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Abstract: Biodiesel is produced by the transesterification of animal fats and vegetable oils, pro-
ducing a large amount of glycerol as a by-product. The crude glycerol cannot be used in the food
or pharmaceutical industries. It is crucial to transform glycerol into value-added products with
applications in different areas to biodiesel be economically viable. One of the possible applications
is its use as a precursor for the synthesis of carbon materials. The glycerol-based carbon materials
have distinct properties due to the presence of sulfonic acid groups on the material surface, making
them efficient catalysts. Additionally, the glycerol-based activated carbon materials show promising
results concerning the adsorption of gases and liquid pollutants and recently as capacitors. Despite
their potential, currently, little research has been carried out on the synthesis and application of those
materials. This review summarized the preparation and application of carbon materials from glycerol,
intending to show the potential of these materials.

Keywords: biodiesel production; crude glycerin; carbon materials

1. Introduction

Biodiesel is obtained predominantly by transesterification (chemically or enzymatic)
of vegetable oils and animal fats and is known for its energy security awareness. It is
composed of free fatty acid alkyl esters and has low toxicity and high biodegradability [1].
Biofuels are a clean energy source, whose combustion emits ≈ 35% fewer greenhouse gases
compared with diesel fuel [1,2]. However due to technological limitations, biodiesel’s cost
is still higher than fossil diesel [1].

The transesterification of a variety of materials that contain fatty acids that include
various vegetable and animal fats, vegetable oils, and edible oil processing residues
such as soybean [3], sunflower [4], palm [5], rapeseed [6], canola [7], Jatropha, and
cottonseed [8–10] generates a large amount of glycerol waste. For instance, for each 10 kg of
biodiesel produced, 1 kg of glycerol is generated [11]. The increase of biodiesel production
has, as a consequence, an increase of glycerol production. Solutions for this glycerol must
be found [12–15] to ensure the economic feasibility of biodiesel. Yet this crude glycerol
cannot be used in most of the traditional applications of glycerol such as food [16–19] and
pharmaceutical industries [20–23], personal care products [24–26], anti-freezers [27,28],
e-cigarette liquids [29–31], explosives [32] and many other processes as an intermediate
compound [33–35] due to its poor quality. Additionally, the use of crude glycerol has been
gaining ground as a component of heavier fuels and in the processes of obtaining acrylic
acid [36]. A much less explored possible use of crude glycerol concerns the development
of new solid materials generating high-value products. Coal is traditionally produced
from waste, thus adding value to the residue [37,38]. However, the use of glycerol as a
precursor in the preparation of carbon materials (carbon and activated carbon, Figure 1) is
relatively new and unexplored in comparison with other precursors such as rapeseed [37],
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potato peel [38,39], sugarcane bagasse [40,41], waste coffee residues [42,43], waste rice
husk [44,45], and waste corn [46,47], etc. The glycerol-based carbon materials are obtained
in one step by in situ partial carbonization and sulfonation of glycerol with sulfuric acid.
In turn, glycerol-based activated carbon materials are prepared in two steps: (i) partial
carbonization and sulfonation of glycerol in the presence of sulfuric acid; (ii) chemical or
thermal activation of the glycerol-based carbon material. The main advantages of the coal
obtained from glycerol are the sulfonic acid groups on the material surface, which give
them specific properties for diverse environmental applications such as catalyst, capacitor,
and adsorbent materials. This review collected the existing data about the production and
use of carbons from glycerol. Despite their potential, most of the research is not contempo-
rary. We intended to show the potential and arouse the interest for this type of material,
thus allowing the development of more effective glycerol-based carbons. The synthetic
method of the glycerol-based carbons investigated is the same with few variations in the
experimental conditions. More in-depth research into the synthesis may lead to carbons
with improved properties for the desired applications. The use of these carbons in catalysis
is the most explored application. Still, activated carbons have much potential as adsorbents
of pollutants and capacitors, yet they are unexplored, and new research is needed, as may
be seen in this review. In this work, we intended to call the attention of scientists in the area
by showing the potentialities of this by-product in developing advanced carbon materials
and promote research in an area with great potential.
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Figure 1. Synthesis of glycerol-based carbons and their main applications.

2. Synthesis of Glycerol-Based Carbon Materials

The synthesis of carbons from glycerol is a relatively new area concerning the use of
glycerol. It mainly consists of the partial carbonization and sulfonation of glycerol with
sulfuric acid. The main differences observed in the literature concerning the synthesis
of carbons are variations in experimental conditions such as glycerol: sulfuric acid mass
ratio, reaction temperature, and time. The paper of Devi et al. published in 2009 [48]
was the first to synthesize carbon from glycerol. It used the one-pot reaction shown in
Figure 1. The partial carbonization and sulfonation of glycerol were carried out with
concentrated sulfuric acid (1:4 w/w) using soft experimental conditions. First, the glycerol
and sulfuric acid mixture was heated to 180 ◦C. The mixture was kept at this temperature
until foaming ceased. Then, the product was cooled to room temperature and washed
with hot water under agitation until reaching neutral pH value. Two years later, the same
authors synthesized other carbon using the same procedure but used pitch glycerol as a
carbon source and at a different temperature (250 ◦C) [49]. The reaction yields were 50%
and 40%, respectively, and no explanation for why a higher temperature had to be used for
this last procedure was presented. The carbons were fully characterized by a great diversity
of techniques (elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray Powder
Diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform InfraRed (FTIR),
Magic-angle spinning (MAS) NMR 13C, Raman, potentiometric titrations, N2 isotherms,
and thermogravimetry/differential thermal analysis (TG/DTA). The obtained carbons had
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a non-porous nature (<1 m2·g−1), a high density of sulfonic acid groups (–SO3H), and
their catalytic capacity in the esterification of palmitic acid, tetrahydropyranylation, and
dehydropyranylation was evaluated (See Section 3.1 for more details).

Mantovanic et al. [50] and Gonçalves et al. [51] prepared carbons by hydrothermal
carbonization using a mixture of glycerol waste and sulfuric acid (different mass ratio) at
150 ◦C or 180 ◦C and using several reaction times (0.25–24 h). Interestingly, the authors
successfully increased the number of sulfonic groups using sulfuric acid in a post-synthesis
treatment [51]. The carbons also had a non-porous nature and a high numbers of acidic
surface groups and were tested as catalysts in acetalization and etherification reactions (see
Section 3.1 for more details).

The synthetic procedure described gives rise to non-porous carbons whose main
application is in catalysis. For other applications, such as adsorption, the development of
a porous structure is crucial. Typically, the synthesis of activated carbons from glycerol
requires two steps, carbonization, followed by an activation step [52–54]. Some examples of
those activated carbons obtained via chemical activation (KOH, ZnCl2, and H3PO4) [52,53]
and thermal activation [55,56] may be found in the literature. Different activation agent
ratios and temperatures have been tested to vary the porosity of the obtained materials.
For instance, the group of Ribeiro et al. [56], after obtaining the carbon using the already
described procedure, carried out further calcination (120 ◦C, 400 ◦C, 600 ◦C—60 min in
each temperature, plus 800 ◦C—240 min) under nitrogen flow. The obtained material
showed high thermal stability, a basic character due to the decomposition of the sulphonic
acid groups, and non-porous nature. This material was then thermally activated under
an air atmosphere at different temperatures (150 ◦C, 200 ◦C, 300 ◦C, and 350 ◦C) for
1 h and generated porosity which increased with the temperature as shown in Figure 2.
Additionally, the increase in temperature in the surface oxygen groups (lactones, phenols,
and quinones) increases its acid character. Although rare, this work used activated carbons
in the catalytic wet peroxide oxidation (CWPO) of 2-nitrophenol (See Section 3.1 for more
details).
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microporosity.

Another way of obtaining porous carbons may be using a pore-forming agent. The
work of Lee et al. [57] used a pure glycerol and crude waste glycerol as a carbon precursor
for mesoporous carbon. It also explored glycerol as a pore-forming agent for mesoporous
silica. The mesoporous carbon was obtained by the carbonization of glycerol–silica nanopar-
ticles at high temperatures (600 ◦C) under a nitrogen atmosphere. NaOH solution was used
for the removal of the silica–nanoparticle framework. By simply changing the silica particle
size in glycerol–silica nanocomposites or changing the silica particle size, it was possible
to tailor the pore size and volume, surface area, and pore wall thickness of mesoporous
carbon. Due to the presence of other components that may also act as a pore-forming
agent in the crude waste glycerol, its use in the synthesis leads to a multimodal pore size
distribution of micropores smaller than 2 nm, small mesopores centered at 3.8 nm, and
large mesopores above 10 nm.
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To the best of our knowledge, the work published in 2016 by Álvarez-Torrellas
et al. was the first to study the application of glycerol-based activated carbons as ad-
sorbent materials [55]. The synthesis consisted in the partial carbonization of a glycerol–
sulfuric acid mixture, followed by thermal activation. A glycerol and sulfuric acid mixture
was heated to 180 ◦C for 20 min. The resulting material was calcinated in a tube fur-
nace under a nitrogen flow (100 cm3·min−1) at different temperatures (120 ◦C, 400 ◦C
and 600 ◦C) during 60 min and 800 ◦C during 240 min. Then the calcined material (GBCM)
was thermally activated at different temperatures (200 ◦C, 300 ◦C and 350 ◦C, for 60 min) in
a tube furnace under oxidative atmosphere (flow of 100 cm3·min−1). The textural proper-
ties were studied by N2 adsorption-desorption isotherms. The presence of the oxygenated
groups was investigated by zeta potential and FTIR data. All obtained acid activated
carbons (GBCM200, GBSM300 and GBCM350—where the subscript represents the activation
temperature) presented high surface area and microporous structure developed. Their
adsorption capacities were evaluated through flumequine and tetracycline (See Section 3.2
for more details).

Cui et al. [54] investigated glycerol as a liquid precursor for the preparation of activated
carbon. The authors concluded that glycerol pyrolysis in the absence of acid generates no
carbon material. This was justified by the evaporation of glycerol (boiling point of 290 ◦C)
before it was carbonized. The description of different acids’ roles and the absence of acid in
carbon formation was reported. For this effect, glycerol was mixed with an acid (H2SO4,
H3PO4, HCl, or CH3COOH) at volume ratios (10:1, 10:2 and 10:3 v/v). The solutions
were added to a quartz boat and heated on the tube furnace in N2 atmosphere to 400 ◦C,
500 ◦C, 600 ◦C, 700 ◦C, or 800 ◦C for 1 h. The glycerol pyrolysis in the presence of HCl or
CH3COOH did not produce carbon material. However, with H2SO4 or H3PO4 addition,
glycerol pyrolysis generated carbon materials. According to the authors, the glycerol is
dehydrated and polymerized when exposed to the presence of acids (H2SO4 or H3PO4)
at moderate temperatures (<200 ◦C). Both acids induce dehydration of alcohol groups via
protonation of the alcoholic oxygen (Figure 3).
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Figure 3. General representation of the polymerization reaction.

In the case of HCl, it has a low boiling point (48 ◦C), and in the case of CH3COOH,
because it is a weak acid, it cannot initiate the glycerol dehydration. In this context, carbon
materials with various functional groups and porosities were prepared via sulfuric or
phosphoric acid-mediated polymerization and carbonization followed by steam or CO2
activation. The porosity in the activated carbons reached surface areas up to 2470 m2·g−1

and pore volumes up to 1.44 cm3·g−1. The samples prepared with H3PO4 were consistently
more mesoporous than samples prepared with H2SO4. The adsorption capacity of those
materials was evaluated for the removal of gas phase volatile organic compounds (VOCs)
and aqueous phase chromium Cr(VI) (See Section 3.2 for more details).

Naverkar et al. [58] prepared glycerol-based carbon by partial carbonization of glycerol
using concentrated sulfuric acid (molar ratio 1:4) followed by thermal treatment. The
sulfuric acid was added dropwise to glycerol (10 g) and stirred for 20 min at 180 ◦C.
The carbonized material was further treated at 120 ◦C and 350 ◦C to obtain the samples
GBC-120 and GBC-350. The carbon materials were characterized by XRD, FTIR, thermal
analysis (TG/DTG/DTA), pHPZC measurements, SEM, and N2 adsorption-desorption at
low temperature. The samples GBC-120 and GBC-350 presented BET surface areas of
21 m2·g−1 and 464 m2·g−1, respectively. They were studied for the adsorption of methylene
blue (See Section 3.2 for more details).

Gonçalves et al. [53] also prepared glycerol-based activated carbon via two steps
(polymerization + chemical activation). Firstly, the glycerol polymer was prepared by
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glycerol polymerization under reflux in the presence of sulfuric acid. The glycerol poly-
mer was chemically activated with ZnCl2 or H3PO4. The authors also investigated sev-
eral activated carbon synthesis conditions such as the type of activating agent (ZnCl2
or H3PO4), the impregnation ratio (ZnCl2 (XZn = 0.4 and 0.8) and H3PO4 (XP = 0.3 or
0.6) activating agent mass/polymer mass), activation time, and temperature. They were
evaluated as supercapacitor electrode and for the adsorption of organic contaminants (See
Sections 3.2 and 3.3 for more details).

Glycerol-based magnetic carbon composites were synthesized by Medeiros et al. [59].
The carbon composites were prepared by mixing glycerol waste and iron(III) salt (heating
to 380 ◦C, 600 ◦C, or 800 ◦C) for 3 h in a vertical reflux reactor. The textural proper-
ties of GFe3-380 (5 m2·g−1), GFe3-600 (140 m2·g−1), and GFe3-800 (136 m2·g−1) com-
posites were evaluated by N2 adsorption–desorption isotherms. The carbon composites
presented the following surface area 5 m2·g−1 (GFe3-380), 140 m2·g−1 (GFe3-600) and
136 m2·g−1 (GFe3-800). According to the pore size distribution for composites, the samples
GFe3-600 and GFe3-800 contain both micropores and mesopores (essentially). The com-
posites (GFe3-600 and GFe3-800) were tested as adsorbents of dyes (methylene blue and
indigo carmine) (See Section 3.2 for more detail).

More recently, Batista et al. [52] prepared a series of glycerin-activated carbons from
crude glycerin (82% glycerol) for application in the gas separation by adsorption pro-
cesses. Glycerin-activated carbons were prepared via a two-step procedure involving
carbonization followed by chemical activation with KOH. A mixture of industrial crude
glycerin (82% glycerol) and concentrated sulfuric acid was prepared using a volume ratio of
1:0.5 (glycerol:H2SO4). The acid carbonization process was carried out in a Teflon lined
Hydrothermal Autoclave at 180 ◦C for 6 h in an oven. The carbonized (glycerin-char)
was washed with distilled water until the washing was neutral and dried (100 ◦C); The
obtained solid (glycerin-char, crushed to fine powder of dimension < 0.297 mm) was
mixed with an activating agent (KOH) in distilled water, been stirring for 2 h (at ambient
temperature) and when dried (100 ◦C). It was used two activation temperatures (700 ◦C
and 800 ◦C) and weight ratios (1:1, 2:1 and 3:1, KOH:glycerin-char). The mixture (activating
agent:glycerin-char) was activated in a horizontal furnace Thermolyne 21100 (under N2
flow 5 cm3·s−1 and 10 ◦C·min−1·h−1). The glycerin-activated carbons were washed with
distilled water until the washing was neutral and dried at 100 ◦C. The prepared sam-
ples (G@700/1, G@700/2, G@700/3 and G@800/1, G@800/2 and G@800/3—the 700/800
corresponds to the activation temperature and the 1, 2 and 3 to the KOH:glycerin-char
ratio) presented high surface areas (1166–2150 m2·g−1) and pore volumes between 0.63
and 1.03 cm3·g−1. These glycerin-activated carbons were evaluated as adsorbents for the
adsorption separation of ethane and ethylene (See Section 3.2 for more details).

In another work, Batista et al. [60] modified a glycerin-activated carbon and zeolite
type A surfaces with chitosan. The purpose of this work was different from the other
works presented here. It was to evaluate the potential of those materials as H2S donors for
therapeutic application. The activated carbon (Gta@600) was prepared by a combination
of acid carbonization with H2SO4 followed by thermal activation (in a nitrogen flow
rate = 5 cm3·min−1 at 600 ◦C for 1 h). The modification of the material surface was
obtained by adding chitosan dissolved in acetic acid solution (1 wt%). to a suspension of
Gta@600. The chitosan-based carbon (Gta@600Chi) was characterized (FTIR, SEM, XDR,
Elemental analysis and N2 adsorption–desorption isotherms). The adsorption capacity of
H2S by Gta@600 and Gta@600Chi was performed to evaluate their use as H2S donors (See
Section 3.2 for more information).

3. Principal Uses of Carbons from Glycerol
3.1. Catalysis

The carbons synthesized by R.B.N Prasad et al. [48,49,61–63], using the procedure
previously described, were tested as a solid-acid catalyst for a diversity of one-pot reactions
(described in the following paragraphs) showing very good performance with their activity
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maintained during several cycles. Yet, no investigation was carried out about leaching into
the reaction medium and only one catalyst concentration (10 wt%) was tested.

The first carbon obtained by partial carbonization and sulfonation of glycerol [48] was
tested as a catalyst in the esterification of palmitic acid with methanol at 65 ◦C. It revealed
a high activity (99% conversion in 4 h). The carbon obtained from pitch glycerol using
the same experimental procedure was tested as catalyst for tetrahydropyranylation (THP
ether synthesis) and dehydropyranylation using a wide variety of alcohols and phenols
(17 total) [49]. The tetrahydropyranylation reactions were performed in dichloromethane
at room temperature. The THP ethers were obtained in 80–98% yield, the yield being
dependent on the alcohol structure, the lowest yields being observed for phenols due to the
lower nucleophilic character of the phenolic oxygen. On the other hand, for the dehydropy-
ranylation reactions, the structure of the substrate had no influence, and reactions yields of
95–99% were obtained using methanol as a solvent. Other reactions were also investigated.
For instance, highly substituted imidazole derivatives were obtained from 1,2-diketones,
aldehydes, NH4OAc, and amines [61]. A study on the reaction temperature and solvents
showed the use of acetonitrile at 50–55 ◦C gives the highest yields (70–84%). The catalyst
was also effective for the synthesis of diverse dihydropyrimidinones in refluxing acetoni-
trile (yields 80–92%) [63]. The introduction of a halogen onto the aromatic ring yields or
replaces urea with thiourea originated the lowest yields. Additionally, the same authors
explored the use of the catalysts in the obtention of substituted benzamides (71–78% yield)
using different aldehydes and amines as substrates [62]. Many parameters were optimized,
and the best condition was attained using acetonitrile at 60–65 ◦C and Cs2CO3 as a base.
Finally, using slightly different conditions, two other reactions were investigated using
the same type of catalysts [64]. First, the acetylation of alcohols, phenols, and aromatic
amines using acetic anhydride at 65 ◦C (no-solvent and 15% catalyst) was investigated. The
acetylation reactions of the alcohols and phenols had a 75–96% yield, while for aromatic
amines had a 95–97% yield. The yields and reaction time of the acetylation of alcohol and
phenol were related to their structure. The primary and secondary alcohols had higher
yields and rapid reaction times, while the phenols showed slow reactions. Interesting,
selectivity for the acetylation of the amine group was observed, a fact that may be explained
by more nucleophilicity of amines than phenols. Secondly, using different aldehydes and
2,2-bis (hydroxymethyl) propane-1,3-diol different pentaerythritol diacetals were
obtained [22]. Among the investigated reaction conditions (catalyst content and reac-
tion temperature), the best results were obtained using 5 wt% catalyst in toluene at 80 ◦C.
Aliphatic aldehydes showed no reactivity. The catalyst showed selectivity towards aro-
matic aldehydes. Among the aromatic aldehydes, the presence of the electron-donor group
showed less reactivity, while the presence of electron-withdrawing groups enhanced the
reaction rate. The catalyst was also effective in the deprotection of the diacetals in methanol
in reflux within 30 min. Figure 4 summarizes the studies carried out up to this point.

The group of Gonçalves et al. [50,51] used a glycerin-based carbon obtained by hy-
drothermal carbonization of a mixture of glycerol waste and sulfuric acid as a catalyst in
the glycerol acetalization reaction. The acid character attributed to the –SO3H and –COOH
groups at the material surface and the excess of sulfuric acid used during the synthetic pro-
cedure affected the final surface chemistry of the material by increasing the surface acidity
of these catalysts. The catalyst activity of the carbons through the glycerol acetalization
with acetone was dependent on the carbon used as a catalyst. For instance, the 3:1 showed
no activity, probably due to the low concentration and absence of –COOH and –SO3H
groups, respectively. The importance of the sulfonic groups on the surface was once more
confirmed and was highly related to the high catalytic activity of the carbon. For instance,
the 3:1 and 2:1 carbon (the ones with higher sulfonic groups) had an 82% conversion of
glycerol with almost complete selectivity for solketal. Further studies, using the 2:1 carbon,
were conducted to evaluate the effect of different variables in the catalytic activity. They
revealed that an increase in the glycerol: acetone molar ratio provided a relevant increase in
the glycerol conversion; additionally, an increase in the glycerol conversion was observed.
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Increasing the amount of catalyst by more than 3% brought no advantage. Regards the
temperature reaction, it was observed that at room temperature, the reaction was slightly
slower than at 40 ◦C and 65 ◦C. However, the process reaches equilibrium at the same
level of conversion independent of temperature. The leaching tests showed no appreciable
leaching of any active groups present over the surface of the solids.
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Figure 4. Reactions studied [22,33,48,49,61–64] using carbons obtained from glycerol as catalysts.

The same group used carbons obtained by hydrothermal carbonization of a mixture of
glycerol waste and sulfuric acid and post-synthesis modified as catalysts for the glycerol
etherification reaction [65]. The catalytic activity was evaluated through glycerol etheri-
fication with tert-butyl alcohol using a 5 wt% catalyst at 120 ◦C. The 10:1 carbon showed
negligible catalytic activity while the 1:3 carbon had a high catalytic activity (better than
Amberlyst resin), a fact that may be attributed to the lower concentration of acidic sites
on the 10:1 carbon surface, which is essential for etherification reactions. Interestingly,
the post-synthesis modification of the 10:1 carbon led to a substantial improvement in the
catalytic (similar to the 1:3 carbon). This improvement was attributed to the introduction of
sulfonic acid groups but also to other surface functional groups, such as carboxylic acids.
Figure 5 shows the reactions studied by Gonçalves et al. [50,51,65].

The different reactions in which carbons from glycerol may be used as catalysts are
shown in Table 1.

The previously described work concerns the use of carbons without activation for
the use as catalysts. As already referred, the use of activated carbon is not so usual, and
only one work exists that effectively used activated carbons as a catalyst [56]. The catalytic
activity of carbons was investigated in the catalytic wet peroxide oxidation (CWPO) of
2-nitrophenol. Adsorption studies revealed that some adsorption on the material surface
occurred, yet catalytic activity of the carbons was observed, especially to carbon activated
at 300 ◦C. The characteristics of these materials (developed porosity allied to high basicity
and lower oxygen content) seemed to explain their catalytic activity. On the other hand,
the higher removal of 2-nitrophenol by the material activated at 350 ◦C may be explained
by a high contribution of the adsorption process. Further studies with the carbon activated
at 300 ◦C revealed its catalytic efficiency was increased when the CWPO process was
conducted under intensified conditions (T = 50 ◦C, pH = 3, stoichiometric amount of H2O2
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and a pollutant/catalyst mass ratio = 2). However, the recyclability of the catalyst was
studied. The catalyst lost activity after the first cycle due to the adsorption process and the
deactivation of the carbon active sites responsible for hydrogen peroxide decomposition,
yet its activity may be restored by a simple oxidative thermal regeneration.
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Table 1. Review of the most relevant data for the indicated reactions using glycerol-based non-porous
carbon as catalysts.

Product Catalyst
Loading (%) Solvent Temperature

(◦C)
Reaction
Time (h) Yield (%)

Recyclability of
Catalyst (n◦ of

Cycles Studied)
Reference

Biodiesel 10 Methanol 65 4 99 * 8 [48]
THP ether 10 Dichloromethane R.T. 2 80–98 8 [49]
Alcohols 10 Methanol R.T. 0.5 95–99 8 [49]

Substituted imidazole
derivatives 10 Acetonitrile 50–55 7 70–84 3 [61]

Substituted 3,4-
dihydropyridine-2-(1H)-ones 10 Acetonitrile reflux 4–4.5 80–92 3 [63]

Substituted benzamides 10 Acetonitrile 60–65 - 71–78 3 [61]
Acetylated alcohol and

phenols 15 No-solvent 65 0.5–2 75–96 5 [64]

Acetylated amines 15 No-solvent 65 0.5 92–97 - [64]
Pentaerythritol diacetals 5 Toluene 80 1.5–8.5 94–98 5 [22]

Glycerol acetal + 3 - 40/65 1 82 * 5 [51]

Glycerol etherification 5 - 120 6 52 (MTBG), 22 (DTBG
+ TTBG) 8 [65]

R.T.—Room Temperature; * Refers to the reagent conversion, not yield; +—best result; MTBG—mono-tert-butyl
glycerol; DTBG—di-tert-butyl glycerol, TTBG—tri-tert-butyl glycerol.

3.2. Adsorption

As mentioned, glycerol can be converted into a material that has promising properties
for application as adsorbent materials. Their adsorbent capacity was examined to different
adsorbates such as medicines (flumequine, tetracycline and paracetamol) [54,65], aqueous
phase chromium Cr(VI), dyes (methylene blue and indigo carmine), VOCs (toluene and
hexane), and ethene, ethylene. The adsorption studies (Figure 6) in aqueous solutions
are different from the gas adsorption, which normally requires special equipment based
on gravimetric or volumetric methods. The schematic representation of a volumetric
apparatus is shown in Figure 7a, for the ethene/ethylene separation, and in Figure 7b, for
H2S adsorption.
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As already mentioned, to the best of our knowledge, the work published in 2016
by Álvarez-Torrellas et al. was the first to study the application of glycerol-based acti-
vated carbons as adsorbent materials [55]. The authors focused on the preparation of
3 activated carbon (GBCM200, GBSM300 and GBCM350) and their application as adsor-
bent materials for the removal of the antibiotic compounds (flumequine and tetracycline)
from aqueous solution. The adsorption of flumequine was found to be dependent on
the textural properties of the glycerol-based activated carbon materials. The maximum
adsorption capacity (41.5 mg·g−1) was verified onto sample GBCM350. The sequence of
flumequine adsorption capacity in the glycerol-activated carbon series was the following:
GBCM350 > GBCM300 > GBCM200 with adsorption capacities of 41.5 mg·g−1, 33.7 mg·g−1

and 0.9 mg·g−1, respectively. For tetracycline this sequence was GBCM350 > GBCM200 >
GBCM300 (58.1 mg·g−1, 53.9 mg·g−1 and 51.3 mg·g−1, respectively). The activated carbons
showed a higher adsorption capacity for tetracycline and its adsorption was almost the
same for all three activated carbons, showing that the adsorption of this antibiotic was
not dependent on the structural differences obtained at the different activation tempera-
tures used. Additionally, no relation between the antibiotic structure and activated carbon
properties was found.

Cui et al. [54] investigated the obtained activated carbon from liquid glycerol as
adsorbent for the removal of gas phase volatile organic compounds (VOCs) and aqueous
phase chromium Cr(VI). The adsorption capacities reported for toluene, hexane, and Cr(VI)
were 1.5 g·g−1, 1.1 g·g−1, and 56 mg·g−1, respectively. The adsorption of the compound



Compounds 2022, 2 231

in aqueous solutions was much lower than the VOCs, probably due to the competing
adsorption of water, making the comparison among them difficult.

Naverkar et al. [58] examined the adsorption of methylene blue by glycerol-based
carbons (GBC-120 and GBC-350). The samples GBC-120 and GBC-350 presented BET
surface areas of 21 m2·g−1 and 464 m2·g−1, respectively. The sample (GBC-120) exhibited
maximum methylene blue adsorption of 1050 mg·g−1. According to the authors, the higher
equilibrium adsorption of 1050 mg−1 on GBC-120 was attributed to the presence of a large
amount of –SO3H groups compared with GBC-350, where several surface functionalities
were lost upon thermal treatment.

Gonçalves et al. [53] also investigated the adsorption of organic contaminants from wa-
ter: a dye (methylene blue) and a drug (paracetamol) on glycerol-based carbons. The
activated carbons from glycerol were also tested as capacitor materials (described in
Section 3.3). More recently, glycerol-based magnetic carbon composites were synthesized
by Medeiros et al. [59]. The composites (GFe3-600 and GFe3-800) were tested as adsorbents
of dyes (methylene blue and indigo carmine). The sample GFe3-800 showed a higher
adsorption capacity than GFe3-600 for methylene blue, adsorbed up to 82% and 62% in
60 min, respectively.

In 2021, Batista et al. [52] prepared a series of glycerin-activated carbons from crude
glycerin (82% glycerol) for gas separation by adsorption processes. The glycerin-activated
carbons were evaluated as adsorbents for the adsorption of ethane and ethylene. All the
adsorbents were shown to be ethane selective. The materials exhibited a higher adsorp-
tion capacity of ethane (8.92–14.81 mmol·g−1) than ethylene (8.27–12.63 mmol·g−1). The
glycerin-activated carbons (except for the sample G@700/3) after two regeneration cycles
presented ~100% of the adsorption capacity. In addition, in another work, M. Batista
et al. [59] used the glycerin-based activated carbon (Gta@600) and its chitosan-based carbon
(Gta@600Chi) as H2S adsorbents. The chitosan-based carbon (Gta@600Chi) presented a
H2S insignificant release due to its chemical adsorption. However, the Gta@600 adsorbed
a significant amount of H2S and it could be investigated for other applications such as
natural gas purification.

The results already available in the literature clearly show activated carbons obtained
from glycerol can adsorb compounds with different structures and properties (Table 2),
and therefore indicate the importance to extend the research to the adsorption of other
class of chemicals. Most of the studies may have applications in environmental problems.
However, as was shown they may also be used for separation processes. Nevertheless, and
despite their potential, more studies should be conducted, namely regeneration studies. At
this moment no commercial products exist, and their development is dependent on more
research to be possible obtain high effective products at low production cost. In Table 2 is
presented the adsorption data on glycerol-based carbons.

3.3. Capacitors

The ability that activated carbons obtained from glycerol may have as capacitors has
been investigated very recently and a brief overview of the work done so far is presented.
The first reference to this possibility was in 2019 by Gonçalves et al. and is a small part of
the work concerning the adsorption capacity of activated carbon described before [53]. The
authors selected three activated carbons: two with larger surface areas activated differently
and one with the higher micropores/mesopores ratio. Electrodes were prepared by press-
ing a mixture of activated, multiwalled carbon nanotubes. The more suitable activated
carbon was obtained from using ZnCl2 as the activating agent. It presented the higher
micropores/mesopores ratio and not the largest surface. This characteristic was attributed
to the more suitable pore distribution in this carbon and the higher micropores/mesopores
ratio. More recently, Narvekar et al. [67] synthesized carbon from glycerol which was
chemically activated with KOH at 800 ◦C under N2 atmosphere for 2 h. Cyclic voltammetry
studies showed the activated carbon had a much higher capacitance than the commercial
carbons (Vulcan XC-72 or CNT), a fact that was attributed to the carbonyl and sulphonyl



Compounds 2022, 2 232

surface functionalities and large surface area with favorable pore size distribution wherein
the pores are accessible to form an extended electrical double layer. More recently, Juchen
et al. [68] synthesized KOH activated carbon from crude glycerol. The electrodes were
prepared by mixing 90 wt% of chemically activated carbon and 10 wt% of Polyvinylidene
fluoride (PVDF) in n-methyl-pyrrolidone (NMP) solvent and used for the desalination of
brackish water. Figure 8 shows the results of cyclic voltammetry experiences showing the
electrode capacitance, resistivity, and mass transfer effects in the desalination process. The
electrodes remained stable over 50 desalination/regeneration cycles applying potentials
lower than 1.2 V.

Table 2. Review of the textural properties and adsorption capacity of glycerol-activated carbon
materials.

Sample
ABET

(m2·g−1)
Vmicro

(cm3·g−1)
Adsorption Capacity Reference

Flumequine Tetracycline

[55]GBCM200 352 0.17 0.9 mmol·g−1 53.9 mmol·g−1

GBCM300 391 0.19 33.7 mmol·g−1 51.3 mmol·g−1

GBCM350 436 0.22 41.5 mmol·g−1 58.1 mmol·g−1

Toluene Hexane Cr(VI)

[54]
S3-steam 2470 0.80 – – 30 mg·g−1

S3-CO2 1050 0.38 – – 15 mg·g−1

P1-steam 1420 0.41 – – 39 mg·g−1

P1-CO2 1590 0.50 1.5 g·g−1 1.1 g·g−1 56 mg·g−1

Methylene blue
[58]GBC-120 21 0.06 1050 mg·g−1

GBC-350 464 0.10 139 mg·g−1

Methylene blue Paracetamol

[53]

ACZn-847 500 – 109 mol·g−1 39 mol·g−1

ACZn-447 680 – 151 mol·g−1 88 mol·g−1

ACZn-425 800 – 200 mol·g−1 81 mol·g−1

ACP-646 420 – 263 mol·g−1 28 mol·g−1
ACP-644 460 – 370 mol·g−1 23 mol·g−1

ACP-346 390 – 256 mol·g−1 28 mol·g−1

Methylene blue Indigo carmine
[59]GFe3-800 136 – 80% 71%

GFe3-600 140 – 62% 30%

Ethane Ethylene

[52]

G@700/3 1564 0.69 8.98 mol·g−1 8.62 mol·g−1

G@700/2 1441 0.64 13.24 mol·g−1 12.63 mol·g−1

G@700/1 1166 0.63 8.92 mol·g−1 8.27 mol·g−1

G@800/3 2150 1.03 13.46 mol·g−1 10.88 mol·g−1

G@800/2 1895 0.95 14.81 mol·g−1 12.19 mol·g−1

G@800/1 1720 0.76 12.64 mol·g−1 11.67 mol·g−1

H2S
[60]Gta@600 466 – 0.02 mol·g−1

Gta@600Chi <5 – 0.012 mol·g−1
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have been used as adsorbent of gases (H2S, VOCs, ethene and ethylene) and liquid (dyes 

Figure 8. (a) Specific capacitance from cyclic voltammograms recorded at different scan rates, before
desalination; (b) total specific capacitance, as a function of scan rate, before and after desalination
applying 1.2 V; (c) Nyquist plots before and after desalination applying 1.2 V; (d) modified Randle
equivalent circuit. Working and counter electrodes: PGAC. Electrolyte: 1 mol·L−1 NaCl. Reproduced
with permission from [68], Elsevier, 2022.

4. Summary and Outlook

The amount of glycerol produced as a by-product in the biodiesel industry has been
increasing. In addition, the use of waste fats (waste and residues), for sustainability reasons,
by the biodiesel industry originated glycerol, which may contain unwanted compounds
(contaminants). This causes this glycerol not to be used in certain applications such as
food or cosmetics, because they do not have the kosher certification as demanded by the
food, pharmaceutical, and cosmetic industries. This fact reinforces the need to quickly
discover other applications for this glycerol and its use for the synthesis of carbons may
be a solution, as may be seen by the work developed so far and their wide applications.
The carbons from glycerol have been successfully used in a wide range of applications
such as catalyst for a wide range of reactions such as acetylation, etherification, synthesis
of substituted imidazoles, and benzamides, among others. The activated carbons have
been used as adsorbent of gases (H2S, VOCs, ethene and ethylene) and liquid (dyes and
pharmaceuticals) pollutants, and capacitor materials. Nevertheless, this research is still
in its initial stages in comparison with other carbons, and optimization of the synthetic
procedures by changing the activated agent, temperatures, and pressure may give rise
to more effective materials for a given application. Other possibilities could be surface
functional group variation on the activated carbon surface, which may be achieved using
different treatment parameters, or by post-synthesis modification, a possibility that has not
been investigated so far. A systematic study of surface modification may help in obtaining
better materials for the intended application.
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Concerning practical applications, the adsorption process is the most promising for the
glycerol-based active carbons. Adsorption technology is known for its simplicity, reliability,
and low energy and maintenance costs, and it is already being used in many situations.
The viability of this process is very dependent on the adsorbent. The use of glycerol-based
activated carbons as adsorbent will depend on the possibility of producing this material
using an energetic and environmentally sustainable processes.
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