
Citation: Alqahtani, A.; Azzony, S.;

Alsharafi, L.; Alaseri, M. Web-Based

Malware Detection System Using

Convolutional Neural Network.

Digital 2023, 3, 273–285. https://

doi.org/10.3390/digital3030017

Academic Editors: Phivos Mylonas,

Katia Lida Kermanidis and Manolis

Maragoudakis

Received: 25 July 2023

Revised: 7 September 2023

Accepted: 8 September 2023

Published: 12 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Web-Based Malware Detection System Using Convolutional
Neural Network
Ali Alqahtani 1,2,∗ , Sumayya Azzony 1, Leen Alsharafi 1,† and Maha Alaseri 1,†

1 Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia;
sazzony@kku.edu.sa (S.A.); leenalsharafi0@gmail.com (L.A.); alaserimaha@gmail.com (M.A.)

2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia
* Correspondence: amosfer@kku.edu.sa
† These authors contributed equally to this work.

Abstract: In this article, we introduce a web-based malware detection system that leverages a deep-
learning approach. Our primary objective is the development of a robust deep-learning model
designed for classifying malware in executable files. In contrast to conventional malware detection
systems, our approach relies on static detection techniques to unveil the true nature of files as either
malicious or benign. Our method makes use of a one-dimensional convolutional neural network
1D-CNN due to the nature of the portable executable file. Significantly, static analysis aligns perfectly
with our objectives, allowing us to uncover static features within the portable executable header.
This choice holds particular significance given the potential risks associated with dynamic detection,
often necessitating the setup of controlled environments, such as virtual machines, to mitigate
dangers. Moreover, we seamlessly integrate this effective deep-learning method into a web-based
system, rendering it accessible and user-friendly via a web interface. Empirical evidence showcases
the efficiency of our proposed methods, as demonstrated in extensive comparisons with state-of-
the-art models across three diverse datasets. Our results undeniably affirm the superiority of our
approach, delivering a practical, dependable, and rapid mechanism for identifying malware within
executable files.

Keywords: malware; cyber security; deep learning; machine learning; deep neural networks

1. Introduction

Although the internet has become essential, its security is seriously threatened by
malicious software (malware), which refers to any parasitical and destructive software
developed by hacking data, damaging or destroying computer systems. This malware
continues escalating and poses a significant security concern in the digital age. Exponential
malware attacks have influenced many computer users, corporations, and governments,
making malware detection an open research topic. Some current malware detection ap-
proaches adopt conventional, time-consuming methods. They have proven ineffective in
identifying unknown malware in real time because of a distinct digital trace, a standard
signature-based method. Programs are inspected with antivirus applications, evaluating
their signatures against known malware. Most existing malware applications tend to
avoid intelligent detection, such as code encryption, obfuscation, and polymorphism, or by
changing their signature, making it easier for evils to modify malware code.

Deep learning has been used more frequently in recent years, thereby becoming a
major topic in variety of fields. It has extended into broader and deeper models, especially
in detection and classification. The deep-learning methods are introduced to detach the
data manifolds and allow a classification method to deal with learned representation rather
than raw data [1]. Conventional classification algorithms achieve limited performance
as dimensionality increases. Therefore, dealing with high-level features supports the
achievement of classification tasks. This paper developed an approach to detect and
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alarm users whether the portable executable file (PE file), which commonly has a .exe file
extension and contains instructions that the system executes immediately when the user
clicks on those files. The executable files are software but are exploited by many hackers to
create harmful programs that can damage the computer system. The introduced method
has considered the power of deep learning when classifying such files. We target the header
part of PE files, mainly the PE header, as it contains essential metadata with all the necessary
information the operating system requires to execute such files. The proposed approach
aims to detect malware new to the operating systems’ anti-viruses and make the detection
process more accessible and effective without any manual process. The comprehensive
pipeline of our introduced deep detection of malware is presented in Figure 1. The proposed
method uses 1D-CNN due to the nature of the portable executable file. The 1D-CNN is
practical and recommended when working with a specific datatype [2]. The effectiveness
of the proposed methods is demonstrated on several datasets compared to the most recent
methods. The finding results show that the proposed approach efficiently detects malware
files with comparable accuracy. Our web-based malware detection system has far-reaching
applications in the cybersecurity landscape, benefiting individuals and organizations alike.
It offers a user-friendly solution for individuals seeking to safeguard their devices against
malware threats, empowering them to assess file integrity before execution. This reduces
susceptibility to cyberattacks and data breaches, even for users with limited technical
expertise. Within corporate environments, our system functions as an active defense
mechanism. Rapidly identifying possible malicious files strengthens incident response,
limits malware propagation, and safeguards sensitive data.

Figure 1. General structure of the malware detection model [3].

The rest of this paper is organized as follows. In Section 2, we present related works,
while we describe our proposed methodology in Section 3. In Section 4, we present our
experimental results, and the deployment step is presented in Section 5. Finally, concluding
remarks are provided in Section 6.

2. Related Work

Machine learning algorithms have continuously demonstrated high discriminatory
abilities across a wide range of malware detection systems in earlier research. In recent
times, deep learning has also been used in malware detection systems, among other
domains. Making the trained model accessible and usable via a web interface is necessary
when deploying a deep-learning model in a web-based application. Utilizing a deep-
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learning methodology, we created a web-based malware detection system. Our website is
the first of its kind in terms of malware detection methods, as far as we know. We employed
deep-learning modeling and deep-learning deployment to classify the earlier systems as
you can see in the next two subsections.

2.1. Deep-Learning Modeling

Malware detection has received considerable attention. Most existing methods vary
from standard signature-based detection [4–6] to more recent machine learning (ML) [7–9]
and deep-learning (DL) [10–12] detection. Conventional malware detection based on
signature has been ineffective against a wide range of variations since all the current
malware applications tend to avoid detection. In addition, all modern-day malware comes
with intelligent approaches such as code encryption, obfuscation, and polymorphism.
Hence, the most recent and active research has advanced to more advanced methods, such
as deep learning and machine learning. In ML approaches, typically supervised learning
algorithms are applied to the collected features of files for detection (whether the file is
benign or malicious) or even for classification (by categorizing whether it is malicious
under a particular class of malware).

Several supervised machine learning algorithms have been proposed for malware
detection. Sharma et al. [13] introduced a framework for detecting unknown malware
using machine learning techniques based on the frequency of opcode occurrence. Their
work applied Random Forest, J48 Graft, Logistic Model Tree (LMT), and Naïve Bayes
Tree (NBT). Hussain et al. [14] also analyzed the features of the portable executable (PE)
header and excluded others that do not help the model’s performance. The prediction
layer was the focus of various ML techniques [14], including Random Forest (RF), Decision
Tree, AdaBoost, Support Vector Machine, Gradient Boosting(GB), and Gaussian Naive
Bayes (GNB). Although these methods proved successful in the detection task, the results
show that RF performs much better. Kolter, J. Z. [15] applied n-grams of byte codes to
benign and malicious executable files in their dataset. They explored Naive Bayes, Decision
Trees, Support Vector Machines, and boosting algorithms, among other inductive methods.
Schultz et al. [16] also presented a data-mining framework that accurately and automatically
detects new, previously unseen malicious executable files using the Naive Bayes classifier.
Due to some drawbacks of machine learning methods, an effort has been made in the feature
extraction phase. As the PE file consists of numerous features, analyzing which feature to
select and which to drop is required. Deep-learning-based techniques are considered to
overcome the weaknesses associated with feature selection. This is an effective solution to
solve this problem as it does not require the hand-crafted feature, shifting the emphasis to
feature extraction and representation learning, which is why deep learning gains a lot of
traction in malware detection.

Azeez et al. [17] proposed a method using a hybrid ensemble learning approach
comprising fully connected and Convolutional Neural Networks with extra tree classifiers
acting as meta learners to detect malware. Rathore et al. [18] also adopted deep-learning
methods to build the classification models using deep neural networks (DNN) (DNN-2L,
DNN-4L, DNN-7L). In addition, Sewak et al. [19] used one-layer and three-layer stacked
auto-encoder (SAE) for feature extraction and dimensionality reduction. Then, the deep
neural network with 2-4-7 hidden layers is utilized to classify malicious and benign exe-
cutable files. Hardy et al. [20] collected Windows API calls from an authentic and extensive
file collection. They utilized a deep network, mainly the SAE model, to detect malware.
However, dealing with a filter that suits PE files requires a careful approach. Therefore,
the 1D-CNN is practical and recommended when dealing with this specific datatype.

The authors of [21] suggest an attack that combines binary diversification methods
with frameworks for optimization in order to deceive such DNNs while maintaining the
functionality of binaries. They tested their attack in both white-box and black-box environ-
ments on three DNNs and discovered that it frequently had success rates. They looked at
several defenses, both new and ancient, and discovered ones that could successfully thwart
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more than 80% of our evasion attempts. They recommended adding techniques that do not
rely on machine learning to malware detection systems because these protections may still
be vulnerable to evasion by assaults.

2.2. Deep-Learning Deployment

Deploying a deep-learning model in a web-based application involves making the
trained model available and accessible via a web interface. This allows users to interact with
the model and obtain predictions or perform various tasks using the model’s capabilities.
Web-based applications are valuable across various domains, and their usage has been
on the rise, particularly in applications incorporating deep-learning techniques. The inte-
gration of deep learning within web-based systems has opened up new possibilities and
yielded significant advancements in several areas. Here, we highlight a selection of applica-
tions that have successfully utilized deep-learning techniques within web-based systems.

Coronel et al. [22] tackle the COVID-19 health emergency by introducing a web ap-
plication that allows personnel access to a workspace to be controlled without physical
touch. Face detection and recognition have been implemented using deep-learning and
computer vision techniques. Singla et al. [23] also proposed a smart disaster manage-
ment system based on deep-learning methods for online decision making. The proposed
system helps disaster professionals identify the types of social media posts relevant to
disasters. This study organizes the tweets into need-based, availability-based, situation-
based, general, and irrelevant categories before visualizing them on a map, according to
their geographic location. In addition, Ismail et al. [24] presented a deep-learning facial
recognition web-based attendance system. The cutting-edge deep-learning face recognition
pre-trained models were coupled with the web environment and connected to an online
database for feature storage in the proposed attendance system.

3. Method

The proposed method makes use of a one-dimensional convolutional neural network
(1D-CNN), chosen due to its inherent compatibility with the structural characteristics of
portable executable (PE) files. The 1D-CNN is practical and recommended when dealing
with the PE dataset [2]. 1D-CNN also privileges from CNN characteristics [25]. Learning
local features and sharing parameters differentiate CNN to have a property when trans-
lating hidden features, showing its high capability of achieving challenging classification
tasks. Malware detection has been identified as a binary classification task, where benign
is one class and malware is another. This section outlines the fundamental aspects of the
1D-CNN architecture and delves into the intricacies of the proposed model variations.

3.1. One-Dimensional Convolutional Neural Network (1D-CNN)

In contrast to traditional Neural Networks (NNs), Convolutional Neural Networks
(CNNs) exhibit a crucial distinction: the integration of convolutional layers that effectively
capture spatial features. These convolutional layers utilize the concept of convolution,
where localized filters traverse distinct regions of the input space. This process facili-
tates the acquisition of localized features, serving as a vital mechanism in comprehending
complex data patterns. The CNN architecture, known for its multi-layer structure, encom-
passes distinct phases: the convolution phase, the activation phase, and the pooling phase.
These phases collaborate to generate successive feature maps evolving as data traverse
the network. Particularly relevant to our application, the 1D-convolutional layer handles
feature extraction. By strategically calculating the outputs of the neurons linked to localized
input regions, using dot products with a learnable 1D filter, this layer effectively captures
pertinent information. Subsequent fully connected layers subject the resulting vector to
linear transformations, subsequently modulated using non-linear activation functions to
introduce essential non-linearity crucial for accurate predictions

The proposed architecture of the 1D-CNN model for malware detection is illustrated
in Figure 2. This diagram showcases how the filter moves within the 1D-CNN mode,
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operating in one dimension along the time axis. Each filter corresponds to a series of certain
axes in the portable executable files.
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Figure 2. One-Dimensional Convolutional Neural Network (CNN) architecture. Each filter corre-
sponds to a series of certain axes in the portable executable files.

In Figure 2, m represents the number of filters, and ‘In’ is the input of features.
The network comprises two layers: a one-dimensional (1D) convolutional layer and a
fully connected one. In the initial layer, the kernel convolves over the input data in one
dimension, extracting features. The subsequent layer is used for classification prediction.
To enhance our approach, we will further explore the potential of the 1D-convolutional
layer in improving feature extraction for our malware detection model.

3.2. Architectures

As shown in Table 1, we proposed four different architectures. The details are pro-
vided below.

• MODEL1: 1D-CNN model with four hidden layers, three of them are 1D-convolutional
layers containing (16, 32, and 64 filters) with a size of 3, which is followed by one fully
connected layer with 128 nodes.

• MODEL2: 1D-CNN model with four hidden layers, three of them are 1D-convolutional
layers containing (16, 16, and 16 filters) with a size of 3, which is followed by one
fully-connected layer with 128 nodes.

• MODEL3: 1D-CNN model with four hidden layers, three of them are 1D-convolutional
layers containing (32, 32, and 32 filters) with a size of 3, which is followed by one fully
connected layer with 128 nodes.

• MODEL4: 1D-CNN model with four hidden layers, three of them are 1D-convolutional
layers containing (64, 64, and 64 filters) with a size of 3, which is followed by one fully
connected layer with 128 nodes.

Table 1. Detailed configuration of the 1D-CNN architectures.

MODEL1
Layer Architecture

Convolutional 3 × 1 × 16
Convolutional 3 × 1 × 32
Convolutional 3 × 1 × 64
Fully-connected 128

MODEL2
Layer Architecture

Convolutional 3 × 1 × 16
Convolutional 3 × 1 × 16
Convolutional 3 × 1 × 16
Fully-connected 128
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Table 1. Cont.

MODEL3
Layer Architecture

Convolutional 3 × 1 × 32
Convolutional 3 × 1 × 32
Convolutional 3 × 1 × 32
Fully-connected 128

MODEL4
Layer Architecture

Convolutional 3 × 1 × 64
Convolutional 3 × 1 × 64
Convolutional 3 × 1 × 64
Fully-connected 128

4. Experiments and Discussion

In this section, the presented results of comprehensive experimentation and subse-
quent discussions unfold. The introduced datasets underwent normalization for uniformity.
Following this, a range of established techniques are explored to establish a baseline for
comparison. The chosen evaluation metric is elaborated upon, capturing the essence of the
model assessment. The technical implementation details, encompassing tools, and dataset
specifics, are outlined. Finally, the core experimental outcomes are presented, highlighting
the accuracy of the developed models. This thorough analysis lays the foundation for
further discussions and the conclusions drawn from this study’s findings.

4.1. Datasets

Our developed model was implemented using different PE header datasets with
malware and benign files and was collected from different sources. These datasets were
downloaded from an open-source repository:

• Classification of Malware (CLaMP) dataset [26], which was obtained from Mendeley
data source, containing 5210 file samples, where 2722 are malware, and 2488 are
benign files, with 69 features.

• Benign and Malicious PE Files dataset [27] from the Kaggle community platform with
19,612 samples, where 14,600 are malware, and 5010 are benign, with 79 features.

• MalwareDataSet dataset [28] from the GitHub platform contains a total of 137,444 sam-
ples: 40,918 of them are malware, and 96,526 are benign, with nine features.

To make the data on the same scale, data normalization was applied to the datasets by
converting the numerical values in the dataset to a standard form using Standard Deviation
Normalization using the following formula:

xnormalized = (x − µ)/σ (1)

where µ is the mean, and σ is the standard deviation. The standard deviation can be
calculated using the following formula:

σ =

√
n

∑
i=1

(xi − x)2

n − 1
(2)

where n denotes the number of data samples , xi represents each of the values of the data,
and x represents the mean of xi. All datasets were split into 80% of the total dataset for
training and 20% for testing.
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4.2. Baseline Methods

In this section, an exploration of the baseline methods employed to establish a reference
point for the analysis takes place. The methods fall into two distinct categories: machine
learning methods and deep-learning methods.

4.2.1. Machine Learning Methods

The initial category of baseline methods centers on machine learning techniques.
The starting point involves the Decision Tree (DT), a rooted tree structure wherein internal
nodes signify attributes and leaf nodes correspond to class labels. The traversal of this tree
leads to the prediction of the class label of a leaf node, thereby allowing the visualization of
relationships amidst features. DT offer the benefit of intuitive visualization, enabling a clear
understanding of how different attributes contribute to the final classification. Subsequently,
an investigation into the Support Vector Machine (SVM) follows, i.e., an algorithm that
segregates data into multidimensional spaces via hyperplanes for the classification of
diverse categories. The SVM algorithm strives to maximize the margin between classes to
attain optimal classification outcomes. SVM presents the distinct benefit of maximizing the
margin between different classes. This enhances its ability to achieve optimal classification
results even in complex, multidimensional spaces by effectively identifying the most
informative data points, known as support vectors, to make accurate decisions at the
class boundaries.

4.2.2. Deep-Learning Methods

The second grouping of baseline methods delves into the realm of deep-learning
techniques. The approach undertaken adopts the foundational architecture introduced
in [18], which encompasses three deep neural network (DNN) models. These models are
categorized as follows:

• Two hidden layers contain 1024 and 32 nodes, named 2L-DNN.
• Four hidden layers contain 212−(2∗i) nodes in the ith hidden layer (1024, 256, 64, and

16 nodes), named 4L-DNN.
• Seven hidden layers contain 211−i nodes (1024, 512, ..., 16 nodes) in the ith hidden

layer, named 7L-DNN.

Additionally, exploration extends to the 1D-CNN with LSTM, a neural network ar-
chitecture harmonizing Convolutional Neural Networks (CNNs) with Long Short-Term
Memory (LSTM) networks. This amalgamation distinctly caters to recognizing long-term
dependencies, particularly advantageous for sequence prediction challenges. The experi-
mental approach incorporates the utilization of 1D-CNN architectures, complemented by
the integration of LSTM layers at the culmination of each model’s architecture.

4.3. Model Evaluation and Implementation

To assess the quality of the detection model, we computed the accuracy (ACY) eval-
uation metric on the test data, which is considered the most appropriate based on the
data used. The accuracy represents the proportion of correctly classified instances and is
calculated using the formula:

Accuracy =
Correct predictions number

Total prediction number
(3)

For implementation, the proposed methods were implemented using Keras in Python
and tested on three distinct datasets: Classification of Malware (CLaMP) [26], Benign and
Malicious PE Files [27], and MalwareDataSet [28]. These datasets have been frequently used
in prior research on malware detection. The proposed models were trained without pre-
training or fine-tuning steps, employing the Adam optimizer with batches of 64 shuffled
samples. Model convergence was achieved after 120 epochs, utilizing a learning rate
of 0.006, momentum of 0.9, and weight decay of 0.0005. The Exponential Linear Unit
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(ELU) was used as the activation function for all network layers. As we require binary
classification, the output layer employs the sigmoid activation function. To mitigate
overfitting, a dropout layer with a rate of 0.1 was incorporated after each layer.

4.4. Experimental Results

The experimental models are trained to learn feature representation and classify
malware in the executable file. Three different Deep Neural Network models are shown
in Table 2 and have been evaluated. Figure 3 summarizes the experimental results on the
three different datasets. All experimental models have shown comparative results, which
allowed us to obtain the baseline accuracies for our study. The 4L-DNN model outperforms
other DNN architecture by a significant margin on the accuracy metric, where 98.85% was
achieved on both datasets, Benign and Malicious PE Files dataset and MalwareDataSet,
and 98.37% was achieved on the Classification of Malwares dataset.

Table 2. Detailed configuration of the fully-connected architectures.

2L-DNN
Layer Nodes

Fully-connected 1 1024
Fully-connected 2 32

4L-DNN
Layer Nodes

Fully-connected 1 1024
Fully-connected 2 256
Fully-connected 3 64
Fully-connected 4 16

7L-DNN
Layer Nodes

Fully-connected 1 1024
Fully-connected 2 512
Fully-connected 3 256
Fully-connected 4 128
Fully-connected 5 64
Fully-connected 6 32
Fully-connected 7 16

The accuracy (ACY) metric was computed for four different 1D-CNN architectures to
evaluate the classification quality of the developed methods. The comparative results on
the three different datasets are demonstrated in Figure 4. It is noteworthy that due to the
nature of the portable executable file, the results varied based on the number of learnable
filters, whereas a network with fewer filters reforms much better. We believe the reason
behind that is due to the number of input features of the experimental dataset.

To investigate the abilities of our DL methods, we demonstrate their effectiveness
against three baselines, including DT, SVM, and DNN. Table 3 demonstrates the compara-
tive results. DL models achieve higher classification performance when compared to ML
models. One reasonable explanation is that due to a large amount of input features of the
Malwares dataset and Benign and Malicious PE Files dataset, the classification performance
of DL methods substantially outperforms the performance of ML methods. It is also worth
noting that because the MalwareDataSet dataset has nine input features, ML algorithms
perform much better compared to others.
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Figure 4. Accuracy chart for datasets with (1D-CNN) models.

Table 3. Accuracy values for datasets with ML and 1D-CNN-LSTM techniques.

Datasets SVM DT DNN 1D-CNN 1D-CNN-LSTM

Classification of Malwares 95.11 96.45 98.37 98.37 98.75
Benign and Malicious PE Files 96.13 98.65 98.85 99.01 98.80

MalwareDataSet 91.67 98.80 98.85 97.25 97.07

5. Web-Based System

The selection of a web-based framework for our malware detection system is under-
pinned by the desire to provide enhanced accessibility and usability to Windows users,
addressing the specific cybersecurity challenges faced by this user base. Our deployment of
a deep-learning model within a web interface seeks to bridge the gap between sophisticated
malware detection technology and the specific requirements of Windows users, thereby
catering to the evolving landscape of cyber threats. By embracing a web-based interface,
our approach offers several distinct advantages tailored to the needs of Windows users.
Foremost among these is the intuitive and user-friendly experience provided, a notable
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departure from traditional malware detection methods that often involve intricate setup
processes and specialized knowledge. This design choice ensures that even users with
limited technical expertise can benefit from our malware detection capabilities without
requiring extensive training or prior familiarity with cybersecurity practices. We chose
MODEL1 to deploy our malware detection web-based system due to its superior accuracy
results. The model is based on a 1D convolutional neural network (1D CNN) architecture
that takes as input a sequence of features extracted from a PE file and predicts whether
it is malicious or benign. The first step, before deploying the trained MODEL1 to our
malware detection web-based system, was to save the model in a proper format using
the save method. We saved the trained model into h5 format, which is a commonly used
format for saving and loading deep-learning models. Then, we started to develop the
front end, which involves creating a web-based interface that allows users to upload files
and view the results of the malware detection process. The front end of the system was
developed using HTML, CSS, and JavaScript. The design of the user interface included a
single web page with five main sections: Home, Upload, About the Project, Team Members,
and Contact Us Sections shown in Figure 5. The Upload Section is the main focus of the
webpage, providing users with a clear and simple interface to upload files. This section
includes a drag-and-drop area to drop files for upload with the addition of error handling
mechanisms, which include techniques such as validation checks by ensuring the input file
meets the required format before it is processed via the model. The back-end system for
the malware detection tool was implemented using Flask framework [29], a lightweight
web framework for Python that allows us to create a simple web page where the user
can upload a PE file and obtain an immediate classification result. With the help of the
pefile library (Note: https://github.com/erocarrera/pefile, accessed on 25 July 2023) that
is used to extract the header features of the uploaded PE files, including its size, entry
point, and imported functions. These features are then used to create a feature vector that
will be passed through several processing steps where it must be normalized to ensure
that all attributes have the same scale, and reshaped into 1D form. This is because the
1D CNN is designed to operate on sequences of data. Finally, the model makes a predic-
tion on the reshaped feature vector. The prediction is a binary classification, where the
two classes correspond to benign and malware. The output of the model is a probabil-
ity distribution. To obtain a single prediction, the maximum function was used, which
returns the index of the class with the highest probability. This index is then used to
determine the status of the file. The results of the model prediction are flashed to the
user interface. The code, data, and implementation of our web-based system are avail-
able at: https://github.com/LeenAlsharafi/MalwareDetectionSystem.git (accessed on
25 July 2023).

Comparison with Existing Web-Based Systems

Based on our literature review, there is no paper that has introduced a convolutional
neural network-based web-based malware detection system. So, we have compared our
malware detection web-based system with the other web-based systems mentioned in
the related work generally. Using an open-source, pre-trained deep-learning model, this
study [22] suggests a web-based attendance system that uses facial recognition. In contrast,
our proposed web-based malware detection system was trained with different machine
learning models and deep-learning models. Only bidirectional long short-term memory
network layers and a convolution neural network are used in the suggested model [23],
which introduced a web-based smart disaster management system that can analyze social
media messages to help in decision making. This web-based system and the one we suggest
are the first of their kind in the field. In paper [24], several experiments have been carried
out to evaluate the proposed system relying on training deep-learning models only unlike
our proposed system, which trained different machine learning models and deep-learning
models for evaluation purposes.

https://github.com/erocarrera/pefile
https://github.com/LeenAlsharafi/MalwareDetectionSystem.git
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Figure 5. The design of the user interface is simple and intuitive, with clear visual cues and minimal
distractions. The Home section of the webpage provides a brief statement as an introduction to the
system. The Upload section offers users a clear and simple interface to upload files. The Project
section presents more detailed information about the system. The Team Members section lists the
individuals who developed the system. Finally, the Contact Us section features a straightforward
form that users can complete to send a message to the system’s support team.

6. Conclusions

In conclusion, this paper has presented a novel and effective deep-learning approach
for the classification of malicious software based on portable executable files. The utilization
of a one-dimensional convolutional neural network (1D-CNN) is particularly suitable for
analyzing the header portions of these files, contributing to the development of an efficient
web-based malware detection system. While the results showcased the effectiveness
of our proposed method, it is essential to acknowledge certain limitations that warrant
consideration. First and foremost, the ever-increasing sophistication of malware presents
an ongoing challenge. Malicious actors continue to devise new techniques, obfuscation
methods, and evasion strategies, thereby rendering the task of malware detection more
intricate. Additionally, the reliance on header-based features, although effective, may not
capture the full spectrum of features that distinguish advanced malware from benign files.
Consequently, our current approach might encounter difficulties in identifying more subtle
and polymorphic forms of malware. As a direction for future research and extension of this
work, we intend to address these limitations by incorporating a broader and more diverse
range of malicious data into the dataset. This augmentation would enable our model
to learn from an increasingly representative set of malware samples, thereby enhancing
its ability to detect a wider array of malicious instances, including those belonging to
specific categories such as ransomware. Moreover, we envision the evolution of our
detection system to not only identify the presence of malware but also classify the detected
malware into distinct types or families. By incorporating more sophisticated classification
algorithms, such as ensemble methods or deep-learning architectures designed for multi-
class classification, we aim to provide deeper insights into the nature of the detected
malware. This extension would empower security professionals and system administrators
with more granular information about the threats they face, thereby facilitating more
targeted and effective countermeasures.
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