importance of the CSF1R in cancer, 
several groups have used CSF1/CSF1R inhibitors as monotherapy in clinical development. 
For example, small molecules have been used in melanoma, prostate cancer with metas-
tasis, glioblastoma multiforme, solid tumors, relapse or refractory acute myeloid leuke-
mia, and breast cancer. A review manuscript describing the use of CSF1R inhibitors in 
cancer therapy has recently been written by Cannarile MA et al. [41] 

There are new discriminators in the literature that are worth mentioning. For exam-
ple, CD47 is a marker of the immune checkpoint that is a potential negative regulator of 
the DLBCL treatment outcome (“don’t eat me”). In a report by Bouwstra et al., CD47-
positive DLBCL is characterized by worse overall survival when treated by R-CHOP [33]. 
Therefore, DLBCL patients of the non-GCB cell-of-origin subtype may benefit from CD47-
targeted therapy in addition to rituximab and possibly in addition to macrophage-tar-
geted therapy. In the last section of our research, we analyzed the CD47 and SIRPA ex-
pression in the LLMPP database. We found that high CD47 correlated with a poor overall 
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survival of the patients, and that high SIRPA (the receptor for CD47) correlated with good 
survival and with CSF1R (Figure 10). In addition, we also highlighted the genes of the 
cancer panel associated with the expression of these two markers. Therefore, CD47 is an 
interesting marker with complex relationships and will require further analysis. TAMs in 
DLBCL can also be targeted using a legumain inhibitor, which suppressed the tumor pro-
gression in an OCI-Ly3 xenograft mouse model of DLBCL [42]. Wu ZL et al. reported that 
high nuclear expression of STAT3 associated with an unfavorable prognosis of DLBCL 
[43]. In our research, we found that, in the CSF1R histological pattern of TAMs, which was 
associated with a worse progression-free survival, the CSF1R marker correlated with the 
STAT3 expression. Finally, high expression of PD-L1 was associated with poor prognosis 
in DLBCL [44]. This result was also recently confirmed by our group [45], but, in this re-
search, the CSF1R did not correlate with the PD-L1 expression. Another marker that we 
have recently described is the apoptosis inhibitor TNFAIP8, which is associated with a 
poor prognosis of the patients [28]. In this research, we found that, in the TAMs histolog-
ical pattern, CSF1R correlated with TNFAIP8. 

5. Conclusions 
In DLBCL, the expression of DLBCL shows two histological patterns with correlation 

to the progression-free survival of the patients. A pattern of CSF1R-positive TAMs corre-
lates with poor progression-free survival. Conversely, a pattern of CSF1R-positive B-cells 
correlate with a favorable progression-free survival. Using multilayer perceptron artificial 
neural network analysis, the genes connect with the CSF1R expression that could be high-
lighted. Therefore, CSF1R is a relevant marker in the pathogenesis of DLBCL. 
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