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Abstract: By a molecular dynamics (MD) simulation method which ensures the system will be under
hydrostatic pressure, dynamic and elastic properties of glassy metatstable states are investigated. In
the MD method, the simulation cell fluctuates not only in volume but also in shape under constant
hydrostatic pressure and temperature. As observed in experiments for many glass forming materials,
metastable states in our simulation show a sharp increase in mean-square-displacement at certain
temperatures TD. Dynamic heterogeneity is also observed at TD. Elastic properties are calculated
from stress and strain relations obtained from the spontaneous fluctuation of internal stress tensor and
simulation cell parameters. Each investigated state shows distinctive dynamics while maintaining
solid-like elastic properties. The elastic properties stay intact even above TD. It has been shown that
the rigidity and mobility of glassy metastable states are compatible under dynamic heterogeneity.
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1. Introduction

Virtually any material can be formed as a glass under the proper experimental condi-
tions [1]. Thus, there is no apparent reason to excluded monodispersed simple molecular
models as an exception. A simple model has an advantage that the knowledge of thermo-
dynamic equilibrium states and phase transitions among them are abundant, making them
a preferred reference state for a theoretical description. However, molecular dynamics
(MD) simulations of glassy states to date frequently use binary models [2–4]. These binary
mixtures are made with size ratio which cannot form a crystal and size polydispersity
larger than the value where the solid–fluid co-existence region disappears in the phase
diagram [5]. The state of lowest energy of such binary mixtures is not known. In addition,
most of these simulation are constant volume studies.

There are several reasons why simulations at constant pressure are interesting. First
of all, most of the experiments are done under constant pressure at both ambient and high
pressures [6]. Second, inherent structure excitation profiles are steeper at constant pressure
than at constant volume [7]. This suggests that glassy states might be confined in narrow
basins for long enough to permit a through analysis at constant pressure. It is known that
constant pressure MD simulations at high pressures lead to sharper phase transitions and
the metastable states possess distinct physical properties, not only for soft spheres [8,9],
but also for molecules with anisotropic shape [10,11]. In these systems with anisotropic
constituents, multiple metastable states of hexatic smectic B (HexB) liquid crystal with
discrete values of order parameter appear. At temperatures close to the 1st order phase
transition to smectic A phase, barrier crossings from one HexB metastable state to another
is often observed [11]. At lower temperatures, these distinct metastable states only show
oscillation around the local minima [10].

Amorphous solids of monodispersed Weeks-Chandler-Andersen (WCA) spheres [12]
trapped in metastable states at high pressure was first reported in [13]. The MD simulation
method used in the above study is a constant hydrostatic pressure method where not only
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the size but also the shape of the system change to avoid non-hydrostatic stress under
constant pressure. This method was developed due to the fact that systems of anisotropic
molecules give rise to non-hydrostatic stress not only in constant volume simulations,
but also in constant pressure methods [14]. It has been shown that not only quantitative
deviation but also structural transformation occurs by non-hydrostatic stress. A series
of stress-controlled MD simulation methods have been developed to avoid such artifacts
feigned by non-hydrostatic stress [15–18]. Furthermore, it has recently been noticed that
residual shear stress exists near inherent structures in constant volume MD simulations
as a direct consequence of the imposed boundary [19,20]. These studies demonstrate that
glassy states are also prone to non-hydrostatic stress and more broadly to system size
confinement effects.

Since glass is ubiquitous, it is difficult to distinguish the characteristics of the material
itself and those common to the glassy states. By investigating several different metastable
states obtained by the same monodispersed system, we aim here to make clear the relation
of diffusion dynamics and elastic properties. All particles interact through the same
pair-wise potential, thus the differences spontaneously emerge solely from the state of
particle assemblage.

It has been experimentally revealed that a wide range of glass forming materials show
a sharp increase in mean square displacement (MSD) near the glass transition temperature;
from proteins and biologically relevant systems to simple liquids as othroterphenyl and
selenium [21–27]. In this paper, we pick up several metastable states of the same model
system which show a sharp increase in the MSD and investigate not only the dynamics
but the elastic properties of those states in isothermal–isobaric ensemble. In Section 2,
dynamics properties are presented. In Section 3, elastic properties of the same metastable
states are presented. In Section 4, we summarize and discuss future directions. Data are
presented in reduced units. For simulation details, see Appendixes A.1–A.3.

2. Dynamic Properties

Several metastable states which show a sharp increase in MSD are chosen for simu-
lation of a larger system size N = 5376 to investigate the stability, dynamics, and elastic
properties. The system size investigated in this paper is four times larger than the origi-
nal work [8,9]. All the states have distinctive values of densities and radial distribution
functions. In these larger systems, it is confirmed that the metastable states are “stable
enough” to warrant further investigation. We use the same label of each state as in the
original report [8,9] for clarity. In the first subsection, we observe the temperature depen-
dence of dynamic properties and show that MSD drastically increase beyond an inflection
temperature TD. Next, we observe the MSD of each state one by one, since characteristics
of each state are drastically different. In the final subsection, the dynamical heterogeneity is
discussed. For comparison, properties of crystals, and thermodynamic equilibrium liquids
as well as supercooled liquids, are calculated in addition to the glassy metastable states.

2.1. Temperature Dependence

In Figure 1, the temperature dependence of the diffusion coefficient D (time average of
MSD) for different states is shown. The melting temperature is Tm = 153 in the investigated
system. For non diffusive states, the MSD is often stepwise/oscillatory as shown in the
following subsections. The determination of D will be difficult in such situation. In
principle, D should be determined in a time scale (or length scale) where MSD becomes
linear against time. Nevertheless, we make a linear fit to the MSD data against time shown
in the MSD figures in the following Sections 2.2–2.5 and calculate D (except otherwise
stated). Because of this strong non-linearity, especially at low temperatures, the variance of
D are temperature dependent and larger for lower temperatures in general. When a clear
change in the nature of MSD occurs during a simulation at a certain fixed temperature,
the values of MSD after that clear change are only used for calculating D. Such a situation
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occurs in state J at T = 102, 106, and 118 (see Section 2.3). See Appendix A.4 for calculation
details of MSD.
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Figure 1. Temperature dependence of diffusion coefficient of states G (▼), J (◻), M (×), O (+), and
crystal (●), with that of supercooled liquid (○) and thermodynamic equilibrium liquid (⊗) for system
size N = 5376.

For the metastable states, an inflection temperature is observed where D increases
drastically. We define the temperature where D starts to increase drastically as TD and use
it as a reference temperature to denote the dynamical change. In experimental findings,
TD is correlated to the glass transition temperature [21–27]. For crystals at temperatures
T ≤ 130, slight diffusion D < 4.0× 10−7 is observed. However, in this temperature range, no
particles escape from the region beyond the 1st nearest neighbor in a certain time duration
(see Figure 2). For temperatures T > 135, hopping occurs in the crystal. However, it occurs
in a spatially isotropic manner in contrast to the metastable glassy states which often show
anisotropic hopping. Note that the diffusion resulting from the hopping dynamics in
crystal become notably large near the melting transition at T = 153.
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Figure 2. Temperature dependence of fraction of mobile particles of states G (▼), J (◻), M (×),
O (blue +), and crystal (●), and supercooled liquid (○) measured in time duration of ∆t = 1000 for
system size N = 5376.
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In Figure 2, the temperature dependence of the fraction of mobile particles for each
state is shown. The number of particles which move more than the average excluded
volume length dc (effective core) in time duration ∆t = 1000 are defined as mobile. See
Appendix A for the definition of dc. Note that the measurement time for Figure 2 is limited
compared to measurement of MSD and of D in Figure 1.

In state O (symbol blue +), there is a slow oscillation in MSDs at low temperatures
where collective movements of particles occur beyond the measuring time. The fluctuation
in the values of state O in Figure 2 is due to the choice of measuring time because of the
slow oscillating nature of MSD of state O. See Section 2.5 for details.

2.2. State G

State G has the lowest diffusion constant D among the metastable states for a wide
range of temperature.

In Figure 3, MSD of state G versus time at different temperatures is shown.

Figure 3. Mean square displacement (MSD) of state G at temperatures T = 114 (red), 122 (green),
126 (blue), 128 (magenta), 132 (cyan), and 136 (black) for system size N = 5376.

At temperatures T = 114 and T = 122, MSD changes only slightly. A stepwise increase
in MSD is observed at T ≥ 126. This is because the values of MSD are extremely small and
the hopping nature of individual particles appears in Figure 3. Most of the glassy states of
monodispersed softcore systems show hopping diffusion [8,9].

2.3. State J

State J shows intermittent structural rearrangements.
State J has been first obtained as a result of spontaneous structural transformation

of state H at T = 100 in the original system size [9]. The initial configuration of state H is
the amorphous solid state reported in Figure 12 of [13]. During the calculation of state
H at T = 100, the volume and the total potential energy decreased and transformed to J
state [9]. The physical properties of H and J states are are completely distinct and the pair
distribution function g(r) shows a clear structural transformation. State H is stable for
temperature regions 65 ≤ T ≤ 95 and 105 ≤ T ≤ 115. See Figure 3 of [9] for other structural
transformations observed in WCA spheres. These facts show that the connectivity of basins
and their depth for these metastable states are temperature dependent.

In Figure 4, the MSD of state J versus time at different temperatures is shown. For
system size N = 5376 reported here, state J seems to be relatively unstable at temperatures
102 ≤ T ≤ 118.
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Figure 4. Mean square displacement of state J at temperatures T = 99 (red), 102 (green), 104 (blue),
106 (magenta), 112 (cyan), 114 (black), 116 (red), 118 (cyan), and 120 (blue) for system size N = 5376.
Lower values of MSD at lower temperatures when plotted with the same color. Inset show close up
of T = 106.

At T = 118 (cyan with larger MSD values), MSD rapidly increases at the beginning;
however, it slows down to a constant rate. The diffusion constant D at T = 118 in Figure 1
is calculated for 4080 < t ≤ 41,000. At T = 116 (larger red values), a stepwise nature due to
hopping appears in the MSD. At T = 106 (magenta, also shown in the inset of Figure 4),
string-like hopping motion occurs; however, the rate decreases at t > 24,000. In Figure 1,
D is calculated at 24,000 < t ≤ 41,000 for T = 106. At T = 102 (green), MSD drastically
increases upto t ≃ 3.235 × 104 but both the diffusion and the fluctuation become much
smaller at larger times. A landslide in the stacking layer occurs before that time and results
in a structural transformation. At T = 102, the diffusion constant D shown in Figure 1 is
calculated at 32,500 < t ≤ 51,000. For other temperatures not mentioned above, the diffusion
constant D in Figure 1 is obtained by averaging through the whole measuring time. At
temperature T = 120, MSD increases drastically compared to lower temperatures.

In Figure 5, displacement plots of state J at T = 102 and at times (a) t = 1.11 × 104,
and (b) t = 3.25 × 104 are shown. The MSD shows large fluctuation and increase before
t = 3.25× 104 (green line in Figure 4). Displacement plots show positions relative from the
initial position of all particles projected on a plane. Thus, displacement plots reveal spatially
cooperative movements. A straight string-like hopping motion can be clearly discerned in
Figure 5. In addition, the center crowded position where particles are fluctuating around
the original position, splits into two as shown in Figure 5b. A landslide occurred between
the time shown in Figure 5a,b. The length scale of the landslide is about six times larger
than the distance of the neighboring particles (see Supplementary Material).

The phenomenon where the displacement center splits into two (along with string-like
motion) is also observed at temperature T = 106 of state J for system size N = 2688. Thus,
state J in this temperature range seems to be susceptible to landslides, due to the small
elastic modulus (see Section 3 for further discussion).
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Figure 5. Displacement plot projected on the xy-plane of state J at T = 102 at times (a) t = 1.11× 104,
and (b) t = 3.25× 104, for system size N = 5376.

2.4. State M

State M is the most diffusive state among the metastable states studied in this paper.
A clear temperature dependence of MSD is observed for state M as shown in Figure 6.

Figure 6. Mean square displacement of state M at temperatures T = 80 (green), 85 (blue), 90 (magenta),
95 (cyan), 98 (red), 100 (green), 102 (blue), 104 (magenta), and 105 (cyan) for system size N = 5376.
Lower values of MSD for lower temperatures when data plotted with the same color.

The inflection point in the increment of D observed in logscale (Figure 1) is not so
clear compared to other states.

2.5. State O

State O is a state with a long trajectory reversal time and distance.
In Figure 7, MSD of state O is shown. The overall temperature dependency is shown

in Figure 7a. At T = 128 and 132, the system is quite diffusive. For temperatures T ≤ 120,
MSD of state O shows a long time fluctuation with a large return distance as clearly seen in
Figure 7b.

A large oscillation in the MSD shows that there is a collective movement among the
particles. This collective movement clearly appears in the self-van Hove correlation function,

F(d, t) =
1
N

⟨
N
∑
i=1

δ[d − ∣ri(t)− ri(0)∣]⟩, (1)

which is the probability of displacement d in duration of time ∆t, where ri(t) and ri(0) are
the position of particle i at time t and at t = 0, the origin of the measurement. In Figure 8,
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the self-van Hove correlation functions measured at several time duration against the
distance scaled by the effective core length dc are shown.

Figure 7. Mean square displacement of state O at temperatures (a) T = 80 (red), 100 (green), 116 (blue),
128 (magenta), 132 (cyan), (b) T = 88 (red), 96 (green), 108 (blue), 120 (magenta), 124 (cyan), for
system size N = 5376.
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Figure 8. Self-van Hove correlation function of state O at (a) T = 88 for different time durations
t = 11,000–19,000 (solid), 15,000–19,000 (dotted), 17,000–19,000 (dashed), 18,000–19,000 (long dashed),
and 20,000–21,000 (red dot–dashed); (b) T = 116 for time t=16,700–19,700 (solid), 17,700–19,700 (dot-
ted), 18,700–19,700 (dashed) and 20,000–21,000 (red dot–dashed), for system size N = 5376.

Since the large fluctuation of MSD seems quite random but is confined in a certain
width for state O (Figure 7b), the self-van Hove correlation function depends not only
on the time duration ∆t, but also on the absolute time where the measurement is taken.
To show the effect of time duration ∆t alone, the finishing time of the measurement is
common in Figure 8 except for the red dot-dashed line. The fraction of mobile particles
(Figure 2) and elastic properties (Section 3) for state O are taken at the same time duration
t = 20,000–21,000 shown by the red dot-dashed line. It is clear from Figure 8 why the
fraction of mobile particles are high at T = 88 and 116 in Figure 2. At the time duration
t = 20,000–21,000 where the measurements of Figure 2 are done, particles are scattered to
relatively large distances, which tend to return close to their original positions at longer
time duration as shown by the solid line in Figure 8a,b. Figure 8 clearly shows that the
distance for trajectory reversal (rattling distance) extends beyond twice the distance dc. The
time scale differences between the trajectory reversal motion and diffusive motion clearly
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appear in the MSD at low temperatures T ≤ TD (Figure 7b). State O has a large return
distance regardless of system size and the same characteristics are persistently observed in
other system sizes N = 1344 and 2688.

2.6. Dynamical Heterogeneity at TD

The dynamical heterogeneity is a phenomenon where dynamically active and inactive
regions appear in the same system. To measure the degree of dynamical heterogeneity, the
non-Gaussian parameter(NGP) is calculated. NGP is defined as

α = (
l

l + 2
)

⟨∆r4⟩

⟨∆r2⟩2 − 1 (2)

where l is the dimension, ∆r = r(t)− r(0) is the displacement of the particles in duration of
time t and ⟨∆r2⟩ is the MSD. The NGP plotted against time will show the degree and time
scale of the dynamical heterogeneity.

In Figure 9, the three dimensional (l = 3) NGP near TD is shown. In state G (Figure 9a),
NGP become notably positive after t > 103, where a sharp asymmetric peak appear near
t = 6 × 103. The calculated time is not enough to observe whether the decay is linearly
falling off. For state J (Figure 9b), the decay of NGP is very slow and show large fluctuation.
The NGP curve of state M (Figure 9c) resembles that of colloidal glasses in experimental
observations [28–32]. Reflecting the large particle reversal movements in state O, the NGP
curve (Figure 9d) shows two separated large peaks, consisting of smaller peaks. All the
states show distinctively different characteristics in the NGP curves, which reveals that the
nature of dynamical heterogeneity is different for each state.

Figure 9. Three dimensional non-Gaussian parameter near TD of states (a) G at T = 126, (b) J at
T = 112, (c) M at T = 102, and (d) O at T = 116, for system size N = 5376.
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3. Elastic Properties

To calculate elastic properties, spontaneous stress and strain in longitudinal and
transverse directions are measured. For calculation details, see Appendix A.5.

3.1. Temperature Dependence of Modulus of Spontaneous Elastic Tension/Compression

In Figure 10, the temperature dependence of the longitudinal E∥ and transverse E⊥
elastic modulus is shown. All states, except state J, elastic modulus E∥ and E⊥ in log-scale
show approximately a linear dependence on T. Only state O shows a tendency of softening
at T = 132. Note that the sharp increase in D occurs around TD = 115 for state O (Figure 1),
revealing that the elastic properties stay intact even at higher temperatures where the
particles get mobile.
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Figure 10. Temperature dependence of spontaneous elastic modulus of states G (▼), J (◻), M (×),
O (+), and crystal (●), in (a) longitudinal E∥ and (b) transverse E⊥ directions, for system size N = 5376.

For state J, the values are scattered in Figure 10, and difficult to discern a relation
against T. Note that at the calculated lowest and highest temperatures (T = 99 and 120)
of state J, the values of E∥ and E⊥ are higher than other temperatures and overlap with
the value of state M at T = 99. As discussed in Section 2.3, MSD at T = 102, 106, and
118 showed peculiar characteristics and D was calculated for a limited time at the end of
the simulation. At T = 102 which mark the 2nd smallest values of E∥ and E⊥ of state J, a
landslide was observed (Figure 5). The fraction of mobile particles of state J was high only
for T = 120. For other states, the temperature dependence of E∥ and E⊥ is not affected even
at temperatures higher than TD where the particles get mobile. For supercooled liquids, E∥
and E⊥ are at least two orders of magnitude smaller than other metastable states, thus not
shown in Figure 10.

3.2. Temperature Dependence Spontaneous Strain Ratio

In Figure 11, the ratio of spontaneous strains µ = ε⊥/ε∣∣ are plotted against temperature.
For comparison, some data for the supercooled and thermodynamic equilibrium

liquids are also shown. The strain ratios are µ ≃ 0.5 for the liquids, like the Poisson’s
ratio [33–35]. The relation between elastic modulus for isotropic medium is

S
B
=

3(1− 2µ)

2(1+ µ)
. (3)

This equation shows that as µ → 1/2, the shear modulus S drastically decreases if the
change in bulk modulus is small [36]. We show, in the next section, that the bulk moduli in
supercooled and equilibrium liquids have a smaller temperature dependence compared to
the metastable states, thus indicate that shear modulus S → 0 at melting.
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Figure 11. Temperature dependence of strain ratio ε⊥/ε∣∣ of states G (▼), J (◻), M (×), O (+), and
crystal (●), with supercooled liquid (○) and thermodynamic equilibrium liquid (⊗), for system size
N = 5376.

3.3. Temperature Dependence of Spontaneous Bulk Modulus

In Figure 12, temperature dependence of bulk modulus for the glassy states and
liquids is shown.
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Figure 12. Temperature dependence of bulk modulus of states G (▼), J (◻), M (×), O (+), and
crystal (●), with supercooled liquid (○) and thermodynamic equilibrium liquid (⊗), for system size
N = 5376. Lines are fit to Equation (5) for crystal (red) and state M (green) with reference values B0

and V0 at T = 80 of each state. Blue line is a linear fit to data of liquids.

Finite-strain theory has been applied extensively to problems in geophysics. The
theory relates compression/expansion η to pressure. The Birch–Murnaghan equation of
state [37] in the second degree is,

P =
3
2

B0(η−7/3
− η−5/3

), (4)

where η = V/V0, V is the volume at P, and the bulk modulus B0 is that of volume V0 at a
reference pressure P0. This semi-empirical Equation (4) requires a reference value of the
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bulk modulus B0 for volume V0 to be determined from experiment. In geophysics, the
reference values are usually those at the ambient pressure. Using the above Relation (4),
the temperature dependence of the bulk modulus is

BT = −V(
∂P
∂V

)
T
=

1
2

B0(7η−7/3
− 5η−5/3

). (5)

The temperature dependence of bulk modulus B of glassy states are fit to Equation (5).
The reference values B0 and V0 are taken from the values at T = 80 for crystal (red line) and
state M (green line).

Most of the glassy states conform to Equation (5) obtained from the Birch–Murnaghan
equation of state and fit between the region inside the red and green lines. However, when
the temperatures get closer to the melting transition, the crystal state (●) becomes drastically
softer than Equation (5) predict. In contrast, the temperature dependence of the liquids
(blue line) is small and do not decrease drastically for temperatures higher than the melting
temperature Tm = 153. This conforms to the fact that when the Poisson’s ratio is close to
1/2, the change in bulk modulus is small [36].

4. Concluding Remarks

Molecular dynamic simulations which allow anisotropic fluctuations of the cell shape
to preserve hydrostatic pressure have been conducted. Using a simple monodispersed
model, we have shown that below the melting temperature Tm, there exists multiple
metastable states with distinctive dynamics. They are glassy metastable states where
diffusion constants increase sharply at a certain temperature TD. Around TD, dynamic
heterogeneity is observed. The drastic increase in diffusion constants at TD does not induce
change in the temperature dependence of the elastic modulus. The elastic properties
show that these metastable states are basically solids even at temperatures higher than
TD. The rigidity and mobility of glassy metastable states are compatible even at higher
temperatures than TD. There exists a rigid supporting framework which allows other
parts to flow. Because of this framework, dynamical heterogeneity is sustained. How
to quantitatively assess these structures, especially the supporting framework, will be
addressed in future work. The bulk moduli for the supercooled/equilibrium liquids only
show a slight temperature dependence compared to glassy metastable states.

Once we admit that there exist multiple metastable solid states with glassy dynamics,
the scenario behind polyamorphous and liquid–liquid transition [38–45] will attain many
possibilities. The temperature range of each metastable state might be different; thus,
beyond those bounded temperatures, the state is destined to transform to another state.
These transformations may also occur among two diffusive states. In the original system,
we observed a clear change in MSD at a transformation among two different states (see
Figure 11 of [8]). To address these important subjects, not only simulations of larger systems
near TD as performed here, but also in the whole temperature range, especially towards
Tm, is needed and remain for future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/solids2020016/s1, Figure S1: Snapshots of state J at T = 102 viewed on 3 different planes
(xy-, xz-, and yz-plane) at (a) t = 11,100, (b) t = 32,400, and (c) t = 51,000, respectively. Colors depend
on the z-coordinate at t = 51,000 to show where the particles originate in former times. Particles are
depicted small to show the position clearly. (a) yz-plain (right) clearly show a landslide (with two
layers paired to slide approximately 6 times that of normal direction between the layers) have settled
into the final layered positions at (c).
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Appendix A. Computer Simulation Methods

The principle of corresponding states [46] holds for systems with simple pair-wise
interaction, i.e., the inter-particle potential having the functional form φij = ε f (r/σ). By
introducing the mass m, length σ, and energy ε, as fundamental units, other physical
quantities may be defined by them; such as pressure P∗ = Pσ3/ε, temperature T∗ = kBT/ε,
and molecular volume v∗ = V/(Nσ3). Under these reduced units, a thermodynamic state
point determines a set of corresponding states which applies to thermodynamics, structural,
and dynamic properties [47].

Furthermore, if particles interact by repulsive force alone, a single reduced variable
defines the excess properties. For inverse power potential φij = ε(rij/σ)

−n
, the reduced

density ρ∗ = ρσ3(ε/kBT)
3/n determine the state. A single isotherm, isochore, or isobar

is sufficient to determine the entire phase diagram of thermodynamic equilibrium [48].
This can be understood as the average excluded distance dc of a pair of particles (the
effective core) equals the average kinetic energy [14] defined by the systems temperature T,
i.e., φij(dc) = ε(dc/σ)−n

= kBT. It reveals that the temperature dependence of the effective

excluded volume d3
c = σ3(ε/kBT)

3/n is the crucial factor. Similarly, for the WCA potential,
the relation

φWCA
ij (dc) = ε[(

σ

dc
)

12
− (

σ

dc
)

6
+

1
4
] = kBT (A1)

will determine the effective core dc at temperature T. Again, the temperature dependence
of excluded volume d3

c is the crucial factor. Even when there is anisotropy in the shape
of the particle, similar comprehension leads to the scaling law of the system [49]. The
equation of state under the reduced units for these simple models will be given by P∗v∗/T∗

plotted against density, where v∗ = [φ−1
ij (T∗)]

3
; expressed by the inverse function of the

pair potential φ−1
ij .

Appendix A.1. Symplectic Integrator for Soft Matter

To properly investigate thermodynamic and dynamic properties of condensed matter,
the system should not be under non-hydrostatic stress. To achieve simulations under
hydrostatic pressure, not only the volume but also the shape of the simulation cell must
change according to the stress tensor caused by the constituent particles. In the method
used in this work, the shape and size of the simulation cell is described by an anisotropic
factor α and an isotropic volume factor Q where the volume of the simulation cell is
V = αQ [13]. The anisotropic factor is the ratio of the simulation cell lengths in z and xy-
directions (length in x and y-directions are the same in this study), i.e., α = Lz/Lxy. The
isotropic volume factor Q expands and contracts isotropically, while α expresses the change
in shape. These variables α and Q change spontaneously, evolving the system towards
hydrostatic pressure with the scalar pressure balancing with the given value Pex. Periodic
boundary conditions are applied to x, y, and z directions. In this method, the Hamiltonian is
solved by a symplectic integrator which preserves the structure of the Hamilton’s equations
of motion. Thus, high precision and stable trajectory is guarantied. System size effects are
small in this method and notable only near the phase transition. See Figure 6 of [50].

Appendix A.2. Calculation of Metastable States

All the metastable states investigated in this paper are morphologically changed from
the pristine forms of the amorphous solid or supercooled liquid reported in [13] to settle in a
basin under isothermal and hydrostatic pressure. That is the basin of the free energy profile
of the total system where the crystal state is in the global minimum and metastable states
are in local minima. The value of the given pressure Pex in these simulation has an effect
on the sharpness of the transition. When Pex is high, the melting transition temperature Tm
becomes high, thus leading to a smaller dc near Tm. Since the potential becomes steeper
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when dc becomes smaller, the particles are effectively harder at higher pressures. The
potential landscape becomes steeper as well.

To seek the stable temperature range of a certain metastable state, a series of calcula-
tions at different temperatures are done independently from a common initial configuration.
During these calculations, we occasionally observe the system transform to a different
state. Some examples of such structural transformation are given in Figure 3 of [9]. The
transformation occurs in a short time duration, compared to the calculated time. Such
transformations are caused by a rare event knocking the system over the energy barrier
to a new state. Information of the free energy profile of WCA phase space, such as the
approximate depth of the basin, is obtained through such calculations. Occurrence of such
transformation not only appears in the static values, but also in the dynamics such as
the MSD.

Appendix A.3. Model and Initial Configurations

To investigate to what extent the excluded volume effect alone can describe the
properties of glass, soft isotropic monodispersed spheres are employed as a model system.
Pairwise potential of WCA [12] is used. Reduced units are employed throughout our work.
In addition to the metastable states explained below, the dynamic and elastic properties of
crystalline solid are investigated for comparison. The given pressure is set to Pex = 1.0× 104

where the melting temperature from equilibrium crystalline solid to liquid is Tm = 153. The
effective particle size at the melting temperature is dc = 0.653.

Metastable states for monodispersed WCA spheres are initially reported in [13] as
amorphous solids. A total of seventeen states, including the supercooled liquid, are
reported in [8,9]. Among them, four states in [9] are chosen, i.e., states G, J, M, and O;
the labels of each state will remain the same as the original article to avoid confusion.
The original calculations were done for number of particles N = 1344. In this work, the
configuration of these states were stacked four times and used as the initial configuration
for a new system size N = 5376. The initial configurations to construct the N = 5376 system,
are those of N = 1344; states G, J, M, and O at temperatures T = 96, 100, 104, and 106,
respectively, at which these states were first identified [13].

Note that the supercooled liquids reported here are metastable states obtained inde-
pendently at each temperature where the thermal fluctuation cannot overcome the energy
barrier at each temperature in the calculated time. The supercooled liquid exists as a
thermodynamic metastable state at T ≥ 109 for the original system size N = 1344. At
lower temperatures, solidification occur and marked by a clear change in MSD and the vol-
ume/density [8]. The supercooled liquid is calculated for T ≥ 110 for system size N = 5376
where the typical total calculation time is t = 4000 to 6000. The initial configuration was the
original system (of N = 1344 at T = 110) stacked four times. For crystalline solid, data at
T = 65 of N = 1344 was used to construct the initial configuration. The crystalline state of
N = 5376 was calculated to t = 3000 at T = 152 and did not melt.

The mass of the barostat is M = 1.0× 10−3 and the mass of the thermostat is K = 1000
throughout this work. All calculations were done with time step dt = 1.0× 10−4.

Appendix A.4. Calculation of Transport Coefficient

A linear fit to the mean square displacement against time gives the diffusion constant D.

D =
1

6Nt

N
∑
i=1

[(∆xi(t))2
+ (∆yi(t))2

+ (∆zi(t))2
]

2
(A2)

Since the velocity vi of each particle i is calculated at every time step for the molecular
dynamics, the displacements ∆xi(t) = ∑t vxdt calculated from the velocities vβ (in each
direction β = x, y, z) are tracked along the time evolution and used for calculating the
transport properties. This allows the calculation of transport properties unaffected by the
periodic boundary conditions.
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Appendix A.5. Calculation of Elastic Properties

The spontaneous elastic modulus for each state are calculated from the stress versus
strain plot as in [51]. Although we do not have any uniaxial load in our simulation, the
geometry of the spontaneous fluctuations is those of Poisson’s ratio measurements [33,34].
Instead of a uniaxial load, we have a spontaneous uniaxial shape fluctuation (in addition to
the volume fluctuation) of the simulation cell where the strains can be directly measured.
Simultaneously, the internal stress tensor is tracked by the simulation method. The longitu-
dinal and transverse strains/stresses can be measured regardless of the state of matter in
our method. The isotropic volume factor Q is related to the cell length in x and y-direction
by Lxy = Q1/3, and will give a modulus of spontaneous elastic tension/compression. This
modulus E⊥ is calculated by plotting the transverse stress P⊥ = (Pxx + Pyy)/2 against the
transverse strain ε⊥ = Lxy/⟨Lxy⟩ = Q1/3/⟨Q1/3⟩. Similarly, the uniaxial elastic modulus E∥
is obtained from longitudinal stress P∥ = Pzz and longitudinal strain ε∥ = Lz/⟨Lz⟩. Values
of the transverse strain ε⊥ against longitudinal strain ε∥ give the spontaneous stress ratio.
The instantaneous stress and strain are measured at each ∆t = 1.0× 10−2 (100 time steps)
for a time duration of ∆t = 1000 (1.0× 107 time steps) at the end of each simulation. The
modulus of volume expansion/contraction (the spontaneous bulk modulus) is calculated
from collecting the instantaneous values of mean stress P = (Pxx + Pyy + Pzz)/3 and strain
εv = V/⟨V⟩ = αQ/⟨αQ⟩ of the simulation cell. The elastic modulus and the strain ratio are
calculated when the cell shape is relatively stable for time duration ∆t = 1.0× 103, otherwise
we only calculate the bulk modulus.

In Figure A1, the spontaneous stress and strain are plotted for state G at temperature
T = 132. Each dot represents an instantaneous value measured at 20,000 < t ≤ 21,000. Red
lines are the linear fit to all points. In the strain–stress plot, the data points form a ellipse
showing that the state is viscoelastic to some extent. Nevertheless, we make a linear fit to
all data points. For Figure A1, the red line which is the linear fit to all points does not go
through the middle of area of dots. This is because data points are more distributed on
the high-strain/low-stress area which shows that it is more difficult to compress than to
expand in this system.

Figure A1. Cont.



Solids 2021, 2 263

Figure A1. Spontaneous stress and strain of state G for time duration ∆t = 1000 at temperature
T = 132: (a) longitudinal stress versus strain, (b) transverse stress versus strain, (c) bulk stress versus
strain, and (d) ratio between transverse and longitudinal strains, for system size N = 5376. Red lines
are the linear fit to all points.
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