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1. Introduction

It is well known that colloidal aggregates constitute true chemical nano-reactors in
their different forms. By concentrating the reactants in restricted areas or separating them
between the different domains of the system, these reaction media can cause both critical
catalytic phenomena and dramatic inhibitions of chemical processes [1–3].

One such reaction medium is micellar aggregates. It is well known the influence of
aqueous micelles upon the chemical equilibria and the rate of chemical reactions. Evidences
of these effects have been summarized in the literature [4–6]. Micellar catalysis on organic
and inorganic reactions has been extensively studied, and it is well known that it is related
to the ability of micelles to absorb all types of molecules [7–9]. The reagents incorporation
into the micelle is driven by hydrophilic/hydrophobic interactions and electrostatic inter-
actions between the micellar surface and the reagents. In this way, the interaction between
the reagents and the micellar aggregate can be modeled by applying the pseudophase
model [10]. In this model, bulk water can be considered like one continuous phase and
micellar aggregate as another. The reagents would be distributed between both phases, or
they would be left behind from one of them. In the same way, the chemical reaction could
also occur in both phases or in one of them.

We have introduced the kinetic behavior in the presence of micelles because humic
acids have behavior in the aqueous solutions similar to micellar aggregates [11,12].

Humic substances (HSs) represent a significant part of the organic matter that is found
in soils and in natural environments. These have a high specific surface area [13–15], with
a negative surface charge due to numerous deprotonable carboxylic and phenolic groups
(see Scheme 1) [16]. Furthermore, due to amino groups that can be protonated, it enables a
positive surface charge. That is why the surface charge has a significant dependence on pH.
Full ionized charge capacity (CEC) is 0.3–0.6 mol·kg−1.
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Scheme 1. Model of the humic acid chemical structure. 

The basic hydrolysis reaction kinetics of the reagents assessed in this review paper 
were followed by the first-order conditions ([V] « [OH–]), using for this aim Varian Cary 
50 Bio spectrophotometer with the thermostated reader cell at (25.0 ± 0.1) °C. The HSs 
used for these experiments absorb in the UV-vis region, so the spectra were carried out 
from 200 to 800 nm, using as blank the spectrum of HSs without reaction (in absence of 
the reagent to study). As previously reported, the disappearance of the shoulder at 
maximum wavelength was critical to assess the basic hydrolysis of the molecules tested 
(e.g., λmax(VI) = 242 nm, λmax(HCF) = 275 nm). The data were recorded in triplicate to ensure 
the reproducibility of the method. As abovementioned, the data were treated by assuming 
the conditions of the pseudo-first order and the rate equation to determine the reagents R 
disappearance as follows: 
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where [R] is the reagents concentration, kw is the bimolecular rate, and kobs is the pseudo-
first rate constants for the basic hydrolysis of the reagents. 

In aqueous solution [17–21], in which HSs acts as micellar-like aggregates, they can 
adsorb different substrates [22–29] that can act as environmental pollutants [30], 
increasing or reducing their bioavailability, which is the case of different xenobiotics 
[31,32] that are persistent in the aquatic environment or soils [33,34]. The role of humates 
and humic acids in different organic substrates’ mobility was conveniently illustrated by 
Ramus et al. [35,36] and Chiou et al. [37]. Thus, it was shown that when the content of 
humic substances in solution increases, significant decreases are observed in the mass 
transfer values at the gas–liquid interface. Furthermore, they can modify pollutants’ 
destination in the environment and act as catalysts in the chemical breakdown of some 
pollutants [31,38–44]. Previous studies show the effect of HSs in solution on hydrolysis 
reactions (the main transformation pathway for many xenobiotics in the environment 
[39,45]. These substrates are typically composed of a marked hydrophobic character that 
shows a high affinity for HSs aggregates [38–46]. 

Humic substances are also able to “kidnap” heavy metals [47–54] and interact with 
minerals [28,49,55,56], modifying the absorption and toxicity of these compounds. There 
are few studies in the literature in which the catalytic activity of HSs has been compared 
[25,38,45,46,57,58]. These studies can be critical, considering their possibility in the 
biogeochemical cycle of elements and the high concentrations of HSs in some natural 
environments. 

In this paper, we will review some of the contributions of our research group [59–63], 
which has tried to shed light on the role of humic acids and humates in aqueous solution, 
as colloidal aggregates, in the catalysis of different basic hydrolysis processes. HSs used 
in these studies were isolated from soil using the method previously described [64]. 

Scheme 1. Model of the humic acid chemical structure.

The basic hydrolysis reaction kinetics of the reagents assessed in this review paper
were followed by the first-order conditions ([V] « [OH–]), using for this aim Varian Cary
50 Bio spectrophotometer with the thermostated reader cell at (25.0 ± 0.1) ◦C. The HSs
used for these experiments absorb in the UV-vis region, so the spectra were carried out
from 200 to 800 nm, using as blank the spectrum of HSs without reaction (in absence
of the reagent to study). As previously reported, the disappearance of the shoulder at
maximum wavelength was critical to assess the basic hydrolysis of the molecules tested
(e.g., λmax(VI) = 242 nm, λmax(HCF) = 275 nm). The data were recorded in triplicate to ensure
the reproducibility of the method. As abovementioned, the data were treated by assuming
the conditions of the pseudo-first order and the rate equation to determine the reagents R
disappearance as follows:

− d[R]
dt

= kw[Rs]t[OH−]t = kobs[Rs]t (1)

where [R] is the reagents concentration, kw is the bimolecular rate, and kobs is the pseudo-
first rate constants for the basic hydrolysis of the reagents.

In aqueous solution [17–21], in which HSs acts as micellar-like aggregates, they can
adsorb different substrates [22–29] that can act as environmental pollutants [30], increasing
or reducing their bioavailability, which is the case of different xenobiotics [31,32] that are
persistent in the aquatic environment or soils [33,34]. The role of humates and humic acids
in different organic substrates’ mobility was conveniently illustrated by Ramus et al. [35,36]
and Chiou et al. [37]. Thus, it was shown that when the content of humic substances
in solution increases, significant decreases are observed in the mass transfer values at
the gas–liquid interface. Furthermore, they can modify pollutants’ destination in the
environment and act as catalysts in the chemical breakdown of some pollutants [31,38–44].
Previous studies show the effect of HSs in solution on hydrolysis reactions (the main
transformation pathway for many xenobiotics in the environment [39,45]. These substrates
are typically composed of a marked hydrophobic character that shows a high affinity for
HSs aggregates [38–46].

Humic substances are also able to “kidnap” heavy metals [47–54] and interact with
minerals [28,49,55,56], modifying the absorption and toxicity of these compounds. There
are few studies in the literature in which the catalytic activity of HSs has been
compared [25,38,45,46,57,58]. These studies can be critical, considering their possibil-
ity in the biogeochemical cycle of elements and the high concentrations of HSs in some
natural environments.

In this paper, we will review some of the contributions of our research group [59–63],
which has tried to shed light on the role of humic acids and humates in aqueous solution,
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as colloidal aggregates, in the catalysis of different basic hydrolysis processes. HSs used in
these studies were isolated from soil using the method previously described [64].

2. Hydrolysis of Carbocations

The first group of reactions that we decided to analyze in humic substances was the alkaline
fading of stable triaryl methyl carbocations (Scheme 2) [61]. This is because it is a reaction that has
already been studied, and these carbocations entangled with different nucleophiles were used
to construct of the nucleophilic scale of the Ritchie N+ family [65,66], which was considered
as a challenge to the reactivity–selectivity principle [67,68]. These reasons made it an
instrument for studying reactivity in other microorganized environments. One of the
first published studies on catalysis was carried out precisely with the basic hydrolysis of
crystal violet [69,70]. Subsequently, they were widely used in studies on the catalytic or
inhibitory effects of normal micelles [71], reverse micelles or microemulsions [72–74], and
other microheterogeneous systems [75]. In this way, we understood that it could be an
excellent chemical probe to obtain valuable information on the role of the different factors
that affect the general reactivity in HSs micelles, such as the reagents’ compartmentalization
and the characteristics of the HSs aggregates as reaction medium.
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Scheme 2. Crystal violet (CV) and malachite green (MG).

Thereby, the basic hydrolysis of CV and MG in the presence of different concentrations
of HSs has been studied under conditions in which all the humic acids are in the form
of humate. The presence of HSs has been observed to inhibit the hydrolysis reaction, as
shown in Table 1. An inhibition of 4.5 times was observed for the hydrolysis of CV and
24 times for the case of MG.

Table 1. Kinetic parameters of basic hydrolysis of carbocations in the presence of HSs aggregates
obtained from the pseudophase model (Equation (2)).

Substrate kw/M−1·min−1 Ks/mg−1·L
CV [61] 1.23 ± 0.02 0.13 ± 0.01
MG [61] 181 ± 6 0.65 ± 0.05

This behavior is justified based on the distribution of the reagents and the different
reaction loci in the microheterogeneous system. Thus, the reaction can occur inside the
aggregate, on the aggregate’s surface (in the Stern layer), or in the bulk solvent. The interior
of the aggregate will have a hydrophobic nature. However, the CV or MG housed there
could not be exposed to OH− and therefore would not participate in the reaction. The same
would happen on the aggregate’s surface since the OH− would also be excluded due to
electrostatic repulsions between the OH− and the negatively charged groups located on
the surface of the aggregate [76,77]. Thus, they only take place in the bulk water, where
the OH− and a part of the carbocations non-associated with the aggregate will be found.
Scheme 3 shows the mechanism that takes place in this microheterogeneous system.
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Scheme 3. Pseudophase model for basic hydrolysis of CV/MG in the presence of HSs.

The observed results [61] would be equivalent to those observed in anionic mi-
celles [78]. The observed kinetic behavior complies with the kinetic equation obtained from
Scheme 3 (Equation (2)), where the subscripts s and w denote the pseudophase micellar and
the bulk water, respectively, and Ks (Equation (3)) is the carbocation association constant to
the micellar aggregate, and k2 is the rate constant in pure water.

k2 =
kw

1 + Ks[HSs]
(2)

Ks =
[R]s

[R]w[HSs]
(3)

1
k2

=
1

kw
+

Ks

Kw
[HSs] (4)

From these equations, we obtained values of the substrate association constants to HSs
aggregate. The values obtained were Ks = (0.13 ± 0.01) mg−1·L and Ks = (0.65 ± 0.05) mg−1·L,
respectively, for the CV and the MG. This higher value of Ks observed for the MG versus
the CV is due to the lower polarity of the first versus the second, with which it would be
expected that it would penetrate more deeply into the HSs [60]. Figure 1 shows the fit of
experimental results to linearized Equation (2) (Equation (4)). Table 1 shows the kinetic
parameter for these reactions.
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3. Hydrolysis of N-Methyl-N-nitroso-p-toluene Sulfonamide

Another molecule of interest whose study was approached in our laboratory was N-
methyl-N-nitroso-p-toluenesulfonamide (MNTS) [54] (see Scheme 4), which is of biological
interest [79] because it is well known that nitrosulfonamides are very effective nitrosating
agents [68]. Another advantage of this molecule is the detailed research of our team
of the mechanisms of its hydrolysis reactions (both acidic and basic) together with the
mechanisms of the transnitrosation processes that involve it, both in homogeneous and
microheterogeneous media [1–3,5,80–83]. That is why we consider it as a suitable chemical
probe for its study in aggregated HSs since it could be a valuable tool for deepening the
knowledge of the chemical reactivity in the presence of HSs micelles, complementing the
previous observations acquired from the study of the processes of hydrolysis of CV and
MG (vide supra).
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Scheme 4. N-methyl-N-nitroso-p-toluenesulfonamide (MNTS).

As in the previous section, the presence of aggregated HSs inhibits the basic hydrolysis
of MNTS by the association of MNTS with the aggregates. Again, this behavior was
modeled using the pseudophase model. Considerations like those applied for CV, and
MG, led us to propose a mechanism like that of the previous ionic compounds, such as the
one shown in Scheme 3, so that, once again, the corresponding kinetic equation would be
Equation (2) and the distribution of the MNTS would be governed by Equation (3). From
the adjustment of the experimental results to Equation (2), a value for Ks = (25 ± 2) mg−1·L
was obtained (see Figure 2).
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4. Hydrolysis of Carbofuran and Derivatives, Iprodione, and Vinclozolin

Previous results show that the comparability presented by the HSs aggregates have a
kinetic behavior analogous to the conventional micellar aggregates. With the study of the
basic hydrolysis of both ionic substances (MG and CV) [60] and with non-ionic substances
(MNTS [54]), the validity of the micellar pseudophase model was demonstrated beyond
any doubt. For this reason, the stability of different xenobiotics in basic media and in the
presence of HSs in aqueous solution was discussed below. In this way, the basic hydrolysis
of carbofuran (CF) [62] and two derivatives of carbofuran [62]—3-hydroxy-carbofuran
(HCF) and 3-keto-carbofuran (KCF), as well as iprodione (IP) [61] and vinclozolin (VI) [59]
in the presence of HSs, were analyzed, and their behavior was compared with similar
results in ionic and non-ionic micelles. Scheme 5 shows the xenobiotics under study.
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Scheme 5. Carbofuran and carbofuran derivatives, iprodione (IP), and vinclozolin (VI).

In the case of carbamates, a curious behavior was observed since we found an inhibi-
tion on the basic hydrolysis of HCF [62] and KCF [62], justifiable, as in the previous cases,
based on the association of the substrates to the aggregate and the exclusion of OH− from
their vicinity based on electrostatic considerations (vide supra). When the experimental
data is fitted to a mechanism similar to that used for the case of MNTS and ionic com-
pounds, (Scheme 3) (Equations (2) and (3)) we obtain values of the constant in water of
kw = (1.86 ± 0.06) × 102 M−1·min−1 and kw = (11.4 ± 0.6) × 103 M−1·min−1 and some val-
ues of association constants of Ks = (1.0 ± 0.1) × 10−2 mg−1·L and Ks = (5 ± 1) × 10−3 mg−1·L,
respectively, for HCF and KCF. However, no effect is found on the reaction rate for CF [62]
hydrolysis, so we must assume that in this case, CF absorption does not occur inside the
HSs aggregate, and all the CF remains in the bulk water. Table 2 shows the kinetic results
obtained and Figure 3, as an example, shows the pseudophase model fit of experimental
results for basic hydrolysis of carbofuran and carbofuran-derivatives.
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Table 2. Kinetic parameters of basic hydrolysis different xenobiotics in the presence of HSs aggregates
obtained from the pseudophase model (Equation (2)).

Substrate kw/M−1·min−1 Ks/mg−1·L

CF [62] (0.66 ± 0.06) × 102 0
HCF [62] (1.86 ± 0.06) × 102 (1.0 ± 0.1) × 10−2

KCF [62] (11.40 ± 0.60) × 103 (5.0 ± 1.0) × 10−3

IP [61] (1.88 ± 0.01) × 103 (1.4 ± 0.1) × 10−2

VI [59] (8.20 ± 0.40) × 102 (9.7 ± 0.1) × 10−2
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Figure 3. Pseudophase model (Equation (4)) fit of experimental results for basic hydrolysis of CF (#),
HCF (•), and KCF (�) in the presence of humic aggregates. T = 25 ◦C.

When the basic hydrolysis of iprodione (IP) [61] was analyzed, inhibition was also
observed. This behavior indicates that the mechanistic model applied in the case of
carbofuran and carbofuran-derivatives is still valid. In this case, a slightly higher inhibition
was observed than in the previous cases. In the case of carbofuran-derivatives, an inhibition
of ~1.7- and 1.5-fold, respectively, had been found for the case of HCF and KCF (we must
remember that we had not found an effect of the presence of HSs aggregates on the basic
hydrolysis of CF) while in the case of the IP, the decrease in speed was 2-fold.

As in the previous cases, from Equation (2), we have obtained the correspond-
ing kinetic parameters. A rate constant for the hydrolysis process in bulk water of
kw = (1.878 ± 0.006) × 103 M−1·min−1 and an association constant to the addition of
Ks = (1.40 ± 0.10) × 10−2 mg−1·L (Table 2). The higher value of the observed Ks would jus-
tify the greater inhibition observed on the hydrolysis of the IP compared to the carbofuran-
derivatives.

Regarding the results obtained for the basic hydrolysis of vinclozolin (VI) [59], the
inhibition observed due to the presence of HSs aggregates was much more dramatic,
obtaining a decrease in the reaction rate of 9-fold. When the basic hydrolysis of iprodione
(IP) was analyzed, inhibition was also observed. By applying the pseudophase model and
adjusting the experimental data to Equation (2), we obtain an association constant to the
aggregate significantly higher than in the previous cases, Ks = (9.7 ± 0.1) × 10−2 mg−1·L
(Table 2). The greater affinity of the VI towards the HSs aggregates would cause this more
significant inhibition observed on the basic hydrolysis in this compound.
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5. Binding Constants and Hydrophobicity of HSs Core

Because of the units of Ks, it is not possible to apply a direct comparison of this value
with the corresponding ones for normal micelles to evaluate the HSs core’s hydrophobicity.

However, with the data obtained for the different hydrolysis reactions discussed in the
previous sections, we can compare the ratios between the association constants obtained
for aggregated HSs and normal micelles.

In the literature, there are abundant studies that obtain the association constants of
some of these compounds (MNTS [82,84–86] and CV [75,87]) to a large number of micelle
aggregates, finding a linear correlation between Ks(MNTS)/Ks(CV) and the length of the
hydrocarbon chain of traditional surfactants. Thus, the Ks(MNTS)/Ks(CV) ratio in the
presence of HSs aggregates is 192. For the OTACl (octadecyl trimethyl ammoniumchloride),
we find that Ks(MNTS)/Ks(CV) has a value of 10, that is, 19 times less than that found for
HSs. In the case of SDS (sodium dodecyl sulfate), the value of Ks(MNTS)/Ks(CV) would
have a value of 4.3, in this case, 45 times less than the corresponding one for HSs. Figure 4
shows the ratio value between MNTS and CV binding constants to different chain length
surfactants. It is, therefore, evident that the core of aggregate HSs is drastically more
hydrophobic than that of traditional micelles, both anionic and cationic.
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Furthermore, it is evident that the hydrophilic/hydrophobic interactions are the main
driving force behind the association of the different substrates to the aggregate, as evidenced
by the evident correlation between the logP values of the substrates and the association
constants found from the adjustment of the experimental data to the micellar pseudophase
model (see Figure 5).
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6. Conclusions

In summary, the effect of the presence of micelles formed by HSs on the basic hydroly-
sis reactions results in an inhibition due to the exclusion of OH− from the Stern layer of
the aggregate due to the electrostatic interactions between the negative surface charge of
the HSs and the OH− ion. In this way, the inhibitions would be due to the inclusion of the
different substrates inside micelles, protecting them from a nucleophilic attack by OH−.

The hydrophilic/hydrophobic interactions are the main driving force behind the
association of the different substrates to the aggregate, which has been demonstrated due
to the evident correlation between the logP values of the different substrates and their
binding constants.

Therefore, when comparing the constants obtained in the presence of HSs with the
constants of association to other micellar aggregates, it can be concluded that the core of
the aggregates of HSs has a hydrophobic character significantly greater than that of “usual”
micelles of sodium alkyl sulfate, alkyl trimethyl ammonium chloride or alkyl pyridinium
chloride, even for hydrocarbon chains of more than 18 carbon atoms.
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Abbreviations

CEC ionized charge capacity
CF carbofuran
CV crystal violet
HCF 3-hydroxy-carbofuran
HSs humic substances
IP iprodione
KCF 3-keto-carbofuran
MG malachite green
MNTS N-methyl-N-nitroso-p-toluenesulfonamide
OTACl octadecyl trimethyl ammonium chloride
SDS sodium dodecyl sulfate
VI vinclozolin
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