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Abstract

:

Polymethylmethacrylate (PMMA) is a material of choice for many biomedical coating applications. However, such applications are limited due to the toxicity of the traditional solvents used for the solution processing of PMMA coatings and composites. This problem is addressed using an isopropanol-water co-solvent, which allows for the dissolution of high molecular mass PMMA and the fabrication of coatings by a dip-coating method from concentrated PMMA solutions. The use of the co-solvent offers a versatile strategy for PMMA solubilization and coating deposition, despite the insolubility of PMMA in water and isopropanol. Composite coatings are obtained, containing hydroxyapatite, silver oxide, zinc oxide, micron size silica and nanosilica. Such coatings are promising for the manufacturing of implants with enhanced biocompatibility, bioactivity and antimicrobial properties and the fabrication of biosensors. Ibuprofen, tetracycline and amoxicillin are used as model drugs for the fabrication of PMMA-drug composite coatings for drug delivery. The microstructure and composition of the coatings are analyzed. The versatile dip-coating method of this investigation provides a platform for various biomedical applications.
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1. Introduction


Polymethylmethacrylate (PMMA) is widely used for various applications in optical devices, solar cells, batteries and supercapacitors [1,2,3,4]. PMMA is a material of choice for various biomedical applications in dental implants, orthopedic devices and biosensors [1,5,6,7]. The interest in PMMA for biomedical applications is attributed to its biocompatibility, chemical stability and good mechanical properties [1]. Many investigations reported the development and successful applications of PMMA composites for the controlled delivery of drugs [1,8], cranioplasty [9], biomedical implants [10] and bone and dental cements [1,11,12]. Composite materials containing TiO2 [13], Al2O3 [14], hydroxyapatite [15,16] and bioglass [17] were developed. Such composites showed enhanced biocompatibility, bioactivity and enhanced mechanical and other functional properties.



PMMA composite films and coatings have generated significant interest, which was fueled by various applications. PMMA composite coatings containing bioactive ceramics were developed [18]. PMMA coatings and films provided a platform for advanced drug delivery applications [19,20]. PMMA exhibits remarkable properties for thin film applications in eye lenses [21,22] and thin film biosensors [23,24]. PMMA films and coatings were deposited by plasma polymerization [25] and laser evaporation [18]. Many investigations focused on the development of solution deposition techniques, such as solution polymerization [26], electrophoretic deposition [27], sol-gel deposition [28], spin coating [29] and dip coating [30,31,32]. Various solvents were used for PMMA, such as toluene, benzene, methyl ethyl ketone and other organic solvents, which are carcinogenic and toxic. The application of such solvents for biomedical applications presents difficulties, because solvent molecules can remain adsorbed on the surface or in the bulk of the PMMA coatings.



Recent studies showed that dip coating of PMMA can be performed using a mixed isopropanol-water co-solvent [33]. Despite the PMMA insolubility in individual solvents, such as water and isopropanol, solutions of high molecular mass PMMA with high concentration were prepared. The use of such solutions was a key factor for successful film deposition by a dip coating method [33]. It should be noted that isopropanol offers benefits for film deposition for biomedical applications due to low evaporation temperature and miscibility with water.



Isopropanol has been utilized in many studies focused on the manufacturing of coatings and thin films for biomedical applications and offered the advantage of low cytotoxicity compared to other organic solvents [34,35,36,37,38]. Good cell proliferation and attachment were observed on the surfaces of the coatings prepared using isopropanol [39,40,41]. The investigations focused on applications of isopropanol for protein purification and extraction [42], the fabrication of fibrous implant materials for tissue engineering [43], the manufacturing of scaffolds for wound healing [44] and the development of thin films for controlled drug delivery [45]. Therefore, the further development of dip coating from a mixed water-isopropanol solvent is a promising strategy for the fabrication of composites containing different functional materials for biomedical applications.



The goal of this investigation was the fabrication of composite coatings containing different functional biomaterials in the PMMA matrix using a water-isopropanol co-solvent. We targeted the fabrication of organic–inorganic composites containing bioactive ceramics, such as hydroxyapatite, silica and materials with antimicrobial properties, such as Ag2O and ZnO. Moreover, the fabrication of PMMA-ZnO composite coatings paves the way for the development of biosensors. Ibuprofen, tetracycline and amoxicillin were used as model drugs for the fabrication of coatings for drug delivery. The results presented below showed that the dip coating method is a versatile strategy for the development of composite coatings.




2. Materials and Methods


Poly(methyl methacrylate) (PMMA, MW = 350,000, Aldrich, Oakville, ON, Canada), ZnO, Ag2O, nanosilica, isopropanol, ibuprofen, tetracycline and amoxicillin were received from the MilliporeSigma company. Micron size silica was obtained from PCR Inc. Hydroxyapatite (HAP) nanoparticles were prepared by a chemical precipitation method, as described in previous investigations [46,47].



PMMA was dissolved in a mixture of water and isopropanol (20% water) at 50 °C, and the obtained solution was cooled to room temperature. The substrates for coating deposition were stainless steel foils (304 type, area 30 × 50 mm, thickness 0.1 mm). It should be noted that PMMA can also be dissolved in ethanol-water mixtures. However, the isopropanol-water solvent allowed for better PMMA solubility. Dip coating was performed at a substrate withdrawal speed of 10 mm min−1 from 10 g L−1 PMMA solutions without and with other functional materials for biomedical applications. The concentrations of such materials in the 10 g L−1 PMMA solutions were 5 g L−1 ZnO, HAP, micron size silica and nanosilica, ibuprofen, tetracycline, amoxicillin and 0.5 g L−1 Ag2O. The thickness of the as-deposited and room-temperature-dried monolayer coatings was 2–3 μm. Coating annealing was performed at 200 °C for 1 h.



The coating microstructure was examined using a JEOL SEM (scanning electron microscope, JSM-7000F). The coating composition was examined using a Bruker Smart 6000 X-ray diffractometer (XRD, CuK radiation). Thermogravimetric analysis (TGA, thermoanalyzer Netzsch STA-409) was carried out in air at a heating rate of 5 °C/min. For the TGA investigations, the deposits were removed from the substrates. A Bruker Vertex 70 spectrometer was used for the Fourier Transform Infrared Spectroscopy (FTIR) experiments.




3. Results


Figure 1 shows SEM images of PMMA coating prepared from 10 g L−1 PMMA solution. The microstructure of the as-deposited coating contained porous surface island networks formed on a relatively dense layer (Figure 1A). Such microstructure can result from the Stranski–Krastanov mode of film growth [48]. It should be also noted that PMMA is soluble in the isopropanol-water mixture in a narrow water concentration range. Therefore, a faster isopropanol evaporation rate during drying can result in a change in the solvent composition and precipitation of PMMA particles in the surface layer to form a porous network. Annealing resulted in the film melting and formation of dense coatings.



PMMA was successfully co-deposited with inorganic materials. Figure 2 shows SEM images of as-deposited and annealed coating prepared from 10 g L−1 PMMA solutions containing 0.5 g L−1 Ag2O, 5 g L−1 HAP and 5 g L−1 ZnO. The interest in polymer coatings containing Ag2O is attributed to the antimicrobial properties of Ag2O [49,50]. Therefore, small additives of Ag2O can be beneficial for biomedical applications of PMMA coatings. ZnO is widely used for the fabrication of biosensors. This strategy is based on the relatively high isoelectric point of ZnO, which was reported to be about pH = 9 [51]. Electrostatic interactions of ZnO with various biosensing molecules, which have a low isoelectric point and negative charge at pH = 7, facilitated the immobilization of such molecules on the positively charged ZnO particles [51]. The antimicrobial properties of ZnO particles are important for biomedical applications [52,53]. HAP is widely used for implant applications because its chemical composition is similar to that of the mineral part of natural bone [54,55,56]. The concentration of ZnO and HAP in the suspensions was larger than the Ag2O concentration in order to achieve a larger content of ZnO and HAP in the coatings. A larger HAP and ZnO content is necessary for the fabrication of bioactive coatings based on HAP [57] and the immobilization of biosensing molecules in coatings based on ZnO particles [51].



The as-deposited PMMA-Ag2O, PMMA-ZnO and PMMA-HAP coatings were porous (Figure 2). Annealing resulted in reduced coating porosity. The relatively high porosity of as-deposited PMMA-ZnO and PMMA-HAP coatings resulted from the packing of ZnO and HAP particles. The HAP particles had a needle shape. The SEM images of annealed PMMA-ZnO and PMMA-HAP coatings showed ZnO and HAP particles on the coating surface. The annealed films were crack free and relatively dense. The polymer acted as a binding and film-forming agent.



The fabrication of PMMA-silica coatings was motivated by their applications for the corrosion protection of biomedical implants with enhanced biocompatibility [58]. Figure 3 shows SEM images of as-deposited and annealed PMMA-silica coatings. The SEM images of as-deposited coatings showed particles of micron size silica and nanosilica. Annealing resulted in the formation of relatively dense coatings containing silica particles in the PMMA matrix. The nanosilica nanoparticles were incorporated into the PMMA matrix as individual particles or agglomerates.



The XRD and TGA methods were used for the analysis of the composite coatings. Figure 4a shows relatively broad peaks of pure PMMA.



XRD studies showed that the composite PMMA-ZnO, PMMA-HAP and PMMA- Ag2O coatings exhibited peaks of ZnO (Figure 4b), HAP (Figure 4c) and Ag2O (Figure 4d), respectively. Moreover, X-ray diffraction studies (Figure 4e) showed that the deposition from 10 g L−1 PMMA solutions containing 5 g L−1 HAP and 0.5 g L−1 Ag2O resulted in the fabrication of composite coatings containing HAP and Ag2O. Such coatings can potentially be used for the fabrication of biomedical implants with enhanced bioactivity and antimicrobial properties. The XRD studies also confirmed the fabrication of composite PMMA-silica coatings. Figure 5 compares the X-ray diffraction patterns of nanosilica, micron size silica and PMMA with the X-ray diffraction patterns of PMMA composites containing nanosilica and micron size silica. The X-ray diffraction patterns of individual materials showed broad peaks, and the composite materials showed peaks of both PMMA and silica, confirming the fabrication of composites.



The results of TGA studies of the composite coatings are presented in Figure 6. It is known [59] that the decomposition of PMMA in air occurs in the temperature range of 250–400 °C.



The TGA data for PMMA-HAP showed a small variation the sample mass below 300 °C and sharp reduction in the sample mass at higher temperatures due to the burning out of PMMA. The total mass loss at 1000 °C was found to be 61%, which indicated that the HAP content in the composite was 39%. The TGA data for PMMA-Ag2O showed weight losses at lower temperatures, which included two steps. A weight loss can result from dehydration, the decomposition of Ag2O [60] and the burning out of PMMA. The total mass loss at 1000 °C was found to be 94%. The decomposition of PMMA and Ag2O was observed [59,61] at temperatures above 200 °C. Therefore, weight loss in the range of 80–120 °C for PMMA-Ag2O can be attributed to dehydration. It is in this regard that porous and composite materials can accumulate a significant amount of water during synthesis [62,63,64,65]. Therefore, the drying of PMMA-Ag2O coatings at temperatures of 60–100 °C can be beneficial for antimicrobial applications. The TGA studies of the PMMA-ZnO, PMMA-micron size silica and PMMA-nanosilica showed a sharp reduction in mass loss at temperatures above 250–300 °C, and total mass loss was 32, 64 and 81%, respectively. The content of ZnO, micron size silica and nanosilica in the composite coatings was found to be 68, 36 and 19%, respectively. Therefore, the results of the XRD and TGA studies confirmed the formation of composite coating by a dip-coating method. The difference in the thermal behavior of the composites can result from different factors, such as different concentrations of inorganic components, silver reduction, different amounts of adsorbed water, the influence of the inorganic phase on the burning out of polymer and other factors.



The dip coating methods allowed for the fabrication of composite coatings containing drugs of different types. Ibuprofen, tetracycline and amoxicillin were used as model drugs of different types for the development of the dip coating method. Figure 7 shows SEM images of the composite coatings. The coatings show porous microstructures, which are beneficial for the drug release. Moreover, the biodegradability of PMMA is another beneficial factor for drug delivery [66].



The co-deposition of PMMA with drugs was confirmed by the XRD data presented in Figure 8. The X-ray diffraction patterns showed peaks of the drug materials.



The fabrication of the composite coatings was also confirmed by the results of FTIR spectroscopy. Figure 9 compares the FTIR spectra of as-received PMMA and drugs with the FTIR data for PMMA coatings containing drugs. The most intense bands in the spectrum of PMMA at 1703, 1230 and 1068 cm−1 are attributed to the carbonyl –C=O stretching, C–C–C stretching and skeletal rocking vibration of the polymer backbone, respectively [67]. The absorptions in the range of 1500–1400 cm−1 are related to the bending of the CH2, CH3 and OCH3 groups [67]. Similar absorptions were observed in the spectra of PMMA-ibuprofen, PMMA-tetracycline and PMMA-amoxicillin coatings. The FTIR spectra of ibuprofen [68] showed vibrational peaks at 935 cm−1, which resulted from the O–H bending group of ibuprofen. Carbonyl stretching vibration (C=O) is observed at 1718 cm−1, which corresponds to the carboxyl group (COOH) of ibuprofen. C–O stretching vibration is seen at 1230 cm−1. Such absorptions were observed in the spectrum of PMMA-ibuprofen. The main characteristic peaks of tetracycline [69] are located in the range of 1200–1700 cm−1. The peak at 1575 cm−1 is attributed to the vibration of NH2 amide [69]. The peak at 1446 cm−1 can be assigned to the C-ring-C stretching vibration [69]. Such peaks were observed in the spectrum of PMMA-tetracycline. The FTIR spectrum of amoxicillin [70] showed a C=O stretching band at 1772 cm−1, a C=O stretching band of amide at 1683 cm−1 and absorption due to the asymmetric stretching of carboxylate at 1573 cm−1. Additionally, the C-O bending vibration peak was observed at 1076 cm−1. Similar peaks were observed in the spectrum of PMMA-amoxicillin.



The experimental results described above confirmed the fabrication of composite coatings. The dip coating method developed in this investigation is a versatile strategy for the fabrication of composite coatings containing functional biomaterials of different types. Compared to other coating techniques, such as knife-coating or bar coating, dip coating involved the use of low-cost equipment. The isopropanol-water solvent offers benefits because the use of traditional toxic solvents for PMMA dissolution was avoided. The coatings obtained in this investigation provide a platform for the fabrication of implants with enhanced biocompatibility and antimicrobial properties, coatings for drug delivery and biosensors.




4. Conclusions


The ability to eliminate the use of traditional toxic solvents for PMMA offers benefits for the fabrication of composite coatings for biomedical applications. PMMA and composite coatings were obtained using a water-isopropanol solvent, avoiding the use of traditional toxic solvents. The dip coating method is a versatile strategy for the fabrication of composite coatings containing various functional materials, such as bioceramics, antimicrobial agents and drugs. PMMA coatings containing hydroxyapatite and silica are promising for the fabrication of biomedical implants with enhanced bioactivity and biocompatibility. The incorporation of materials with antimicrobial properties, such as Ag2O and ZnO, into the PMMA matrix can potentially impart antimicrobial properties to the composite coatings. PMMA-ZnO coating can provide a platform for the immobilization of biosensing molecules and the fabrication of biosensors. PMMA-drug composite coatings offer potential for drug delivery. The dip coating method is a simple, low-cost technique, ideally suitable for multilayer processing. Therefore, further development of this method can result in advanced microstructures containing layers of different functional materials. It is expected that future progress in this method will result in the deposition of new coatings containing other functional biomaterials for various applications.
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Figure 1. SEM images of PMMA coating: (A) as-deposited and room-temperature-dried, (B) annealed at 200 °C. 






Figure 1. SEM images of PMMA coating: (A) as-deposited and room-temperature-dried, (B) annealed at 200 °C.
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Figure 2. SEM images of (A,B) PMMA-Ag2O, (C,D) PMMA-HAP and PMMA-ZnO coatings, (A,C,E) as-deposited and room-temperature-dried, (B,D,F) annealed at 200 °C. 






Figure 2. SEM images of (A,B) PMMA-Ag2O, (C,D) PMMA-HAP and PMMA-ZnO coatings, (A,C,E) as-deposited and room-temperature-dried, (B,D,F) annealed at 200 °C.
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Figure 3. SEM images of (A,B) PMMA-micron size composites and (C,D) PMMA-nanosilica composites, (A,C) as-deposited and room-temperature-dried, (B,D) annealed at 200 °C. 
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Figure 4. X-ray diffraction patterns of (a) as-received PMMA, and composites (b) PMMA-ZnO, (c) PMMA-HAP, (d) PMMA-Ag2O and (e) PMMA-HAP-Ag2O, ▼—JCPDS file 04-020-9583, ▲—JCPDS file 04-008-4759, ●—JCPDS file 00-041-1104, ♦—PMMA. 
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Figure 5. X-ray diffraction patterns of (a) PMMA, (b) micron size silica, (c) PMMA-micron size silica, (d) nanosilica and (e) PMMA-nanosilica (●—silica, ♦—PMMA). 
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Figure 6. TGA data for (A) PMMA-HAP, (B) PMMA-Ag2O, (C) PMMA-ZnO, (D) PMMA-micron size silica and (E) PMMA-nanosilica composites. 
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Figure 7. SEM images of as-deposited and room-temperature-dried coatings: (A) PMMA- ibuprofen, (B) PMMA-tetracycline and (C) PMMA-amoxicillin coatings. 
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Figure 8. X-ray diffraction patterns of (a) PMMA-amoxicillin, (b) PMMA-ibuprofen and (c) PMMA-tetracycline; major XRD peaks are labeled: ▲—peaks corresponding to JCPDS file 00-039-1832 of amoxicillin, ●—peaks corresponding to JCPDS file 00-032-1723 of ibuprofen, ♦—peaks corresponding to JCPDS file 00-039-1985 of tetracycline. 
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Figure 9. FTIR spectra of (a) as-received PMMA (b) as-received ibuprofen, (c) PMMA-ibuprofen, (d) as-received tetracycline, (e) PMMA-tetracycline, (f) as-received amoxicillin and (g) PMMA-amoxicillin. 
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