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Abstract: Global increasing demand in the need of energy leads to the development of non-conven
tional, high power energy sources. Supercapacitors (SCs) are one of the typical non-conventional
energy storage devices which are based on the principle of electrochemical energy conversion. SCs are
promising energy storage devices for better future energy technology. Increasing progress has been
made in the development of applied and fundamental aspects of SCs. Manganese oxide electrode
materials have been well studied; however, their capacitive performance is still inadequate for
practical applications. Recent research is mainly focused on enhancing manganese oxide capacitive
performance through the incorporation of electrically conductive materials and by controlling its
morphology to reveal a more active surface area for redox reactions. In this review, progress in the
applications of manganese oxide carbon-based materials towards the development of highly effective
SCs is briefly discussed. In this regard, manganese oxide carbon-based nanocomposites synthesis
methods and techniques used to approximate the capacitance of electrode materials are discussed.

Keywords: manganese oxide; carbon-based composites; electrochemical capacitors; supercapacitors
energy storage; nanostructures

1. Introduction

The global energy demand is rising with population growth and improved standards
of living [1]. The advance in technology, the fast growth of portable electronic devices,
and hybrid electric vehicles added to the urgent and increasing need for sustainable and
renewable high-power energy sources. Today, most of our energy needs are met by fossil
fuels. The use of fossil fuels as an energy source is causing environmental concerns,
particularly global warming, and the emission of toxic chemicals [2]. To address this
problem, the development of alternative energy storage/conversion devices with high
power and high energy densities is crucial. Thus, renewable and sustainable energy sources
are being extensively pursued [1,3,4].

Batteries, the most common electrical energy storage device, provide a suitable level of
power for numerous applications and needs of everyday life. Even though batteries store a
high amount of energy in a relatively small mass and volume, their slow power delivery,
as illustrated in a Ragone plot (Figure 1), is a challenge [4,5]. Thus, their application is hin-
dered in systems where fast storage with high power is needed. On the other hand, owing
to their higher power density, excellent durability, and fast charge-discharge processes,
electrochemical capacitors (ECs), or supercapacitors (SCs) have drawn tremendous atten-
tion as an alternative or supplement to batteries in energy storage systems [1,3,6–8]. Both
batteries and ECs standalone technologies lack the essential merits to meet the commercial
needs already established by fossil fuel consumption. To tackle these challenges, numerous
efforts have been made to combine high power density SCs with high energy density
batteries to form hybrid SCs (Figure 1) [1,4]. However, increasing the energy density of
SCs to approach that of batteries, or enhancing the power density of batteries to reach that
of SCs, comes at the cost of losses in the power of SCs and deteriorations in the energy of
batteries [4,9,10].
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Figure 1. Ragone plot of the power–energy density range for various electrochemical energy storage devices.

Depending on their energy storage mechanisms, ECs are categorized into the electrical
double layer (EDL), the redox capacitors, aka faradaic pseudo-capacitors, and hybrid
capacitors [1,11,12] (Figure 2A). The EDL capacitors store energy by charge separation
formed at the interface between the electrode and the electrolyte. During the charging
process, the positive surface of EDL capacitors attracts the anions of electrolytes, while the
cations accumulate on the negative electrode surfaces (Figure 2B). The EDL capacitance
depends on the specific surface area of the electrode, the type of electrolyte, and the effective
thickness of the double layer (the Debye length) (Equation (1)) [5].

Cdl =
ετε0 A

d
(1)

where Cdl is the capacitance of the EDL, ετ is the electrolyte dielectric constant, ε0 is the
dielectric constant of the vacuum, d is the effective thickness of the double layer, and A
is the electrode surface area. Since only ions which are accessible to the electrode surface
contribute to the capacitance, optimization of surface properties and conductivities of the
electrode materials are necessary for the development of improved ECs.

The development of improved SCs depends on the discovery of new electrode ma-
terials as well as a clear understanding of active ions in the electrolyte. Carbon-based
materials were first employed in the ECs by Becker in 1957 [5]. Since then, numerous
carbon-based materials with various components and structures have been synthesized
and applied as ECs. For most EDL capacitors, carbon-based materials with a high surface
area were frequently employed as electrode materials. These materials include activated
carbon, carbon nanotubes, graphene, mesoporous carbon, and carbon-fiber-based mate-
rials, etc. [1,6,13,14]. Among these carbon-based materials, owing to their high specific
surface area and long-term conductivity, single-layered graphene, and multiwalled carbon
nanotubes attracted much research attention [1,15–17]. However, due to the difficulties in
controlling pores size, active surface area, and surface chemistry of such electrodes, it is
very challenging to increase the specific and/or volumetric capacitances. In the effort to
enhance the energy densities of carbon-based ECs, metal oxides that undergo fast surface
redox (pseudocapacitive) reactions were explored and incorporated [8,12,17–20].
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Figure 2. Schematic of (A) types of supercapacitors and (B) electrical double layer.

In the faradaic pseudo-capacitors, the energy is mainly stored by a fast and reversible
faradaic redox reaction on the solid electrode surface, formed with electroactive materials
in the electrolyte. Charges accumulated in the pseudo-capacitor are strongly related to the
electrode potential (Equation (2)).

C =
dQ
dV

(2)

where C is the capacitance of the faradic pseudo-capacitor, Q is the quantity of charge,
and V is the potential. Unlike EDL, faradic pseudo-capacitors offer higher capacitance.
However, they suffer from low power density, poor electrical conductivity, and lack of
stability due to framework inflating during cycling. Significant efforts were made to find
alternative, new, and cheaper materials. Certain transition metal oxides and/or conducting
polymers with high capacitance were identified and applied as the electrode materials
in faradaic pseudo-capacitors [1,4,6,12,21]. To enhance ECs, the various research trends
either prepare composite electrodes by coating thin films of metal oxides or by coating
conducting polymers on substrates with high surface area, such as carbon nanotubes,
which additionally presents a high double-layer capacitance [4,14,21].

Amorphous hydrated ruthenium oxide (RuO2) has been known to exhibit an ideal
pseudocapacitive property, noticeably high specific capacitance, excellent reversibility
in a wide potential range, and much longer cycle life. Many literature reviews show
that the incorporation of RuO2 significantly improved the specific capacitance of carbon-
based materials [22–25]. For example, Yang et al. [26] prepared a hybrid nanostructure of
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hydrous RuO2 nanoparticles deposited on the surface of SWCNT/graphene composite
via a sol–gel process and low-temperature annealing and obtained a specific capacitance
of 988 F/g. Chen et al. [27] have obtained ultrahigh specific capacitance (1500 F/g) by
constructing 3D-RuO2-nanoporous gold hybrid composites. Das et al. [16] reported a
specific capacitance up to 1084 F/g for electro-deposited RuO2 onto high porous SWCNT
films. The specific capacitance for the RuO2 alone, calculated from the 2.5X porous film,
was 1715 F/g, which is close to the estimated theoretical maximum value (2000 F/g).
Despite the excellent performance, due to the high cost and toxicity, RuO2’s practical
application is limited [3,6,14,28]. Alternatively, manganese oxide is gaining tremendous
research attention as an active ECs electrode material. In this review, progress in manganese
oxide (Section 2) and its carbon-based nanocomposite materials (Section 3) application
towards the development of improved ECs is briefly discussed. A few figures from selected
papers are presented and briefly illustrated for better insights.

2. Manganese Oxide

The application of Manganese oxide (denoted as MnOx hereafter) in SCs was first
reported in 1999 [21,29]. Since then, MnOx has been widely studied as an active, low-cost,
and biofriendly ECs material [8,21,29,30]. Why are manganese or its oxides are so appealing
for SCs applications? First, manganese is a transition metal with five unpaired electrons,
which possesses the most oxidation states, including the highest oxidation state (VII) in the
entire periodic table [31]. Due to its unique electronic structure, manganese is extremely
redox-active, thus, it exists in several oxide forms (including MnO, MnO2, Mn2O3, Mn3O4
(MnO.Mn2O3), and Mn2O7). Second, Manganese is the most abundant transition metal
among oxides which are pseudocapacitive. Third, MnOx exhibits high theoretical capaci-
tance (1370 F/g for MnO2 for instance) with a wide positive potential window compared
to other transition metal oxides [31,32]. MnOx offers outstanding electrochemical behavior,
environmental compatibility, and excellent structural multiformity, combined with novel
chemical and physical properties [1,3,5–8,11–13,30–33].

The pseudocapacitance of MnOx electrodes arises from the redox reactions of the
oxide with ions in the electrolyte solution. Since manganese has several oxidation states,
there are plenty of opportunities for redox reactions involving the ion exchange between
MnOx and electrolytes, and between oxidation state transitions (such as Mn (III)/Mn (II),
Mn (IV)/Mn (III), and Mn (VI)/Mn (IV)) [21,33]. How the charges are stored is still a
question. According to recent studies, charge storages by MnOx electrodes are influenced
by several factors, such as the bandgap, point of zero charges, tunnel sizes of the electrode
material, work function, pH, and stability window of the electrolyte. The detailed charge
storage mechanism is still being studied using various techniques [21].

Various nanostructures of MnOx with improved electrical conductivity, novel mor-
phology, high surface area, and controlled pore sizes were developed, and their specific
capacitances were studied [21,34–41]. For instance, nanostructured MnO2 was prepared via
the sonochemistry method and yielded a specific capacitance of 344 F/g [6]. The specific
capacitance was significantly affected by the crystal structure of the electrode material.
Wei et al. [30] anodically electro-deposited MnO2 nanocrystals with three types of crystal
structures, i.e., ε-MnO2 (Figure 3A), rock salt-MnO2 (Figure 3B), and antifluorite-MnO2
(Figure 3C), by introducing complexing agents such as EDTA disodium salt and sodium cit-
rate salt. As illustrated in Figure 3D, the capacitive performance of the MnO2 nanocrystals
depends strongly on their crystal structures. Antifluorite-MnO2, which has a morphology
with few surface areas and similar chemistry compared to rock salt-MnO2 and ε-MnO2,
showed superior capacitive behavior. This behavior of antifluorite-MnO2 relies on its
crystal structure and defect chemistry. Defective antifluorite-MnO2 has a cubic structure,
which is less close-packed than the other two crystal structures. Defective antifluorite-
MnO2 possesses more octahedral vacancies than rock salt-MnO2. The underlying cause for
the superior capacitive performance of defective antifluorite-MnO2 may be the presence
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of more octahedral vacancies with a lower energy barrier, which allows faster intercala-
tion/deintercalation of cations such as Na+ during the charging-discharging process.
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Figure 3. Morphology and crystal structure of manganese oxide prepared from 0.3 M MnSO4 solution:
SE image of (A) without any complexing agents, (B) with 0.2 M EDTA, (C) with 0.3 M sodium citrate,
and (D) Specific capacitance of MnO2 nanocrystals derived from the cyclic voltammograms (second
cycle) at various cycling rates. Reproduced with permission from reference [30]. Copyright ©2008,
American Chemical Society.

Based on a 1-electron redox reaction per manganese atom, the theoretical specific
capacitance of MnO2 was estimated to be 1370 F/g [8,20,38,42]. Such a maximum value
can only be achieved using ultrathin films of MnO2. Moreover, due to the high ion/charge
transfer resistance and poor conductivity of pure MnO2, the release and utilization of its
high theoretical capacitance are difficult [20,21,43]. To obtain an improved SC, significant
efforts were made to combine pseudocapacitive MnOx with an electrically conductive
substrate or supportive backbones [21]. In Section 3 of this review, applications of hybrid
electrodes, comprising MnOx, electrically conductive components, and carbon-based ma-
terials as the supportive backbone for the development of improved supercapacitors are
briefly explained.

3. Carbon-Based Material/MnOx Composite

Carbon-based materials and MnOx alone have been investigated for ECs use [21,36,44–48].
Carbon-based materials, in various forms and textures, have a high specific surface area
and outstanding electrical conductivity [49,50]. MnOx, although suffering from poor
electrical conductivity and less tunable specific surface area, displays higher ECs compared
to carbon-based materials [6,51]. By combining these two materials while maintaining
their merits and/or with generated synergistic effects, many papers are emerging showing
improved specific capacitance [21,52]. In the hybrid electrode, carbon-based materials are
used as a supporting backbone and exposed large specific surface area for MnOx deposition,
enhanced electrical conductivity, increased mechanical strength, and provide channels
for fast charge transport, while MnOx is responsible for the charge storage [20–22,52]. To
obtain the optimum electrochemical performance from the hybrid materials, controlling
their physical properties, composition, structural feature, and morphology along with their
interfaces is of crucial importance. In this section, we briefly discussed the applications of
various carbon-based materials/MnOx composites for the development of better specific
capacitive SCs.
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3.1. Activated Carbon/MnOx Composite

Activated carbon (AC) is a form of carbon with small, low-volume pores that increase
its surface area. Due to these outstanding properties, AC has been used as a support for
metal oxides, such as MnO2, in ECs applications. For instance, Huang et al. [2] fabricated a
porous nano-MnO2 decorated bamboo-based AC through an in situ preparation method
and reported a specific capacitance of 221.45 F/g at the current density of 1 A/g. The
specific capacitance was enhanced by the synergistic effect of the two components, i.e.,
the bamboo-based AC displayed an extraordinary 3D microstructure and high absorptive
capacity, while the nano-sized MnO2 with a large surface area offered many sites for
the redox reaction. Jang et al. [53] combined AC and MnO2 to form AC/MnO2 hybrid
electrode. MnO2 was deposited on the AC electrode surface by dipping the electrode
into an aqueous solution of permanganate. The as-prepared hybrid electrode yielded a
specific capacitance of 290 F/g. Controlled urchin type MnO2 microspheres were electro-
deposited on the conductive graphene/AC composite to obtain a 3D graphene/AC/MnO2
flexible electrode, which resulted in a high area-specific capacitance [54] (Figure 4). As
illustrated in Figure 4A, graphene/AC/MnO2 composite electrodes were prepared in two
steps: (i) AC particles were bonded to graphene 2D sheets using self-assembly method by
vacuum filtration, and (ii) MnO2 nanostructures were electro-deposited on graphene/AC
working electrodes at various reaction times. The high-magnification FE-SEM images of
graphene/AC/MnO2 prepared at 1200 s reaction time were displayed in Figure 4B–D. The
TEM image of graphene/AC/MnO2-1200 s was shown in Figure 4E. MnO2 microspheres
were uniformly dispersed in flexible graphene/AC substrate. The area-specific capacitances
of the electrodes were displayed in Figure 4F. Graphene/AC/MnO2-1200 s showed the
highest area-specific capacitance (1231 mF/cm2). This high capacitance is due to the
synergistic effects among the graphene, porous AC, and high theoretical capacitive MnO2.
The electro-deposition reaction time played a great role in controlling the morphology of
MnO2 microspheres, and hence, the ECs performance of the electrodes. The results suggest
the broad future applications of the composites in flexible and wearable electronics.
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Wang et al. [51] synthesized a MnO2/AC composite with high electrochemical perfor-
mance via a grafting oxidation method, which resulted in a specific capacitance of up to
332.6 F/g at a scanning rate of 2 mV/s. Qiu et al. [35] electro-deposited MnO2 over AC pa-
per (ACP) to form MnO2/ACP composite. The as-prepared composite showed an excellent
capacitive performance (specific capacitance of 485.5 F/g, calculated from discharge curve
with a current density of 2.0 A/g). Cheng et al. [55] prepared a MnO2/ACP composite by
activating commercial carbon paper (ACP) using potassium dichromate lotion and then
anchored MnO2 nanoribbons onto ACP via an electro-deposition route. A specific capacity
as high as 757.0 F/g was obtained. This high specific capacitance was probably due to the
enlarged specific area and improved electronic conductivity of the as-prepared composite.
All the studies suggest that MnO2 integrated with AC is a promising electrode material for
the development of efficient SCs.

3.2. Carbon Nanotubes/MnOx Composite

Since its discovery by Iijima in 1991 [56], carbon nanotubes (CNT) have been exten-
sively investigated. CNT comes in various forms, the most dominant being single-walled
(SWNT) and multi-walled nanotubes (MWNT). Due to their excellent mechanical prop-
erty, good electrical conductivity, unique pore structure, and chemical stability, carbon
nanotubes have been applied in ECs as electrode materials [18,45,57–70]. The specific
capacitance of CNT electrodes that have been reported is relatively lower than that of
an AC electrode with a larger surface area [11]. To enhance its capacitance, CNT has
been combined with MnOx to form CNT/MnOx composite for SCs applications. For
instance, Lee et al. [8] reported LbL-MWNT/MnO2 ultrathin film electrodes through a
layer-by-layer (LbL) assembly of functionalized MWNTs and continuous redox deposition
of MnO2 onto MWNTs. As noted above, the MWNT network created fast electronic and
ionic conducting channels in the presence of an electrolyte, and the coatings of MnO2 on
the network provided high volumetric capacitance (246 F/cm3). Hou et al. [60] constructed
a ternary nanocomposite film comprising of MnO2, CNT, and a conducting polymer
(Figure 5A). Functionalized few-walled CNT (fFWNTs) (Figure 5B) were ultrasonically
mixed with MnO2 precursors to form the hierarchical MnO2 nanosphere (Figure 5C) on
the CNT network. MnO2 loadings on fFWNTs were controlled by varying the ratio of the
two components.
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Figure 5. (A) Sketch of MnO2/CNTs/PEDOT-PSS ternary composite formation; (B) TEM image
of fFWNTs, (C) TEM image of direct mixing of MnO2 nanospheres with fFWNTs, and (E) TEM
and (F) SEM images of PEDOT-PSS dispersed MnO2 nanospheres in situ grown on fFWNTs; (D)
Specific capacitance of MnO2/fFWNT/PEDOT-PSS ternary composite (blue), MnO2/PEDOT-PSS
composite (red), and MnO2 film (black) at different charge/discharge current densities. Reproduced
with permission from Reference [60]. Copyright ©2010, American Chemical Society.

The morphology and microstructure of a sample composite, which comprises of
conducting polymer is depicted in Figure 5E,F. The MnO2 nanospheres have uniform
“crumpled paper ball” morphology (Figure 5E inset) with small “wormhole-like” pores
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(Figure 5F inset). Although a unique hierarchical MnO2 with no aggregations was grown
on a continuous fFWNTs network, the exact growth mechanism is not yet completely
understood. The electrochemical performance of the nanocomposite film, evaluated by
cyclic voltammetry, yielded a specific capacitance of up to 200 F/g (Figure 5D). It was
noticed that the individual components of the film greatly contributed to the enhancement
of the specific capacitance. Wang’s group [20] synthesized a superior supercapacitor
nanocomposite based on porous CNTs, i.e., MnO2/PCNTs/MnO2. The nanocomposite
displayed a specific capacitance as high as 341.5 F/g at 2 mV/s and 214.3 F/g at 100 mV/s.
This high capacitance was due to the presence of massive nanopores on the walls of PCNTs
(6 nm), which led to the loadings of a large amount of MnO2 nanoparticles (2.42 nm), both
in the nanocavity and on the surface of PCNTs as electroactive sites. The results imply a
new designing strategy for supercapacitor materials with outstanding performance. Qian
et al. [71] synthesized aqueous inorganic ink comprised of hexagonal MnO2 nanosheets
using a simple chemical reduction method. A flexible electrode for capacitive energy
storage was obtained by printing the MnO2 ink onto commercially available A4 paper,
which was pretreated with MWCNT. The as-prepared electrode yielded a maximum specific
capacitance of up to 1035 F/g. This high capacitive property of MnO2 ink sets a stage for
its candidacy for the large-scale production of high-performance SCs in the future.

3.3. Carbon Spheres/MnOx Composite

The use of carbon spheres (CS) in ECs and capacitive flowable suspension electrodes
was investigated [19,72,73]. Active materials with a spherical morphology are highly
desired in flowable electrodes. CS with small diameters are a potential candidate for
better ECs performance, owing to their highly accessible surface area and excellent flow
characteristics. To date, only a few papers reported the preparation of low-sized CS
and tested for capacitive flowable electrodes. Zhang’s group prepared highly porous
monodispersed CS with a very high specific surface area (2900 m2/g) and narrow pore size
distribution (<3 nm) and reported a specific capacitance of 168 F/g. The CS was synthesized
using emulsion polymerization of resorcinol-formaldehyde, followed by carbonization and
CO2 activation [73]. The mass loading of MnOx and capacitive performance is dependent
on the size of the CS. Small-sized CS was preferred, to obtain MnOx/CS with a high specific
surface area. Wang’s group hydrothermally coated carbon microspheres (≈1 µm diameter)
with a whisker-like MnO2 and maintained a relatively high surface area (142.46 m2/g).
The as-prepared MnO2/CS composite yielded a capacitance of about 180 F/g at a current
density of 1 A/g for the charge/discharge measurements [42]. However, when CS with
a smaller diameter was used, the MnO2/CS composite surface area was much higher
(269.2 m2/g) (Figure 6). The resulting specific capacitance of MnO2/CS was 252 F/g (at a
sweep rate of 2 mV/s for CV measurement) [74]. Here, a facile, cost-effective preparation
method was used to create Carbon@MnO2 core-shell hybrid nanospheres for supercapacitor
electrode materials. The schematic of the preparation process is depicted in Figure 6A. The
bare CS with smooth surfaces was not aggregated (Figure 6B). This property led to the
formation of a uniform flower-like MnO2 shell anchored on CS surfaces. As noticed in
Figure 6C,D, the thickness of the MnO2 shell is also uniform on CS surfaces. The lattice
spacing indicated the crystalline structure of the shell was δ-MnO2 (Figure 6D inset).

Yang et al. [75] developed a facile soft templating strategy for the synthesis of hol-
low spheres of nanocarbon by hydrothermal process. Then permanganate (MnO4

-) was
incorporated into the hollow CS to grow nanocrystalline MnO2 on the carbon surface,
resulting in the hollow carbon-MnO2 hybrid particles. Xiong et al. [76] fabricated novel
honeycomb MnO2 nanospheres/carbon nanoparticles/graphene (MnO2/C/G) composites
by freeze-drying method. The carbon nanoparticles in the composite effectively prevented
graphene from restacking and agglomeration while MnO2 nanospheres were dispersed
on the graphene surface (Figure 7). As depicted in Figure 7a,b, MnO2 nanospheres with
a honeycomb-like structure and size of about 100 nm are formed by the self-assembly of
MnO2 nanoplatelets. The images of the MnO2/C/G composite (Figure 7c,d) revealed that



Solids 2021, 2 240

the honeycomb MnO2 nanospheres were covered by wrinkled and transparent graphene
(G) (indicated by red arrows) with few exposed surfaces. Carbon nanoparticles (C) in the
composite were not observed in the images, as they are probably covered by graphene.
However, their presence in the composite was revealed by EDX (Figure 7e). TEM images
(Figure 7f) of the composites clearly showed the presence of graphene (wrinkled and
folded), honeycomb MnO2 (green rounds), and carbon nanoparticles (blue rounds). MnO2
and carbon nanoparticles were well dispersed on graphene surfaces without forming
aggregation. As a result, the composite showed an improved specific capacitive property
(255 F/g at a current density of 0.5 A/g).
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Figure 6. (A) Schematic illustration of the fabrication process of the carbon@MnO2 nanospheres.
(B) SEM images of bare carbon nanospheres. (C,D) Typical TEM images of carbon@MnO2 at different
magnifications; inset of (D) is the HRTEM image of a MnO2 nanosheet. Reproduced with permission
from [74]. Copyright ©2014, Elsevier B.V.
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Ranjusha et al. [77] presented the synthesis of carbonized MnO2 nanowires, using
carbon nanobeads to fabricate a rechargeable electrode with a large surface area, high
power, and energy density for supercapacitor or battery applications. The electrodes
showed a specific capacitance as high as 1200 F/g. The high surface area and conductivity
of the materials contributed to the enhancement of mass-specific capacity. The practical
application of the thin films, tested in a working model of a button cell, exhibited a
capacitance of about 1.2 F/g, an energy density of 96 Wh/kg, and a peak power density of
32 kW/kg, suggesting the future potential application of such electrodes.

3.4. Carbon Nanofibers/MnOx Composite

Fiber-based SCs have drawn tremendous attention due to their very low volume,
high flexibility, and weave-ability of the fibers, which are desired for the development of
high-performance electrodes. Carbon nanofibers (CNFs) have been applied as support
for MnOx [78–80]. CNFs with a smaller diameter are desired for higher loading of MnOx.
For instance, Zhang et al. [58] reported the design and fabrication of hierarchically struc-
tured MnO2/graphene/CF and studied its practical application in SCs. Wang et al. [81]
demonstrated the construction of a novel high-performance asymmetric supercapacitor
based on freestanding MnO2/CNF hierarchical composites and activated carbon nanofibers
(ACNF) as the (+) and (−) electrodes, respectively, in an aqueous electrolyte solution of
Na2SO4 (Figure 8). The electrochemical measurements indicated that the as-prepared
supercapacitor can yield a specific capacitance as high as 56.8 F/g, with a high energy
density of 30.6 Wh/kg at a power density of 200 W/kg. The results suggest an effective and
convenient route for the construction of asymmetric SCs based on freestanding electrode
materials for high-energy and high-power density systems.
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Figure 8. Illustration of the as-assembled asymmetric supercapacitor cell with MnO2/CNF com-
posite as positive electrode and ACNF as a negative electrode in mild Na2SO4 aqueous electrolyte.
Reproduced with permission from [81]. Copyright ©2013, Elsevier Ltd.

Bao et al. [82] demonstrated the design and fabrication of a novel flexible nanoar-
chitecture by a facile coating of ultrathin MnO2 films onto highly electrically conductive
Zn2SnO4 nanowires grown radially on carbon microfibers (CMFs) to achieve high specific
capacitance, high-energy density, and long-term life for supercapacitor electrode appli-
cations. A specific capacitance of up to 642.4 F/g was observed. Xu et al. [83] designed
and fabricated a flexible asymmetric supercapacitor (ASC) with high energy density using
flower-like Bi2O3 and MnO2 grown on carbon nanofiber (CNF) paper. Chen et al. [84]
fabricated nanoflake MnO2@Carbon fiber-coaxial nano cables by a facile electrochemical
deposition-oxidation route. The as-prepared material, when used as an electrode, resulted
in a specific capacitance of up to 511.8 F/g. Dang et al. [85] reported self-grown MnO2 on
carbon fiber paper via a facile redox reaction, which was constructed by an interconnected
ultrathin nanosheets array. The CFP acted as both a supporting scaffold and a reducing
agent for MnO2 growth. The as-prepared MnO2/CFP composite, when used as an electrode
material, resulted in a specific capacitance of up to 713.7 F/g (0.5 A/g). A composite textile
electrode with high specific capacitance (1516 mF/cm2) was fabricated by introducing
graphene/MnO2 into activated carbon fiber felt (ACFF) [86].
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3.5. Graphene/MnOx Composite

Owing to their high specific surface area (SSA), graphene and CNT are frequently
employed in hybrid electrodes. However, their practical application was hindered due
to the presence of high contact resistance between graphene–graphene, CNT–CNT, or
graphene–CNT. Besides, these electrodes suffer from the entanglement of CNT and the
stacking of graphene. Recently many efforts have been made to combine MnOx with
CNTs and/or graphene to form ternary composites. Hybrid electrodes made of these
composites showed higher specific capacitance and better cycle life compared to the
individual components [87]. Yan et al. [7] synthesized a graphene–MnO2 composite
through the self-limiting deposition of nanoscale MnO2 on the surface of graphene under
microwave irradiation (Figure 9).
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Figure 9. Schematic illustration for the synthesis and electrochemical performance of graphene–
MnO2 composite. Reproduced with permission from [5]. Copyright ©2000, Elsevier Science Ltd.

The as-synthesized nanostructured graphene–MnO2 hybrid materials were used to in-
vestigate the electrochemical behaviors. The graphene nanosheet in the composite provided
conductive support and a large surface area for the deposition of nanostructured MnO2.
The graphene–MnO2 composite showed almost three times higher specific capacitance
(310 F/g) than that of pure graphene (104 F/g) and birnessite-type MnO2 (103 F/g). The
increase in specific capacity of the graphene/MO2 composite might be due to the excellent
interfacial contact area between graphene and MnO2, and the high electrical conductivity
of graphene. Lo et al. [1] studied the effect of graphene-to-CNT ratio, Mn content, and
polyvinylidene fluoride (PVDF) on the capacitive behavior. They confirmed the bonding
between amorphous MnO2 and graphene-based materials and explained its potential for a
significant reduction of polymer binding content. Their work suggests a valuable building
block for the future development of composite electrodes for SCs. Overall, the specific
capacitance comparison of some of MnOx/carbon-based materials are compiled in Table 1.
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Table 1. Specific capacitance comparison of some of carbon-based/MnOx composite.

Material C/Fg−1 PD (kW/kg) ED (Wh/kg) C (Retention Cycle) Ref.

α-MnO2 167 - - 89% (350) [3]
Layered Structure MnO2 344 (5 mVs−1) - - - [6]

MnO2 nanospheres 299 - - 97.6% (1000) [37]
MnO2 nanoflower array 314 - - - [38]
Bilayer MnOx/Ni foam 559.5 - - - [36]

α-MnOx/CNTs/Ni 415 (5 mVs−1) 79% (1000) [11]
MnO2/GNS/CNT 367 - - 83% (3000) [87]

MnO2/VACNTs 642 (10 mVs−1) - - - [70]
MnO2/porous CNT/MnO2 341.5 (2 mVs−1) 98% (6000) [20]

Mixed nanocomposite (MWCNT/PPy: MnO2) 365 - 44 - [12]
Co-axial (MWCNT/Ppy/MnO2) 270 - 36 - [12]

MWCNT@MnO2@Ppy 272.7 - - - [46]
LbL-MWNT/MnO2 ** 246 (1000 mVs−1) - - - [8]

MnxOy/MWCNT hybrid 757 - - 100% (10,000) [62]
CNTs-MnO2/rGO-PVDF 276.3 4.83 49.1 83% (1000) [47]

δ-MnO2/SWCNT * 964 a 8.15 × 10−4 b 3.18 × 10−5 - [64]
CNT/MnO2 hybrid 300 a 2.5 × 10−3 b 2.6 × 10−5 - [61]

MnO2 nanosheets/MWCNT 1035 81 25.3 98.9% (10,000) [71]
MnO2/CNT/CP 200 - - >99% (1000) [60]

Graphene-CNT/MnO2 486.6 - 24.8 - [68]

MnO2/ACP 485.4 - - 85% (2000) [35]
Bamboo-Based AC@MnO2 221.45 (5 mVs−1) 89.29% (1000) [2]

AC/MnO2 290 - - - [53]
MnO2/AC 332.6 (2 mVs−1) 99.99% (2000) [51]

MnO2/ACP 640.8 (10 mVs−1) - - - [55]

MnO2@CS 150 9.627 8 74.4% (1000) [19]
MnO2/hollow CS 227.5 - - 96% (5000) [72]

Highly porous CS film 168 - - 95% (5000) [73]
MnO2/CS 307.6 - - 96.6% (1000) [42]

Carbon@MnO2 nanospheres 252 (2 mVs−1) - bb 3.7 × 10−4 74% (2000) [74]

MnO2 NW/C nanobead 1200 32 96 - [77]
CNP/MnO2 nanorods 800 (5 mVs−1) 14 4.8 97.3% (10,000) [79]

MnO2/CNF 56.8 20.8 30.6 94% (5000) [81]
Zn2SnO4/MnO2/CMF 621.6 (2 mVs−1) 32 36.8 98.8% (1000) [82]
Nanoflake MnO2@CF 511.8 (2 mVs−1) - - - [84]

MnO2/CFP 713.7 - - 86.8% (1200) [85]

Graphene/MnO2 310 (2 mVs−1) - - 88% (15,000) [7]
MnO2/CNP/Graphene 255 (2 mVs−1) - - 83% (1000) [76]

GR-MnO2 274 (10 mVs−1) 0.225 23.9 96% (1000) [88]
[RGO/MnO2]10 446 (5 mVs−1) - - 96% (1000) [89]

Mn3O4/rGO ** 52.2 aa 0.018 bb 3.13 100% (10,000) [48]
GN/AC/MnO2 ** 1231 aa 0.02 bb 2.7 × 10−4 82.8% (10,000) [54]

Graphene/MnO2/ACFF * 1.516 - - 100% (5000) [86]
N-rGO/CNT-MnO2 film 418 (50 mVs−1) 12.526 45.72 - [18]

Specific capacitance (C), Power density (PD), Energy density (ED), * the unit is Fcm−2, ** the unit is Fcm−3, a the unit is Wcm−2, aa the unit
is Wcm−3, b the unit is Whcm−2, bb the unit is Whcm−3.

3.6. Other Materials/MnOx Composite

Other MnOx-based materials are also being studied for improved SCs. For example,
Mahmood et al. [90] have reported high specific capacity by synthesizing ultrathin MnO2
nanowire-intercalated 2D-MXenes. It was noted that the multiple redox sites provided
by MnO2 nanowire and high conductivity of MXene played synergistic roles to enhance
the overall performance of the SCs. Ma et al. [91] used a simple liquid phase reaction
method to prepare a stable MnO2 nanowires@NiCo-layered double hydroxide (LDH).
Uniform NiCo-LDH nanosheets were grown on an ultralong MnO2 nanowires surface.
They observed a specific capacitance as high as 708 F/g at 1 A/g. Sun et al. [92] applied
oxidized carbon fibers as a support substrate for MnO2 flowers-like sponge layer growth,
followed by deposition of high-density grape-like Mn3O4 nanospheres, which expanded in
the MnO2 layer. The composite (MnO2/Mn3O4) resulted in very high specific capacitance
(1709 F/g at 1 A/g). Such study and results open a wide door of opportunities for the
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preparation of hybrid carbon-based manganese oxide materials in a simple and tunable
oxide nanostructure for future applications, not only in SCs, but in other areas such as
electrocatalysis, lithium batteries, and wastewater treatments.

4. Summary and Future Perspective

Over the past two decades, the electrochemical performance of MnOx-based super-
capacitor electrodes has improved compared to earlier studies where MnOx showed a
specific capacitance of less than 200 F/g, with low retention at high current densities or scan
rates [34,44,93]. Significant advances were achieved by investigating and incorporating
carbon-based materials, which improved the accessible large surface area and active sites
for redox reactions. Most MnOx/carbon-based composites yielded a specific capacitance
higher than 500 F/g [36,55,70,71,77,79,82,84,85]. However, only a few articles reported a
specific capacitance higher than 1000 F/g [71,77].

This review briefly summarized the progress of the available structural designs for
MnOx/carbon-based materials in the ECs system. By careful assessment of various forms
of carbon-based materials, the effect of size, structure, and morphology of the substrate on
the capacitance of MnOx/Carbon hybrid supercapacitor electrodes are shown. Of all the
assessed nanostructures, ultrathin films of MnOx with few nanometers thickness deposited
on conductive substrates showed high specific capacitance (close to the theoretical values),
due to the exposed electrochemically active sites of the substrates and the shortening
of charge/electron transportation routes [41,43,71,77]. To attain these high capacitances,
very low loading masses of MnO2 are required, which are not practical yet. Extensive
efforts are still needed to improve the electrochemical utilization of MnOx, especially
in cases where high mass loading is desired. For the overall performance of the ECs
electrode, the choice and modification of the substrates and/or electrically conductive
components are equally important. Besides, the selection of counter electrodes, current
collectors, electrolytes, membrane separators, and handling/packaging of ECs cells need
to be thoroughly examined.

Even though a significant effort has been made thus far, the full potential of MnOx/
carbon-based materials electrodes for SCs applications has not been realized. We are still far
from achieving the theoretical capacitive values. However, as briefly outlined in the present
review, a solid foundation for future technological advancements has been corroborated. It
is anticipated that the above research findings might provide some technical insights to
enhance the electrochemical performances of MnOx/carbon-based materials [92]. Based on
the wide applications of MnOx and the scalability of carbon-based materials, it is believed
that MnOx/carbon-based hybrid electrodes offer promise for the development of high
energy density with high power SCs.
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