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Abstract: Structures of partially and completely protonated Ruddlesden–Popper phases,
H0.7Na0.3NdTiO4·0.3H2O and HNdTiO4, have been established by means of neutron and X-ray
diffraction analysis and compared among themselves as well as with that of the initial titanate
NaNdTiO4. It was shown that while interlayer sodium cations in the partially protonated form
are coordinated by nine oxygen atoms, including one related to intercalated water, in the fully
protonated compound the ninth oxygen proves to be an axial anion belonging to the opposite slab of
titanium-oxygen octahedra. Moreover, the partially protonated titanate was found to significantly
differ from the other two in the octahedron distortion pattern. It is characterized by a weakly pro-
nounced elongation of the octahedra towards the Nd-containing interlayer space making Ti4+ cations
practically equidistant from both axial oxygen atoms, which is accompanied by a low-frequency shift
of the bands relating to the asymmetric stretching mode of axial Ti–O bonds observed in the Raman
spectra.
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1. Introduction

Over past decades, great attention has been paid to ion-exchangeable layered perovskite-
like oxides as promising ionic conductors [1–5], catalysts [6], photocatalysts [7–9], mul-
tipurpose precursors for the creation of hybrid inorganic–organic materials [10–18], na-
noelectronic [19], ferroelectric [20], piezoelectric [21], luminescent [22] and photovoltaic
devices [23], chemical sensors [24] as well as fuel cells [25].

Ion-exchangeable layered perovskites are crystalline solids possessing a block-type
structure, which consists of negatively charged intergrowth slabs with a thickness of n
corner-shared perovskite octahedra regularly alternating with interlayer spaces populated
by alkali cations. Their valuable physical-chemical properties are associated with the
unique perovskite structure as well as the pronounced activity of the interlayer space
towards ion exchange and intercalation reactions [26,27]. In accordance with features of
structure and composition, ion-exchangeable layered perovskites may be divided into two
classes: Dion–Jacobson [28,29] and Ruddlesden–Popper phases [30,31]. The Dion–Jacobson
phases follow a general formula A’[An−1BnO3n+1], where A’ is an alkali metal, A is alkaline
earth or transition metal and B is Nb, Ta, Ti, Zr or related element. The relative arrangement
of adjacent perovskite slabs in these compounds depends on the interlayer cation size. In
particular, the Dion–Jacobson perovskites with comparatively small cations (A’ = Li, Na)
are usually characterized by a staggered conformation while in the case of larger ones
(A’ = K, Rb, Cs) an eclipsed conformation is more probable. Due to relatively low interlayer
charge density, the Dion–Jacobson phases demonstrate high reactivity in a wide range of
low-temperature transformations [32–35]. The structure of the Ruddlesden–Popper phases,
described by a formula A’2[An−1BnO3n+1], represents alternation of perovskite slabs with
the layers adopting the crystal arrangement of rock salt. These substances are characterized
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by higher interlayer charge density and their adjacent perovskite slabs are usually stacked
in a staggered conformation. The reactivity of the Ruddlesden–Popper perovskites is
known to be lower in comparison with that of the Dion–Jacobson ones, although it appears
to be enough for ion exchange and intercalation of small molecules via the soft chemistry
approaches [36–41].

A deep understanding of the structural features of layered perovskite-like oxides is
of great importance for the prediction of their physical-chemical properties and targeted
research-based creation of materials with specified characteristics. For instance, ionic
conductivity strongly depends on the equilibrium crystallographic positions of interlayer
cations associated in turn with a degree of the perovskite octahedra distortion [42]. As well,
the interlayer space is considered a separate reaction zone in heterogeneous photocatalysis
providing superior photocatalytic activity of many layered perovskites in comparison
with that of non-layered materials due to reversible reactants’ intercalation [43]. In this
regard, its structural features may significantly influence the supply of reactants and the
withdrawal of products defining the reaction kinetics and, therefore, the photocatalyst
performance. Moreover, the hydration degree and, apparently, crystallographic positions
of intercalated water molecules affect the reactivity of layered perovskites with organic
compounds [44]. Knowing these peculiarities greatly facilitates the creation of hybrid
inorganic-organic materials for many promising applications.

Layered perovskite-like titanates ALnTiO4 (A = alkali cation or proton, Ln = La or
lanthanoid cation) are Ruddlesden–Popper phases whose unique structure is characterized
by the complete ordering of the aforementioned cations between two nonequivalent in-
terlayer spaces interbedded by perovskite slabs with a thickness of n = 1 titanium-oxygen
octahedron experiencing pronounced vertical distortion [45,46]. These compounds attract
the attention of researchers as promising proton conductors [47–51], catalysts [52], photo-
catalysts [53–56] as well as luminescent [57] and magnetically susceptible materials [58–60].

As shown in our previous reports [61,62], when placed in aqueous solutions, the
alkaline titanates ALnTiO4 undergo ion exchange and hydration giving protonated hy-
drated forms HxA1−xLnTiO4·yH2O whose specific composition depends on the pH of
the medium and a particular interlayer cation. Since many practically valuable processes,
such as photocatalytic reactions, are conducted in aqueous media, a thorough investiga-
tion of water-stable forms of layered perovskites deserves special attention. In view of
the foregoing, the present paper focuses on a structural study of two protonated forms
of the layered perovskite-like titanate NaNdTiO4, namely the partially protonated form
H0.7Na0.3NdTiO4·0.3H2O, existing in water excess, and the completely protonated one
HNdTiO4, being stable in acid media.

2. Materials and Methods
2.1. Synthesis

The alkaline layered perovskite-like titanate NaNdTiO4 was synthesized according to
the standard ceramic technique using preliminarily calcined TiO2, Nd2O3 and Na2CO3 as
reactants. The oxides were taken in stoichiometric amounts, sodium carbonate—with a
30% excess to compensate for the loss during calcination. All the compounds were mixed
and thoroughly ground in an agate mortar under a layer of n-hexane for 30 min per each
gram. The mixture obtained was dried and pelletized into ~2 g tablets at 50 bar using an
Omec PI 88.00 hydraulic press. The tablets were placed into corundum crucibles with lids,
kept at 850 ◦C for 12 h in a Nabertherm L-011K2RN muffle furnace and, after cooling down,
ground in an agate mortar.

To obtain the partially protonated hydrated form H0.7Na0.3NdTiO4·0.3H2O, 1 g of
NaNdTiO4 was treated with 1000 mL of water at room temperature for 1 d. In the case of
the completely protonated form HNdTiO4 preparation, 1 g of NaNdTiO4 was processed
with 200 mL of a 0.1 M hydrochloric acid solution under the same conditions. Then the
solid phases were separated from solutions via centrifuging and dried in a desiccator over
CaO for 2 d.
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2.2. Instrumentation

Powder X-ray diffraction (XRD) patterns of the samples were recorded on a Thermo
Scientific ARL X’TRA diffractometer (CuKα radiation, angle range 2θ = 5–120◦, accumula-
tion time 10 h). The lattice parameters calculation and Rietveld refinement were performed
based on all the reflections observed using GSAS software. The initial structural parameters
were adopted from the paper [63]. Neutron diffraction patterns were obtained on an IR-8
research neutron reactor (neutron wavelength λ = 1.7526 Å, angle range 2θ = 10–130◦,
accumulation time 50 h). The samples were investigated in aluminum containers with a
diameter of 3 mm and a wall thickness of 0.03 mm whose reduced diffraction peaks were
subsequently subtracted from the patterns. The structure calculations were conducted
using GSAS software. The initial parameters for the refinement were taken from the re-
ports [63,64]. Thermogravimetric (TG) analysis was carried out on a Netzsch TG 209 F1
Libra thermobalance in an argon atmosphere. The temperature program included heating
each sample from room temperature to 700 ◦C at a rate of 10 ◦C/min. The protonation
degree and amount of intercalated water were determined according to the previously
reported method [65]. Raman scattering spectra were collected on a Bruker Senterra spec-
trometer in the Raman shift range of 100–4000 cm−1 using the incident laser 488 nm (power
20 mW, accumulation time 10 s). The high-frequency region in the figures was presented
on an enlarged scale to make bands of water more visible relative to the high-intensity ones
of the perovskite matrix.

3. Results and Discussion

Initial alkaline titanate NaNdTiO4 and its protonated forms were identified using XRD
analysis (Figure 1). Tetragonal lattice parameters of NaNdTiO4 (a = b = 3.75 Å c = 12.82 Å)
and HNdTiO4 (a = b = 3.70 Å c = 12.09 Å) were found to be consistent with the literature
values [46]. In the course of the partial protonation, the interlayer distance d is seen to
increase (this is reflected in the shift of low-angle 00l reflections on the diffractogram to the
region of lower values), which indicates probable water intercalation accompanying the
ion exchange. Otherwise, the d value should have reduced since protons are much smaller
than sodium cations. Moreover, the partially protonated form is amenable to indexing
in another space group (I4/mmm instead of P4/nmm) and is characterized by doubled c
parameter, which is not observed in the case of NaNdTiO4 and HNdTiO4. The space group
change and the c parameter doubling appear to be caused by a probable transformation
of the adjacent perovskite slabs conformation from staggered to eclipsed. The completely
protonated titanate HNdTiO4, apparently, possesses the slabs arrangement similar to that
of NaNdTiO4 and does not contain a noticeable amount of interlayer water.

TG curves of the protonated samples are presented in Figure 2. In both cases, two
main sections on the curves can be distinguished. The first of them corresponding to
the temperatures up to 200 ◦C refers to deintercalation of the interlayer water molecules
resulting in the formation of an anhydrous partially or fully protonated titanate. At the
second section (250–650 ◦C), the latter experiences topochemical dehydration consisting
in the binding of the interlayer oxygen atoms and protons into water molecules, their
liberation and closing vertices of titanium-oxygen octahedra of adjacent perovskite slabs.
In this way, final thermolysis products follow a gross formula Na1−xNdTiO4−x/2, where
x is the amount of protons in the initial compound. Processing of the curves allowed
us to establish quantitative compositions signed in Figure 2. The partially protonated
titanate contains a perceptible amount of intercalated water released during heating at
low temperatures. It corresponds to the formula H0.7Na0.3NdTiO4·0.3H2O (specified
H0.73Na0.27NdTiO4·0.3H2O). The completely protonated HNdTiO4 was found to exist in a
practically anhydrous state.
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Figure 2. Thermogravimetric (TG) curves of partially and completely protonated samples.

The structural model of the partially protonated titanate H0.7Na0.3NdTiO4·0.3H2O
was refined by the Rietveld method based on the XRD data (Figure 3) [62]. The XRD
patterns collected made it possible to determine with high accuracy the positions of all
the atoms constituting the compound, besides hydrogen (Table 1). All the parameters
calculated fall in a physically reasonable range (although the Na occupancy factor and
position are hardly reliable) and are consistent with the calculation data for the related
La-containing titanate. Thus, the refinement of the H0.7Na0.3NdTiO4·0.3H2O structure can
be considered successful.
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Figure 3. Experimental (red), calculated (green) and differential (purple) profiles of the
H0.7Na0.3NdTiO4·0.3H2O XRD pattern.

Table 1. Results of the H0.7Na0.3NdTiO4·0.3H2O structure calculation based on XRD data.

H0.7Na0.3NdTiO4·0.3H2O
Tetragonal System, I4/mmm, a = b = 3.7359 Å, c = 27.613 Å, Rwp = 0.1137, R(F2) = 0.0854

Ion Position x y z Uiso Occupancy

Na 4e 0 0 0.4225 (25) 0.043 (10) 0.265 (14)

Nd 4e 0 0 0.30010 (7) 0.0006 (25) 1

Ti 4e 0 0 0.12489
(17) 0.004 (5) 1

O1 4e 0 0 0.0551 (7) 0.0036 (34) 1

O2 8g 0 0.5 0.13925
(34) 0.0084 (26) 1

O3 4e 0 0 0.2048 (9) 0.015 (4) 1

Ow 8j 0.388 (17) 0.5 0.0 0.025 0.314 (14)

An attempt to refine the neutron diffraction pattern was made for the fully protonated
form (Figure 4). In accordance with the results obtained (Table 2), the determination of
the HNdTiO4 structure proved to be successful. All the parameters being refined take
valid values and the difference between experimental and calculated profiles lies within
the limits admissible for structural calculations.
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Figure 4. Experimental (red), calculated (green) and differential (purple) profiles of the HNdTiO4

neutron diffraction pattern.

Table 2. Results of the HNdTiO4 structure calculation based on neutron diffraction data.

HNdTiO4
Tetragonal System, P4/nmm a = b = 3.6983 Å, c = 12.0928 Å, Rwp = 0.0253, R(F2) = 0.0627

Ion Position x y z Uiso Occupancy

H 16e 0.434 (12) 0.133 (12) 0.4966 (25) 0.045 (13) 0.125

Nd 2e 0.25 0.25 0.8834 (5) 0.0001 (13) 1

Ti 2e 0.25 0.25 0.2928 (8) 0.0152 (35) 1

O1 4g 0.25 0.75 0.2490 (5) 0.0093 (15) 1

O2 2e 0.25 0.25 0.0759 (6) 0.0093 (15) 1

O3 2e 0.25 0.25 0.4425 (8) 0.0177 (23) 1

Data on the comparison of HNdTiO4, the structure of which was refined here, and its
deuterated counterpart DNdTiO4, the structure of which was refined in one of the earlier
reports [64], are shown in Table 3 and Figure 5. Generally, the structural models of both
compounds can be considered practically identical. The deuterated sample demonstrates a
slightly greater lattice parameter in comparison with those of the non-deuterated one. In
the latter protons are located closer to the axial oxygen that binds them than deuterium
cations (0.919 Å vs. 0.932 Å). At the same time, the titanium-oxygen octahedron distortion
is not proportional to the lattice parameter increasing. In particular, the bond Ti–O3 proves
to be 0.01 Å longer in the deuterated titanate.
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Table 3. Comparison of some bond lengths in HNdTiO4 and DNdTiO4 [64].

HNdTiO4 DNdTiO4

Bond Length, Å Bond Length, Å

H–O3 8x 0.919 D–O3 8x 0.932

Ti–O3 1x 1.810 Ti–O3 1x 1.789

Ti–O1 4x 1.923 Ti–O1 4x 1.919

Ti–O2 1x 2.623 Ti–O2 1x 2.633
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Figure 5. Comparison of the HNdTiO4 (this work) and DNdTiO4 (data from [64]) structures. The
equivalent positions of hydrogen and deuterium are connected by lines.

As noted earlier, the complete substitution of sodium cations by protons leads to a
noticeable decrease of the distance between vertices of the ion-exchangeable layer octahedra.
However, a space group change or a relative shift of adjacent slabs is not observed. In
the case of the partially protonated hydrated titanate, the Rietveld refinement clearly
confirms the relative shift of Nd-containing slabs by half of the a parameter along both
horizontal axes accompanied by the space group change from P4/nmm to I4/mmm. In other
words, water intercalation results not only in the interlayer space expansion, but also in the
conformation change from staggered to eclipsed.

The graphical comparison of the partially protonated hydrated titanate
H0.7Na0.3NdTiO4·0.3H2O investigated here and La-containing deuterated compound
D0.34Na0.66LaTiO4·0.59D2O reported in [63] is presented in Figure 6. Both structures
are practically identical. The distortion of titanium-oxygen octahedra in the form of elon-
gation towards the ion-exchangeable interlayer space direction is hardly noticeable in the
La-containing titanate. Equivalent positions of water molecules are significantly distant
from each other. In the case of the Nd-containing compound, they are located almost at the
same point directly between two sodium cations. In addition, the sodium cation is shifted
towards the interlayer space, which is apparently due to the lower occupancy of equivalent
water positions in the crystal.
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An interesting fact found in this research is a change in the nature of the titanium-
oxygen octahedron distortion in the partially protonated phase. The latter is different
from NaNdTiO4 and HNdTiO4 in weak elongation of the octahedra towards the ion-
exchangeable interlayer space, which allows the Ti4+ cation to be nearly equidistant from
both axial oxygen atoms (Figure 8).
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(this work) and H0.7Na0.3NdTiO4·0.3H2O (this work). The titanium-oxygen bond lengths are shown
in the figure.

Raman spectra of the titanates under consideration are shown in Figure 9. The
spectrum of the initial alkaline form NaNdTiO4 is represented by the bands relating to
symmetric (897 cm−1) and asymmetric (530, 620 cm−1) stretching modes of axial Ti–O
bonds as well as to the vibrations located in the (NdO)2 layer (280–330 cm−1) and in the
Na-containing interlayer space (100–200 cm−1). The formation of the partially protonated
hydrated derivative H0.7Na0.3NdTiO4·0.3H2O is accompanied by the appearance of char-
acteristic bands referred to the latitudinal vibrations (1620–1630 cm−1) and stretching
(2800–3650 cm−1) of the interlayer water. Width and inhomogeneity of the latter point
at the unequal involvement of the water molecules in the formation of hydrogen bonds
with the titanate. Furthermore, partial protonation leads to the splitting of the symmet-
ric stretching mode of axial Ti–O bonds into two bands (785 and 897 cm−1) confirming
the existence of two types of titanium-oxygen octahedra with unequal axial Ti–O dis-
tances, whose interlayer vertices are bonded to protons or hydroxonium ions (Ti–O−H+ or
Ti–O−H3O+, the first band) and sodium cations (Ti–O−Na+, the second band). The frequen-
cies of the (NdO)2 vibrations are seen to reduce (265 and 305 cm−1) due to the pronounced
octahedron distortion. Protonation also results in numerous changes in the low-frequency
spectral region (100–200 cm−1) reflecting changes in the interlayer space composition. In
the case of the completely protonated compound HNdTiO4, the bands of water vibrations
are significantly less intense in comparison with those for H0.7Na0.3NdTiO4·0.3H2O. Thus,
HNdTiO4 contains trace water amounts, which is fully consistent with the behavior of
its TG curve. The band of the symmetric stretching mode of axial Ti–O bonds occupies a
more low-frequency position (835 cm−1) than in the alkaline titanate (897 cm−1), which
may be due to the more covalent nature of the O–H+ bond and, consequently, greater axial
Ti–O distance. At the same time, the frequencies of asymmetric stretching modes of axial
Ti–O bonds (545, 610 cm−1) and vibrations of the (NdO)2 layer (280–330 cm−1) prove to be
close to those for NaNdTiO4. Consequently, the octahedra in HNdTiO4 are significantly
less distorted than in H0.7Na0.3NdTiO4·0.3H2O, which is consistent with the structural
analysis data.
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4. Conclusions

In the present research, structures of partially and completely protonated Ruddlesden–
Popper titanates, namely H0.7Na0.3NdTiO4·0.3H2O and HNdTiO4, have been refined by
the Rietveld method on the basis of neutron and X-ray diffraction analysis and compared
among themselves as well as with that of the initial alkaline compound NaNdTiO4. It
was demonstrated that while interlayer sodium cations in the partially protonated titanate
are coordinated by nine oxygen atoms, including one from the intercalated water, in the
fully protonated compound the ninth oxygen is the axial anion belonging to the opposite
slab of titanium-oxygen octahedra. Furthermore, the partially protonated titanate was
revealed to significantly differ from the other two in the octahedron distortion pattern. The
compound is characterized by weakly pronounced elongation of the octahedra towards
the Nd-containing interlayer space making Ti4+ cations practically equidistant from both
axial oxygen atoms, which is accompanied by a low-frequency shift of the bands relating
to the asymmetric stretching mode of axial Ti–O bonds observed in the Raman spectra.
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