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Abstract: Chronic myelomonocytic leukemia (CMML) was named 50 years ago to describe a myeloid
malignancy whose onset is typically insidious. This disease is now classified by the World Health
Organisation as a myelodysplastic syndrome (MDS)-myeloproliferative neoplasm (MPN) overlap
disease. Observed mostly in ageing people, CMML is characterized by the expansion of monocytes
and, in many cases, granulocytes. Abnormal repartition of circulating monocyte subsets, as identified
by flow cytometry, facilitates disease recognition. CMML is driven by the accumulation, in the
stem cell compartment, of somatic variants in epigenetic, splicing and signaling genes, leading to
epigenetic reprogramming. Mature cells of the leukemic clone contribute to creating an inflammatory
climate through the release of cytokines and chemokines. The suspected role of the bone marrow
niche in driving CMML emergence and progression remains to be deciphered. The clinical expression
of the disease is highly diverse. Time-dependent accumulation of symptoms eventually leads to
patient death as a consequence of physical exhaustion, multiple cytopenias and acute leukemia trans-
formation. Fifty years after its identification, CMML remains one of the most severe chronic myeloid
malignancies, without disease-modifying therapy. The proliferative component of the disease that
distinguishes CMML from severe MDS has been mostly neglected. This review summarizes the pro-
gresses made in disease understanding since its recognition and argues for more CMML-dedicated
clinical trials.

Keywords: chronic myelomonocytic leukemia; myeloproliferative neoplasms; myelodysplastic syn-
dromes

1. Introduction

Chronic myelomonocytic leukemia (CMML) is a clinically diverse, yet severe chronic
myeloid malignancy that mostly affects elderly people. The expansion of pro-inflammatory,
dysplastic and immunosuppressive monocytes and granulocytes is driven by the accumu-
lation, in the hematopoietic stem cell compartment, of somatic variants that mostly involve
epigenetic, splicing and signaling genes. In addition to generating increasing weakness
and fatigue, the resulting insidious inflammatory climate creates deleterious cross-talks
between mature and immature cells of the clone, probably affecting also bone marrow niche
cells. This climate promotes clonal evolution at the expanse of wild-type hematopoiesis,
eventually leading to patient death as a consequence of physical exhaustion, multiple
cytopenias, and acute leukemia transformation. Fifty years after its naming, this relatively
rare disease (0.4/100,000 inhabitants per year), which has long been neglected by the
research community, remains incurable in the majority of patients as, beyond the rarely fea-
sible allogeneic stem cell transplantation, there is still no really efficient, disease-modifying
therapy. Behind the empirical search for effective new therapies, better understanding of
CMML pathophysiology may suggest innovative strategies. The proliferative component
of the disease, which frequently correlates with the acquisition of RAS pathway mutations
and a severe outcome of the disease, deserves specific approaches. Such dedicated thera-
pies will hardly be explored as long as CMML will be treated like severe myelodysplastic
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syndromes (MDS) in clinical trials. Summarizing progresses made in disease understand-
ing since its recognition as an individual entity, this review emphasizes CMML specificities
and discusses how they could drive innovative therapeutic opportunities.

2. From Disease Identification to Current Definition

The designation CMML appeared in the early 1970s to describe a mixed monocyto-
sis and granulocytosis with an insidious clinical onset and a relatively benign course, at
least when compared to acute myelomonocytic leukemia [1,2]. Such a chronic leukemia,
mostly observed in elderly patients, had been previously associated with refractory
anemia and referred to under various terms including chronic monocytic leukemia [3],
chronic erythromonocytic leukemia [4], subacute myelomonocytic leukemia [5,6] and
preleukemia [7,8].

A first comprehensive analysis of CMML with mostly granulomonocytic features
and only slight erythroid abnormalities was reported in 1975 [9]. All patients had a
monocytosis above 0.8 × 109/L, correlating with an increased level of serum lysozyme,
and blood films typically showed a mixed monocytosis and granulocytosis. Romanowsky
staining identified so-called “paramyeloid” cells described as having “cytoplasmic and
nuclear features intermediate between myelocytes and monocytes”, which may be the cells
described today as myeloid-derived suppressive cells (MDSCs). Chromosome analyses did
not detect a Philadelphia chromosome but the clonal loss of chromosome Y was identified
in one case, while another one demonstrated cytogenetic aberrations with secondary acute
transformation. Importantly, most patients could survive several years, only a fraction of
them undergoing transformation into rapidly fatal acute leukemia [9].

In 1982, the French–American–British (FAB) co-operative group included CMML as
one of five newly defined myelodysplastic syndromes (MDS) [10] (Figure 1). The defining
feature was an absolute monocytosis over 1 × 109/L, which was often associated with
an increase in mature granulocytes, with or without evidence of dysgranulopoiesis. The
percentage of blast cells in the peripheral blood had to be lower than 5%. The bone marrow
showed a significant increase in promonocytes and a percentage of blast cells up to 20%.
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Figure 1. Evolution of disease name and classification over the last 70 years.

The FAB co-operative groups noticed that some CMML cases with organomegaly and
high monocytic and granulocytic counts showed minimal dysplastic changes, nevertheless
considered the disease as being closer to MDS than to myeloproliferative disorders as
typical trilineage dyspoiesis could be observed in many cases [10]. Nevertheless, in 1994,
the group divided CMML into a myeloproliferative (MP-CMML) and a myelodysplastic
(MD-CMML) subtype using a cut point of WBC of 13 × 109/L [11]. The International
Prognostic Scoring System (IPSS) group therefore elected to exclude CMML with a WBC of
more than 12 × 109/L from its calculations [12].

When the World Health Organisation (WHO) reclassified hematological malignancies
in 2001 [13], CMML was not more associated with MDS and became the most frequent



Hemato 2021, 2 405

entity in a newly created, myelodysplastic/myeloproliferative neoplasm (MDS/MPN)
overlap category. For the first time, cytogenetic and/or molecular examinations were
included into disease definition to formally distinguish CMML from BCR-ABL1 positive
chronic myeloid leukemia. The WHO also separated CMML-1 (blasts plus promonocytes
<5% in the PB, <10% in the bone marrow (BM) from CMML-2 (blasts plus promonocytes
≥5% in the PB, ≥10% in the BM), which proved to be clinically significant [14]. In contrast,
the division between MD-CMML and MP-CMML temporarily disappeared. The 2008
revision of the WHO classification of myeloid neoplasms validated these changes but
relocated some CMML with eosinophilia to the category “myeloid/lymphoid neoplasms
with eosinophilia and PDGFRB rearrangement” [15].

According to the last iteration of the WHO classification that came out in 2016 [16],
a diagnosis of CMML requires both the presence of persistent monocytosis ≥1 × 109/L
and monocytes accounting for ≥10% of the white blood cell (WBC) differential count. The
separation between MD-CMML and MP-CMML subtypes was re-introduced with the
WBC cut point at 13 × 109/L. In addition, three blast-based groupings were proposed to
improved prognostication, including CMML-0 (<2% blasts in PB and <5% blasts in BM),
CMML-1 (2–4% in PB and/or 5–9% in BM), and CMML-2 (5–19% in PB, 10–19% in BM,
and/or when any Auer rods are present). BCR-ABL1 rearrangement should be excluded
in all cases. When eosinophilia is present, PDGFRA, PDGFRB, FGFR1 rearrangements or
PCM1-JAK2 fusions must be excluded [16] (Figure 1).

The WHO report emphasizes a precise morphologic evaluation to distinguish promono-
cytes from dysplastic monocytes and includes them into the blast cell count. These mono-
cyte precursors display an abundant, finely granulated cytoplasm and a large, delicately
folded nucleus with finely dispersed chromatin and a small or absent nucleolus. The WHO
report also suggests integration of flow cytometry immunophenotyping and cytogenetic
and molecular genetic testing in the disease characterization process.

Perspectives: The next iterations of CMML recognition and classification by the
WHO may better incorporate recurrent genetic alterations and flow cytometry analysis of
peripheral blood monocyte subset repartition. In a distant and still hypothetical future,
disease recognition could include epigenetic markers and niche component alterations
whose characterization is still in its infancy.

3. Flow Cytometry Improvement of CMML Recognition

Monocytes were described for the first time 140 years ago, two centuries after the
initial description of peripheral blood cells by Antonie van Leeuwenhoek in 1674 [17]
(Figure 2). Paul Ehrlich used acid and basic aniline coal tar dyes to classify white blood
cells into mononucleated leukocytes, some of which he termed Übergangszelle (transitional
cells) [18]. Ehrlich’s Übergangszelle were subsequently coined as monocytes [19] and
described as a morphologically homogenous blood cell population with a kidney shaped
nucleus [20,21] (Figure 2A). At the end of the 20th century, the advent of flow cytometry
identified some heterogeneity among circulating monocytes, based on the differential
expression at their surface of CD14, a receptor for bacterial lipopolysaccharides, and
CD16, which is the low-affinity receptor for immunoglobulin G (Fcγ-III receptor) [22].
The Nomenclature Committee of the International Union of Immunological Societies
approved the subdivision of monocytes into three subsets [23], which was validated by
gene expression profiling [24]. In healthy conditions, classical CD14+, CD16- monocytes
represent roughly 85% of total human circulating monocytes, and express high level of
the chemokine receptor CCR2, (CD192), which is the receptor of the cytokine MCP-1,
but low levels of CX3CR1 receptor, which is the fractalkine receptor. They are distinct
from CD14+, CD16+ intermediate monocytes and CD14low, CD16+ nonclassical monocytes,
which express higher levels of CX3CR1 receptor (Figure 2B). In the last years, unbiased
single-cell RNA sequencing approaches further broadened monocyte heterogeneity by
identifying several subsets in human intermediate monocytes [25].
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Lehrbuch der morphologischen Hämatologie, https://www.archive.org/details/b31358457, accessed on 25 April 2021) to
May–Grunwald–Giemsa staining (https://www.imaios.com/fr/imcases/training/565718/budorcas-taxicolor, accessed on
25 April 2021). (B) Flow cytometry analysis of peripheral blood monocyte subsets in healthy donor blood, showing classical
CD14+, CD16−, intermediate CD14+, CD16+ and nonclassical CD14low, CD16+ monocyte subsets. (C) Monocyte subset
repartition in a healthy donor, a typical CMML patient (classical monocytes >94% of total circulating monocytes), a CMML
patient with associated inflammatory disease (classical monocytes <94% but decrease in Slan+ nonclassical monocytes) and
a reactive monocytosis (Courtesy of Dorothee Selimoglu-Buet).

In patients with a CMML, a multiparameter flow cytometry assay quantifying the frac-
tion of each monocyte subset among total peripheral blood monocytes typically shows an
increase in CD14+, CD16− classical monocyte subset (also recognized as CCR2+, CX3CR1−

monocytes) over 94% of total monocytes [26]. In contrast, this monocyte fraction is de-
creased in patients with a reactive monocytosis in which intermediate, and sometimes
nonclassical, monocyte subsets accumulate (Figure 2C). This CMML-associated increase
in CD14+, CD16− classical monocyte fraction is independent of age, WHO-defined dis-
ease subgroups and somatic mutations. Classical monocytes that accumulate in CMML
patients show a distinct pattern of gene expression as compared to age-matched healthy
donor monocytes, and sometimes demonstrate abnormal expression of CD56, CD115, and
CD62L [27–29]. The 94% threshold was cross-validated by several independent groups Net-
work [30–34], the assay was approved as a Clinical Laboratory Improvement Amendments-
certified clinical test in the United States [30], and standardization is currently promoted
by the European Leukemia [35]. In daily laboratory practice, the HematoFlow™ solution
(Beckman-Coulter, Brea, CA, USA) that includes the cell surface marker CD16 can be used
to screen for CMML suspicion in patients with a monocytosis before flow validation [36].

Flow cytometry detection of CMML can be challenged by the co-occurrence of an
inflammatory disease that induces an increase in the intermediate subset of CD14+, CD16+

monocytes (Figure 2C), thereby decreasing the fraction of classical monocytes below the
typical 94% threshold and erasing the CMML signature. In such a situation, detection
of Slan, a carbohydrate modification of P-selectin glycoprotein ligand 1 (6-sulfo LacNac)
that is typically expressed on a fraction of nonclassical monocytes, can be used to detect a
CMML. A decrease in the Slan+ CD14low, CD16+ nonclassical monocyte fraction below 1.7%
strongly argues for a CMML [37] (Figure 2C). Such a flow cytometry-defined inflammatory
profile was shown recently to predict a poor outcome, independently of ASXL1 gene
mutation, high WBC count and cytopenias [38].

https://www.behance.net/gallery/4871853
https://www.behance.net/gallery/4871853
https://www.archive.org/details/b31358457
https://www.imaios.com/fr/imcases/training/565718/budorcas-taxicolor
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In the bone marrow, flow cytometry does not detect the abnormal monocyte subset
repartition observed in the peripheral blood but identifies other populations of the leukemic
clones such as plasmacytoid dendritic cells whose presence informs on disease outcome.

The median value of peripheral blood monocyte count increases with age, mathemati-
cal extrapolation indicates that this median value is ~0.6 × 109/L by 100 years of age, the
upper 95% confidence limit of the monocyte count being ~0.8 × 109/L [39,40]. Thus, the
absolute monocyte count can be technically increased below the threshold of a persistent
monocytosis ≥1 × 109/L [41]. This may explain a fraction of so-called “oligomonocytic
CMML” in which the absolute monocyte count is below 1 × 109/L but the monocyte
fraction is ≥10% [42–44]. Some of these patients have MDS that will never progress into
CMML, the increased monocyte fraction being related to leukopenia and neutropenia.
Others may evolve into genuine CMML [45]. We observed that 45% of those in which
flow analysis of monocyte subset repartition detects an increase of classical monocyte
fraction over 94% of total monocytes (a “CMML-like” phenotype) will demonstrate a
monocytosis ≥1 × 109/L one year later [46].

Perspectives: Current flow cytometry approaches may be enriched with technological
developments such as spectral flow and mass cytometry, adding to monocyte subset
recognition the detection of immature granulocytes, dendritic cell subsets, and possibly
other cell types, while incorporating intracellular signaling to further recognize and stratify
the disease.

4. Incorporating Genetic Analyses in CMML Diagnosis

Cytogenetic analyses were initially reported mostly as single observations demonstrat-
ing that Philadelphia chromosome was not detected in CMML cells [2,5,9]. The absence of
Philadelphia chromosome was subsequently introduced into the WHO classification as a
CMML diagnosis criterion [13].

In the following years, large retrospective analyses identified chromosome abnor-
malities in leukemic cells of about 30% of CMML patients (Table 1), none being disease
specific [47], and explored their prognostic significance [48,49]. By analyzing 414 patients
from the Spanish MDS Registry, a CMML-specific cytogenetic risk classification was gen-
erated, distinguishing low risk (normal karyotype or loss of Y chromosome as a single
anomaly), high risk (presence of Trisomy 8 or abnormalities of Chromosome 7, or complex
karyotype), and intermediate risk (all other abnormalities). Multivariate analysis validated
this CMML-specific cytogenetic risk stratification as an independent prognostic variable
for overall survival [49], a stratification that was subsequently integrated to CMML-specific
prognostic scoring systems (CPSS) [50,51]. A Mayo Clinic-French consortium suggested a
slightly distinct stratification into low risk (normal karyotype, sole loss of Y and sole der
(3q)), high risk (complex and monosomal karyotypes), and intermediate risk (all the others)
that was efficient in predicting leukemic transformation [52,53].

Fifty years after disease identification, cytogenetic analyses, enforced by fluorescence
in situ hybridization (FISH), remain mandatory in the diagnostic work-up of CMML [34].
Molecular analyses complete these cytogenetic investigations to eliminate BCR-ABL1
fusion gene.

In 2008, CMML with eosinophilia were repositioned in a distinct WHO category in
which fusion genes that are structurally and functionally analogous to BCR-ABL1 involve
the tyrosine kinase genes PDGFRA, PDGFRB and FGFR1 or form the PCM1-JAK2 fusion
gene [54] (Table 1). Imatinib has become the standard of care for patients with PDGFRA
and PDGFRB fusions as it generates long-term, deep molecular responses with uncommon
secondary resistance [55]. In contrast, ruxolitinib generates mostly transient responses
patient with JAK2 fusion gene [55,56]. As PDGFRB rearrangement was sometimes identi-
fied in CMML without eosinophilia, systematic profiling of these molecular features could
integrate the routine diagnostic work-up of CMML [57].
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Table 1. Main genetic alterations in CMML.

Somatic Variants Germline Predisposition *
>10% of patients ANKRD26 (ANKRD26-RT)

ASXL1 ATG2B/GSKIP

CBL DDX1

KRAS ETV6 c.1160G > A (p.Arg369Gln)

NRAS GATA-2 (GATA-2 deficiency)

RUNX1 RUNX1 (RUNX1-FTD)

SRSF2
TET2 Cytogenetic abnormalities **

5–10% of patients Low risk

BCOR/BCORL Normal karyotype

DNMT3A Loss of Y

EZH2 High risk

JAK2 Monosomy 7/deletion 7q

PHF6 Trisomy 7

SETBP1 Complex karyotype

SF3B1 Intermediate risk

U2AF1 Deletion 20q

ZRSR2 Trisomy 21

<5% of patients Other: 3q-, 5q-, 12q-, 13q-, iso [17], +X etc . . . .

ASXL2
BRAF CMML with MPN driver ***
CUX1 PDGFR1 rearrangement

FLT3 PDGFRB rearrangement

IDH2 FGFR1 rearrangement

IDH1 PCM1-JAK2

NF1
PTPN11 SM-CMML ****

TP53 KIT
Somatic mutations are grouped according to their frequency and classified by alphabetic order in each group.
* ANKRD26-RT, ANKRD26-related thrombocytopenia or thrombocytopenia 2; RUNX1-FTD, familial platelet
disorder with propensity to myeloid malignancies; ETV6 c.1160G > A (p.Arg369Gln) is associated with familial
thrombocytopenia 5; ** cytogenetic results are classified as low, intermediate and high risk according to CPSS.
A normal karyotype is observed in 70% of cases; *** CMML with MPN driver are classified by the WHO as
myeloid/lymphoid neoplasms with eosinophilia; **** SM, systemic mastocytosis.

In the last 15 years, rapid development of genomic techniques further inform on
CMML associated molecular abnormalities. It appeared that, in many cases, disease ap-
pearance may be preceded by a clonal hematopoiesis of indeterminate potential (CHIP),
also designated age-related clonal hematopoiesis (ARCH) [58,59]. Whole genome sequenc-
ing of circulating WBC identified two mutational signatures of ageing in each CMML
patient [60], in accordance with the mean age of patients at diagnosis. Focusing on coding
regions, each patient demonstrates a mean number of 14 somatic mutations, of which a
mean number of three affect recurrently mutated genes [60–63]. These variants accumulate
in hematopoietic stem and progenitor cells (HSPCs), the fraction of residual wild-type
HSPCs is low, and the most mutated cells demonstrate a growth advantage that appears
with cell differentiation [64].

Recurrently mutated genes are involved mostly in DNA methylation (TET2, DNMT3A),
histone modifications (ASXL1), pre-mRNA splicing (SRSF2, SF3B1, U2AF1, ZRSR2) and
signaling pathway (NRAS, KRAS, CBL, JAK2) [53,60–65] (Table 1). None of these mutations
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are disease specific but the combination of mutations in TET2 and SRSF2 is typically ob-
served in CMML [61]. Some of these somatic mutations are associated with a poor outcome
and incorporated into prognostic scoring systems [51,61], signaling mutations are more
commonly seen in proliferative CMML [66], while, contrary to MDS, TP53 mutations are
almost never detected in this disease.

The available evidence indicates that detection of somatic mutations in the peripheral
blood is now part of the diagnostic process in patients with a peripheral blood mono-
cytosis. Their pattern contributes to the recognition of CMML, even in the absence of
definitive morphological criteria, and that of newly defined entities such as the previously
mentioned oligomonocytic CMML [42–44,67,68]. In all these conditions, the variant allele
frequency of somatic mutations is much higher than that observed in healthy subjects with
CHIP/ARCH [58].

Some patients, usually younger, harbor an inherited predisposition to CMML (Table 1),
although no single germline mutation has been exclusively associated with the disease.
CMML can develop in the context of heterozygous inactivating mutation in the zinc-finger
hematopoietic transcription factor GATA2 (GATA-2 syndrome) [69], the transcription factor
RUNX1 (familial platelet disorder with propensity to myeloid malignancies) [70,71], the
5′ UTR of ANKRD26 can result (ANKRD26-related thrombocytopenia) [72,73], the ETS
family transcriptional repressor Ets variant 6 (ETV6 c.1106G > A; p.Arg369Gln) [74],
the DEAD-box RNA helicase gene DDX41 [75,76], and the transcription factor TP53 [77].
Finally, in the French West Indies, germline duplication at chromosome locus 14q32 involv-
ing two genes, autophagy-related Protein 2 Homolog B (ATG2B) and GSK3β interacting
protein (GSKIP), was identified in families from the French West Indies who developed a
spectrum of myeloid malignancies including CMML [78].

Perspectives: The emergence of genetic (and epigenetic, see below) approaches at
the single cell level may allow further deciphering CMML clonal diversity, within and
between individual patients, and its evolution upon therapeutic pressure, and demonstrate
the ability of new treatments to restore the fitness of persistent healthy cells.

5. Depicting the Role of Epigenetics in CMML Phenotype

The high prevalence of mutations in genes encoding epigenome-modifying enzymes
such as TET2 that is responsible for DNA demethylation [79–82] and ASXL1 that is involved
in histone-modifying complexes [83] may drive the aberrant epigenetic changes observed
in CMML [84–88].

An aberrant DNA methylation was initially described at specific loci [89] and demethy-
lation of the p15(INK4) cell cycle regulatory gene [90] was used as a pharmacodynamics
marker of the efficacy of the nucleoside analogs decitabine (DAC) [91]. DNA hypermethyla-
tion was shown to increase with disease severity [92]. DAC and the other used hypomethy-
lating drug, 5-azacytidine (AZA), restore a partially or totally balanced hematopoiesis
in responding patients without significantly decreasing mutation allele burden in their
circulating myeloid cells, suggesting a mostly epigenetic effect that correlates with DNA
demethylation in patient hematopoietic cells [62]. A similar observation was reported in
MDS in which AZA targets mostly granulomonocytic progenitors to alter the sub-clonal
contribution to different lineages without eliminating founder clones [93,94].

Deregulated DNA methylation largely contributes to the clinical and biological ex-
pression of CMML. For example, the expression of the TRIM33 gene, which encodes an E3
ubiquitin ligase (also known as transcription intermediary factor 1γ or TIF1γ) exerting a
tumor suppressor function in hematopoietic cells, is commonly down-regulated by DNA
hypermethylation in CMML. Deletion of this gene in myeloid cells is sufficient to mimic
a CMML phenotype in mice, and TRIM33 gene expression is restored to normal level
in the cells of CMML patients who respond to hypomethylating agents [95]. Similarly,
hypermethylation of a myeloid lineage specific regulatory sequence in MIR150 gene was
shown to account for the above-described deregulation of monocyte subset repartition
in the peripheral blood [96]. miR-150 down-regulation in classical monocytes prevents
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their transition to intermediate and nonclassical monocytes through up-regulating the
TET3 (ten-eleven-translocation-3) protein in classical monocytes. This transition is restored
in patients who respond to demethylating drugs [46,97]. Epigenetic down-regulation of
another mi-RNA, miR-125a, is also reversed by HMA treatment [98]. Finally, the activation
of transcripts containing endogenous retroviruses (ERVs) contributes to the therapeutic
effect of AZA [99].

The baseline pattern of DNA hypermethylation, which varies among CMML patients,
may predict the response to hypomethylating drugs [100] while genomic alterations have
a limited predictive power [101]. The pattern of histone tail modifications at active pro-
moters and enhancers in CMML cells, which may enhance chromatin mark modifications
associated with stem and immune cell impairment with normal aging [102], could also
influence the response to these drugs [99].

Perspectives: Future analysis of disease-associated changes in DNA methylation
and histone marks, soon available at the single cell level, may depict the contribution of
epigenetic abnormalities to clonal heterogeneity and therapeutic resistance, provide new
criteria for treatment response, and guide new therapeutic approaches.

6. Dissecting the Role of the Inflammatory Climate

At the beginning of the 90s, CMML patient mononuclear cells were observed to sponta-
neously form granulo-monocyte colonies (CFU-GM) in semisolid cultures [103]. This effect
was initially shown to be inhibited by antibodies targeting either interleukin-6 (IL-6) or
granulocyte macrophage colony stimulating factor (GM-CSF), found at high concentrations
in the supernatant of CMML, suggesting a paracrine effect [104]. The paracrine function of
IL-6 was not consistently validated but addition of anti-GM-CSF antibodies reproducibly
inhibited the spontaneous colony growth from CMML cells [105,106]. Further enforcing
the importance of GM-CSF in CMML progression, the efficacy of xenotransplantation of
patient cells in immunocompromised mice was improved by transgenic expression of
human GM-CSF [107].

The ability of IL-4 to inhibit the spontaneous formation of colonies by CMML patient
cells [105] has been controversial [108,109]. More consistently, IL-10 could inhibit the pro-
duction of pro-inflammatory cytokines by monocytes [110,111] and, in most patients with
a CMML, demonstrated a profound and dose-dependent inhibitory effect on autonomous
in vitro growth of CMML cells [112]. This suppressive effect was reversed by the addition
of exogenous GM-CSF and correlated with a substantial decrease in GM-CSF production
by leukemic cells. A therapeutic effect of rhIL-10 was detected in a small pilot clinical
trial, with no significant effect on WBC count but improvement of skin infiltration in a
patient [113]. More recently, a decreased IL-10 plasma level correlated with poor overall
survival of CMML patients, even when adjusted for ASXL1 mutations and other prognostic
features [114]. The negative prognostic value of circulating IL-10 now requires a solid,
definitive validation.

GM-CSF hypersensitivity is the hallmark of juvenile myelomonocytic leukemia (JMML)
cells. Spontaneous colony formation of JMML cells is abolished by prior depletion of
monocytes, further supporting a paracrine mode of cellular proliferation [115]. Disease
dependency on GM-CSF was validated by Gmcsf gene deletion in a mouse transgenic
model of JMML generated by heterozygous mutation of Nf1 tumor suppressor gene [116].
The dose-dependent inhibitory effect of IL-10 was also observed in the context of this
pediatric disease [117].

Mouse model of chronic myeloid leukemia has identified feed-forward loops between
mature and immature cells of the leukemic clone. Therapeutic targeting of cytokines
involved was shown to inhibit disease installation or progression [118,119]. Based on these
proof of principle experiments, targeting GMCF or its receptor could make sense in CMML
and JMML.

The heterodimeric GM-CSF receptor associates with Janus kinase 2 (JAK2) whose
subsequent phosphorylation initiates intracellular signaling events leading to a specific
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evoked signal transducer and activator of transcription (STAT)-5 signature. This sig-
nature was used as a read-out of progenitor hypersensitivy to GM-CSF in JMML [117]
and in most CMML [120]. Preclinical studies using either an antibody that prevents
GM-CSF binding to its cognate receptor or chemical inhibitors of JAK2 supported a role
for the GM-CSF/JAK2/STAT5 pathway in the proliferation of CMML myeloid progen-
itors and provided the rationale for testing JAK2 inhibitors in this disease. Ruxolitinib,
a JAK1/2 inhibitor FDA approved for treatment of primary myelofibrosis (PMF), was
shown to be a promising therapeutic in CMML [121]. Results form an extended eval-
uation of ruxolitinib activity in CMML patients may come out soon. More recently, a
novel engineered immunoglobulin G1κ monoclonal antibody with high affinity for human
GM-CSF (Lenzilumab, KB003) was introduced in CMML patients without major safety
concerns [122].

Measurement of other cytokines, chemokines, and growth factors in CMML periph-
eral blood provided contrasted results. Initially, high levels of IL-6 and TNFα level were
identified in the serum of a fraction of patients and elevated TNFα correlated with ane-
mia [123,124]. More recently, annotation of inflammatory cytokines in plasma or serum in
213 patients classified CMML patients into three groups with distinct clinical and genetic
features. A first cluster of diseases (32% of patients) was driven by a significant increase in
M-CSF level, Cluster 2 (20%) by an increase in 17 cytokines including IL-6 and IL-8, and
Cluster 3 (48%) by an increase in IL-2RA. This study also supported the poor prognostic
value of a decreased IL-10 plasma level [114].

Single cell analyses detected increased expression of myeloid-lineage and cell cycle
genes in CMML compared to healthy donor Lin-CD34+CD38- immature cells, together with
a strong expression of interferon-regulatory factors in those collected from patients with the
most advanced disease [125]. Among mature cells of the clone, the transcriptional signature
of sorted CMML monocytes is highly proinflammatory when compared to age-matched
healthy donor monocytes [126].

All these data suggest that the cytokine milieu, whose make-up involves immature
and mature cells of the CMML clone as well as cells of the bone marrow niche, plays a role
in CMML initiation and progression.

The lack of relationship between the inflammatory signature detected in monocytes
and CpG island methylation pattern suggests complex regulatory mechanisms. One of
these could involve TET2 mutations that alter the non-catalytic functions of the protein [127].
In addition to promoting active DNA demethylation through iterative oxidation eventually
leading to the replacement of 5mC by native cytosine, TET2 interacts with proteins that
tether it to DNA [128–130] and exerts non-catalytic activities, e.g., by recruiting O-linked
N-acetylglucosamine (O-GlcNAc) transferase (OGT) to gene promoters [131,132]. In mouse
macrophages, a catalytically dead Tet2 mutant represses Il6 gene transcription, which
contributes to the down-regulation an inflammatory reaction [133,134]. TET2-mutated
clonal hematopoiesis was associated with an increased cardiovascular risk [135]. In mouse
models, Tet2 deletion associated cardiovascular risk was reduced by Il6 gene deletion [136]
or by inflammasome inhibitors [137]. Together, TET2 mutations could have a differential
impact on CMML outcome, depending on their effect on the expression level and non-
catalytic activities of the protein that regulates the synthesis of multiple cytokines [138].

Altogether, the chronic inflammatory climate that increases with CMML severity
involves still poorly understood interactions between immature and mature cells of the
clone as well as between cells of the clone and their microenvironment, insidiously leading
to physical exhaustion with disease progression.

Perspectives: An extended, well-controlled characterization of this inflammatory
condition, i.e., by monitoring circulating cytokines and chemokines, will further inform on
patient stratification and drive innovative therapeutic strategies to control the proliferative
component of the disease.
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7. Exploring the Role of the Micro-Environment

Chronic myeloid malignancies are increasingly seen as the rare outcome of a pervasive
process of pre-neoplastic changes across a phenotypically normal hematopoietic tissue.
Mutations accumulate with age in the stem and progenitor cell compartment, a mutant
cell can expand into a clone without overt disease (CHIP), and rarely, such a clone even-
tually evolves into an overt malignancy such as a CMML. Accumulating experimental
evidence points to a role of aging bone marrow niche in promoting clonal selection and
evolution [139]. Malignant cells secondarily become independent of initially supporting
stroma, i.e., disease become transplantable by injection of CD34+ hematopoietic cells only,
yet diseased cells acquire an increasing potential to reprogram their environment to further
support their expansion. The role and changes of bone marrow niche cells including im-
mune cells, and the cytokines they release, have been scarcely explored in CMML patients.
Bone marrow stroma cells from these patients behave differently from those of patients
with an MDS, e.g., a decreased expression of IL32 gene was detected in CMML stroma
cells while this gene expression was increased in MDS stroma cells [140]. In addition,
a procoagulant environment detected in CMML bone marrow niche was related to the
exchange of tissue factor (TF) with clonal monocytes through extracellular vesicles [141].
Further investigation is mandatory to better understand how cells of the bone marrow niche
contribute to disease emergence and progression, as depicted in other chronic myeloid
malignancies such as primary myelofibrosis [142,143].

The role of immune cells in CMML is also largely unknown. Mature cells of the clone,
including monocytes [144,145], immature, dysplastic granulocytes [146], and plasmacytoid
dendritic cells [147], frequently exert immunosuppressive functions that promote either
T-cell and NK cell death or T regulatory cell expansion. In addition, a fraction of MDS
and CMML patients demonstrate PD-1 (Programmed Death 1) expression on stromal cells,
while PD-L1 (Programmed Death Ligand 1) expression is increased in CD34-positive imma-
ture cells [148]. More recently, the expression of another immune checkpoint gene, LILRB4
(leukocyte immunoglobulin-like receptor subfamily B4), was reported to be increased in
CMML compared to MDS and healthy control cells, correlating with CTLA-4 (cytotoxic T
lymphocyte-associated antigen 4) gene expression [149]. While currently used, immune
checkpoint blockers did poorly in myeloid malignancies, and further investigation will
indicate if the immune context in which CMML emerges and progresses could offer new
therapeutic opportunities.

Perspectives: There is a need for investigating bone marrow niche alterations in the
context of CMML. With improved treatments, the question may appear whether eradication
of leukemic cells will be sufficient to restore a physiological niche, as persistence of an
altered bone marrow micro-environment could potentially promote the outgrowth of new
clones or favor the evolution of a residual, ancestral one.

8. Generating Experimental Model Systems to Explore CMML

The lack of faithful experimental model of CMML remains a challenge to explore
disease pathogenesis and identify innovative therapeutic strategies. None of the genetically
engineered murine models generated for the three most commonly mutated genes (Tet2
deletion, Srsf2 P95H knock-in, Asxl1 deletion) [89,150,151] or mimicking an epigenetically
down-regulated gene such as TIF1γ [96] recapitulated all the key features of the disease,
i.e., age-associated chronic elevation in monocytes and granulocytes, multilineage dys-
plasia, progenitor hypersensitivity to GM-CSF, and susceptibility to transformation to
acute myeloid leukemia. Similarly, overexpression of the epigenetic regulator Kdm6b in
mouse hematopoietic cells to mimic its overexpression in CMML patient cells generates
a limited phenotype that appears upon stimulation with lipopolysaccharides, activating
immunosuppressive genes such as the alarmin gene S100A9 [152].

Closer to the human disease, concurrent Tet2 loss and NrasG12D expression in hematopoi-
etic cells induced a fully penetrant, lethal CMML-like phenotype that is sensitive to MAPK
kinase (MEK) inhibition [153,154]. As in human disease, germline Gata2 [155] or Cbl [156]
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mutation could promote the development of a CMML-like disease in mice. Such a pheno-
type was observed in several other genetically engineered models as a step toward acute
myeloid leukemia, including ablation of the BH3-only protein Bid [157], deletion of Dok1
and Dok2 adapter genes [158], and conditional ablation of Tak1 (encoding TGF-β activated
Kinase 1) [159] without identified relevance in the human disease.

Patient-derived xenograft (PDX) models of CMML can be reproducibly obtained by
transplanting primary patient cells in immunocompromised mice. The robust engraftment
of human bone marrow or peripheral blood mononuclear cells obtained in NSG mice
is further enforced when these mice express human three human cytokines: stem cell
factor (SCF), interleukin-3 (IL-3) and granulocyte/macrophage colony-stimulating factor
(GM-CSF) (NSGS mice), likely through expression of GM-CSF [107,160]. In chronic phase,
NSGS-engrafting leukemia-initiating stem cells reside in a CD45+/CD34+/CD38− frac-
tion [161]. Even though these models allow functional analysis of clonal architecture [162]
and preclinical evaluation of innovative therapeutic approaches [145], secondary transplan-
tation only rarely succeed, and serial transplantation could be obtained only by lentiviral
expression of a human oncogene in primary human CMML cells, as demonstrated using
MN1 gene [163].

Another approach to model the disease has been the generation of induced pluripotent
stem cells (iPSCs) through reprogramming of CMML patient CD34-positive cells [164,165].
This approach captures a part of the disease genetic diversity and hematopoietic differenti-
ation of the clones recapitulates the main features of the disease [165]. Some of these clones
were shown to generate a humanized CMML mouse model via teratomas [164] and the
model was used to dissect the individual contribution of recurrent genetic lesions such as
mutations in the splicing factor SRSF2 in leukemic cell behavior and to screen for drug
sensitivities [166]. The relative refractoriness of malignant progenitors to reprogramming,
e.g., due to their dyslastic nature that increases their sensitivity to apoptosis, and the
difficulties in synchronizing the growth of the clones to perform comparative drug testing,
are key limitations of these models [167].

Perspectives: We still miss the best experiment model to easily explore the pathogenic
mechanisms involved in CMML and scree for therapeutic strategies that could be translated
into clinics. Emerging approaches to generate immortalized cell lines from genetically
modified animals and the emergence of 3D cultures are promising approaches to be
developed and tested in this disease.

9. Depicting the Diversity of CMML Clinical Expression

Initial reports in the early 1970s described a relatively benign disease as compared to
acute myelomonocytic leukemia [1,2]. Disease onset was reported as insidious in mostly
elderly patients. Accordingly, diagnosis can be made in asymptomatic patients, based on a
systematic blood survey identifying a peripheral blood monocytosis. This monocytosis is
frequently neglected for months or years in patients who remain asymptomatic.

Nevertheless, initial reports also noticed the poor outcome of these patients as com-
pared to other chronic myeloid malignancies [9]. Patients diversely develop constitutional
symptoms (including weight loss, night sweats, and fever) and show consequences of
hematopoietic insufficiency (fatigue, infections, and bleeding). About 25% of them demon-
strate a splenomegaly [168]. Peripheral blood findings include leukocytosis with a mono-
cyte or neutrophil predominance and sometimes the presence of immature and dysplastic
myeloid cells. Macrocytic anemia and/or thrombocytopenia are commonly observed, neu-
tropenia is less frequent and usually moderate. In rare cases, myelomonocytic infiltrates
involve the skin, lymph nodes, and other extramedullary sites. Up to 25% of patients
harbor a concurrent systemic inflammatory and autoimmune condition [169,170]. In some
cases, dysregulated immunity was suspected to promote the emergence of CMML [171]
but, in most cases, the chronic myelid malignancy promotes autoimmunity that correlates
with mutations in the epigenetic regulators TET2 and IDH, the spliceosome component
SRSF2, and T-cell lymphocyte imbalance [172,173].
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The diversity of disease clinical and biological presentation is also observed at the
pathological level. Bone marrow aspirate is consistently hypercellular but the blast cell
fraction including promonocytes varies from 1 to 19%, cell dysplasia can be minimal,
and ring sideroblasts, plasmacytoid dendritic cell [141] or mast cell infiltrates [174] and
reticulin fibrosis [175] are detected in a minority of patients. Importantly, this heterogenous
presentation does not fully correlate with mutation profiling [176].

Disease course is also highly variable with patients living for years with stable blood
counts and few symptoms while others are highly symptomatic and succumb rapidly
to their disease. All the patients share an increased risk of developing acute myeloid
leukemia, which occurs in 15–20% of cases. Other patients die from progressive exhaustion,
consequences of cytopenias and associated diseases including solid tumors [177].

Perspectives: With increased monitoring of otherwise healthy ageing people, CMML
may be increasingly recognized at an early step, which may provide opportunities to better
monitor the natural evolution of disease phenotype.

10. Looking for a Performant Prognostication Method

The poor outcome of some patients with a CMML was rapidly identified [178]. Sur-
vival of CMML patients ranges across a wide spectrum but their median overall survival
(between two and three years) is shorter than that of any MPN and most MDS. There-
fore, stratification factors are needed to guide personalized therapeutic choices such as
allogeneic stem cell transplantation.

In 1994, the FAB divided CMML into dysplastic (MDS-CMML) and proliferative (MPN-
CMML) sub-types, based on peripheral blood WBC with a cut point at 13× 109/L [11].
The WHO subsequently replaced WBC by the blast cell count in the peripheral blood
and the bone marrow [13]. In its last version, however, WBC was reintroduced in the
WHO classification with the cutoff value initially proposed by the FAB. In addition, bone
marrow and peripheral blood blast cell fractions (including promonocytes) distinguish
three categories (CMML-0, CMML-1, CMML-2) with diverse outcomes [16]. Importantly,
both elevated WBC and blast cell count correlate with the acquisition of gene mutations
that activate the RAS signaling pathway, especially NRASG12D [67].

In addition to the WHO-identified WBC and blast cell count, individual prognosis
is related to other myeloproliferative features including splenomegaly, presence of cir-
culating immature cells, and elevated lacticodehydrogenase (LDH) and to cytopenias
(thrombocytopenia, anemia or red blood cell transfusion dependency). Starting in the
1980s, scoring systems incorporating demographics, clinical variables and peripheral and
bone marrow findings were developed in MDS, including initially CMML as a disease
subtype. Earlier models, such as Bournemouth [179], Spanish [180], and Düsseldorf [181]
models, used clinical and peripheral blood counts. The Lille model [182] incorporated
cytogenetics as a further refining stratification factor. In 1997, the unifying International
Prognostic Scoring System (IPSS), which included cytopenias, bone marrow blasts per-
centage, and cytogenetics to define four risk categories, excluded CMML patients with
WBC > 12 × 109/L [12]. In contrast, the MD Anderson prognostic scoring system, devel-
oped in 2008, which introduced age, performance status and transfusion dependency, was
validated in a cohort of patients including proliferative CMML [183]. Four years later, the
revised IPSS (IPSS-R), which divided MDS patients into five risk categories, again excluded
CMML patients with proliferative disease [184].

A CMML-dedicated scoring system was first proposed in 2002, including peripheral
blood absolute lymphocyte count, bone marrow blast count, hemoglobin level, and the
presence of circulating immature myeloid cells [48,185]. Cytogenetics was included in
the CMML-dedicated prognostic scoring systems (CPSS) in 2013 [50] and, the same year,
molecular markers, starting with ASXL1 gene mutations, were shown by the Groupe Fran-
cophone des Myelodysplasies to refine disease stratification [60,186]. Several other scoring
systems dedicated to CMML were developed in the following years [52,187]. In 2015, retro-
spective analysis of a large international dataset of 1832 CMML patients treated across the
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USA and Europe confirmed the independent prognostic relevance of nonsense/frameshift
mutations in ASXL1 gene, suggested that additional mutations such as those in CBL gene
could indicate an adverse outcome, showed comparable performance of all the scoring
systems, but also confirmed that a combination of clinical and molecular information
may improve the accuracy of CMML prognostication [187]. Finally, an integrated scoring
system, updating the previously described CPSS [50], introduced mutations in RUNX1,
NRAS, SETBP1, and ASXL1 in CMML prognostication [51].

In 2021, even though some prognostic factors have been validated in the context of
treatment with DNA methyltransferase inhibitors [188], significant heterogeneity persists
when using existing CMML scoring systems in clinical practice, guiding the timing of
allogeneic stem cell transplantation, and assessing clinical trial eligibility.

Perspectives: More translational research characterizing the role of epigenetic marks,
inflammatory marks, and bone marrow niche alterations in disease evolution, together with
the application of machine learning to large international cohorts of homogeneously char-
acterized patient, are needed to refine the models and provide a personalized prediction of
overall survival and AML transformation.

11. Defining Appropriate Therapeutic Response Criteria

Consensus guidelines for the measurement of MDS response to therapy, which were
initially defined in 2000 by the WHO [189], were updated in 2006 by the MDS International
Working Group (MDS-IWG) [190]. In the following years, these guidelines were applied to
clinical studies that included patients with CMML [191] and those conducted specifically
for CMML [192–194].

In 2015, the MDS/MPN International Working Group (MDS/MPN IWG) proposed
uniform criteria for MDS/MPN response to treatment, taking into account new parame-
ters [195]. Complete response criteria included bone marrow blast cells <5% with normal
cellularity, correction of myelofibrosis, improved blood cell counts (WBC ≤ 10 × 109/L;
neutrophils ≥ 1.0 × 109/L; monocytes ≤ 1 × 109/L; neutrophil precursors ≤2%;
hemoglobin ≥ 11 g/dL; platelets ≥ 100 × 109/L and ≤ 450 × 109/L) with resolution
of extramedullary disease and complete cytogenetic remission. Partial response was out-
lined as normalization of peripheral blood counts and splenomegaly, with bone marrow
blast cells reduced by at least 50%. Finally, blood cell count and spleen size reduction
with improved functional status, based on MPN-SAF scoring system developed in pri-
mary myelofibrosis [196], defined a provisional entity of “clinical benefit” [195]. These
response criteria were validated in a retrospective cohort of CMML patients treated with
hypomethylating agents [188].

Perspectives: These response criteria dedicated have to be evaluated in prospective
studies, together with a comprehensive analysis of clinical symptoms and molecular
abnormalities to confirm their contribution in defining robust short-term endpoints for
future CMML clinical trials. These criteria could be subsequently refined with additional
biomarkers, such as reduction of variant allele frequency in circulating myeloid cells and
normalization of monocyte subset repartition and cytokine circulating levels.

12. Looking for Better Therapeutic Approaches

CMML patients have been poorly served by the research community so far, with
a limited number of clinical trials dedicated to this disease since its initial description.
Therefore, therapeutic management of CMML patients remains challenging [197].

A watch and wait approach is justified in lower-risk CMML patients exhibiting an
indolent disease course without cytopenias, major proliferation or constitutional symptoms.
In low-risk patients with anemia, supportive care includes red blood cell transfusions and,
especially when serum endogenous EPO level is low, erythropoiesis-stimulating agents
(ESA) [197,198]. Activin Receptor II ligand traps such as luspatercept and sotatercept
could restore ineffective erythropoiesis in patients with low-risk MDS and CMML with
acceptable safety profiles, suggesting that these drugs could represent a new paradigm for
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anemia treatment in low-risk CMML [199,200]. In low risk CMML patients with isolated
thrombocytopenia, the oral thrombopoietin receptor agonist eltrombopag is safe and could
be considered [201].

Cytoreductive therapy is proposed to CMML patients with symptomatic leukocytosis
or splenomegaly, in the absence of major cytopenias or excess of blast cells. The reference
for cytoreductive therapy remains hydroxycarbamide, which was first approved in 1967.
While it can effectively control WBC, hydroxycarbamide can also worsen a decrease in
hemoglobin level and platelet count, introducing substantial difficulties in striking the
optimal dosing balance. Gastrointestinal side effects are common but rarely require dose
reduction or cessation of treatment. Some patients develop mouth or limb ulcers. In the first
Phase III randomized clinical trial dedicated to CMML, hydroxycarbamide demonstrated
superior outcomes compared to oral etoposide [202]. Various other drugs or combinations,
including alpha-interferon [203] and retinoic acid [204], have been tested in the 1980s and
1990s, without significant response.

The only treatment modality with a curative intent is allogeneic stem cell transplanta-
tion [205]. Its potential remains limited by patient age at diagnosis and comorbidities, by
significant rates of mortality caused by the procedure and by post-transplantation relapses.
According to EHA/ELN guidelines, this treatment is recommended for higher-risk CMML
patients below the age of 70 years, with an appropriately matched donor and no major con-
traindication to transplant [35]. It is more controverted in selected lower-risk patients with
severe cytopenias or poor-risk somatic mutations [206]. In recent retrospective surveys,
high-risk cytogenetics, mutations in ASXL1 and/or NRAS, and increasing comorbidity
index remained associated with worse survival after transplantation [207,208].

Hypomethylating agents, including 5-azacytidine (AZA) and decitabine (DAC), are
commonly considered as the standard of care therapy for symptomatic CMML [209]. These
drugs are usually well tolerated, with moderate cytopenias being the most common adverse
event. Based on Phase 3 randomized trials dedicated to MDS with a low number of CMML
included [210,211], both drugs have been approved by the FDA for CMML, while AZA
is approved exclusively for dysplastic CMML-2 in Europe. The efficacy of these agents
remains a matter of controversy [212]. Small, non-randomized clinical trials indicated a
40–50% overall response rate including 20% complete responses [192,213,214]. A large
international retrospective study recently suggested that hypomethylating agents were
the preferred therapy for patients with higher-risk or myeloproliferative CMML [215].
However, the only prospective randomized phase 3 trial comparing a hypomethylating
agent (DAC) to hydrocarbamide as a frontline treatment of poor-prognosis CMML patients
failed to demonstrate any advantage of DAC over hydroxycarbamide regarding event-free
and overall survival [216]. Even when these drugs restore a balanced hematopoiesis, they
hardly reduce the allele frequency of somatic genetic variant in leukemic cells, nor prevent
genetic evolution of the clone. Therefore, disease relapse always occurs within a few
months to two years after treatment initiation, without or with acute transformation [62]
(Figure 3). Altogether, hypomethylating agents do not meaningfully alter the natural
course of the disease [217].

In the last ten years, an increasing number of clinical trials recruiting CMML patients
have been launched. Unfortunately, in most cases, CMML is still pooled with other myeloid
malignancies, mostly MDS. Newly tested drugs include a new generation of hypomethy-
lating agents with alternative modes of administration, as well as strategies combining
HMAs with other compounds. In July 2020, the FDA approved the oral combination of
decitabine (35 mg)/cedazuridine (100 mg) for adult patients with MDS and CMML, based
on the results from two randomized crossover trials [218,219]. The well-tolerated AZA
+ lenalidomide combination may increase survival of CMML patients as compared to
AZA alone [191] whereas the place of AZA + Venetoclax combination, which has recently
emerged as a new standard of care for some newly diagnosed AML patients [220], has
still to be defined in this specific disease as monocytes could generate some resistance to
the combination [221]. Another molecule currently developed is pevonedistat, a small
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molecule inhibitor of the DNA repair protein NEDD8, which demonstrated some clinical
activity in combination with azacytidine [222]. Finally, the viral mimicry generated by
hypomethylating drugs through gene demethylation was suggested to prime leukemic
cells to immunotherapy, which remains to be validated in clinics [223,224].
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Importantly, the proliferative component of the disease deserves to be considered in
the therapeutic strategy by targeting myeloid progenitor hypersensitivity to GM-CSF. The
JAK1/2 inhibitor ruxolitinib induced objective responses in an early phase trial [193], and
alternative approaches using pacritinib, a JAK2/FLT3 inhibitor, showed promising activity
in patient derived xenografted mouse models [160]. Lenzilumab that targets human GM-
CSF is an exciting therapeutic approach [122] and mavrilimumab, a GM-CSF receptor alpha
directed monoclonal antibody [225] could be an alternative option.

Mutations in RAS genes and RAS-activating genes, which are common in proliferative
CMML, have long been considered as prototypal undruggable oncogenic events. Never-
theless, new drugs have entered clinical trials [226] and targeting the RAS-MAPK pathway
with MEK1/2 inhibitors [227] or a mitotic checkpoint kinase PLK1 inhibitor [228] or an im-
mune based strategy [229] are currently tested approaches. CMML with a gain-of-function
CBL mutation could be sensitive to the pharmacological inhibition of Lyn by dasatinib [230].
Finally, combined with an MCL1 inhibitor, a MEK inhibitor could target mature cells of the
leukemic clone to disrupt feed forward loops between mature and immature cells of the
clone [145].

Other potential therapeutic approaches include Glasdegib, an oral inhibitor of sonic
hedgehog receptor smoothened in severe CMML [231], Imetelstat, a lipid-conjugated oligonu-
cleotide targeting the RNA template of human telomerase reverse transcriptase [232], spliceo-
some inhibitors in CMML with splicing gene mutations [233,234], and the CD123-directed
cytotoxin Tagraxofusp (formerly SL-401) in CMML with pDC accumulation [147,235,236].

Perspectives: while still insufficient, the number of CMML-dedicated clinical trials
increases, which may give the patients a chance to receive in a disease-modifying treatment
in the future.

13. Conclusions

Seventy years after its first description and fifty years after being named, CMML
remains a severe malignancy. Most patients who are diagnoses with a CMML in 2021 will
die of the disease evolution within a few years.
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The WHO rightfully extirpated CMML from the MDS category, based on a typical
proliferative component related to myeloid progenitor hypersensitivity to GM-CSF/STAT5
pathway activation. This separation may drive the use of therapeutic approaches targeting
signaling pathways.

Most importantly, continued investment in research will refine disease associated
changes in myeloid cell subset repartition, better detect the release of cytokines and
chemokines, explore clonal evolution trajectories at the single cell level, decipher the
poorly understood role of epigenetics, cell–cell interactions, and clonal cell environment
in disease emergence and progression, and generate better experimental models of the
disease. While improving disease identification and stratification, these investigations will
also guide innovative therapeutic strategies.
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