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Abstract: Entering the 5G and internet of things (IoT) era, human–machine interfaces (HMIs) capable
of providing humans with more intuitive interaction with the digitalized world have experienced a
flourishing development in the past few years. Although the advanced sensing techniques based
on complementary metal-oxide-semiconductor (CMOS) or microelectromechanical system (MEMS)
solutions, e.g., camera, microphone, inertial measurement unit (IMU), etc., and flexible solutions,
e.g., stretchable conductor, optical fiber, etc., have been widely utilized as sensing components for
wearable/non-wearable HMIs development, the relatively high-power consumption of these sensors
remains a concern, especially for wearable/portable scenarios. Recent progress on triboelectric
nanogenerator (TENG) self-powered sensors provides a new possibility for realizing low-power/self-
sustainable HMIs by directly converting biomechanical energies into valuable sensory information.
Leveraging the advantages of wide material choices and diversified structural design, TENGs
have been successfully developed into various forms of HMIs, including glove, glasses, touchpad,
exoskeleton, electronic skin, etc., for sundry applications, e.g., collaborative operation, personal
healthcare, robot perception, smart home, etc. With the evolving artificial intelligence (AI) and haptic
feedback technologies, more advanced HMIs could be realized towards intelligent and immersive
human–machine interactions. Hence, in this review, we systematically introduce the current TENG
HMIs in the aspects of different application scenarios, i.e., wearable, robot-related and smart home,
and prospective future development enabled by the AI/haptic-feedback technology. Discussion on
implementing self-sustainable/zero-power/passive HMIs in this 5G/IoT era and our perspectives
are also provided.

Keywords: human–machine interface (HMI); triboelectric nanogenerator (TENG); artificial intelligence
(AI); robot perception; wearable sensor; Internet of things (IoT)

1. Introduction

With the rapid development of the Internet of things (IoT) and 5G communication
technology in recent years, human–machine interfaces (HMIs) have gradually evolved
from traditional computer peripherals, e.g., keyboard, mouse, and joystick as illustrated in
Figure 1, to a more intuitive interface that directly collects human’s original signals [1–3],
such as voice and basic body motions, providing users with a more intuitive and easier inter-
action with computers and intelligent robots in the applications of healthcare, rehabilitation,
industrial automation, smart home, virtual reality (VR) game control, etc. [3–5]. Current
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commercialized advanced HMIs include non-wearable solutions based on voice and vision
recognition [6–8], and wearable solutions that use inertial measurement units (IMUs) [9,10],
i.e., microelectromechanical system (MEMS) based accelerometers and gyroscopes, for the
somatosensory information collection. However, these kinds of HMIs require complicated
sensory information and high-performance signal collection/processing units, thus result-
ing in great power consumption in the system. Additionally, the MEMS-based sensing
components are commonly bulky and rigid [11], making them relatively incompatible for
wearable scenarios. For these issues, stretchable and flexible HMI solutions with minimal-
istic sensor design emerge recently, including sensors based on the sensing mechanisms of
resistive [12–20], capacitive [21–24], and optical fiber [25–27], etc. Though the signal com-
plexity and processing cost are greatly reduced to save energy and enhance the timeliness
of the system, these sensors themselves still require a small amount of driving energy, and
the power consumption may be large considering the massive number of sensor nodes in a
sensor network. Moreover, repetitive charging is also annoying, especially for wearable
or portable HMIs. So to address these issues, self-powered sensors using nanogenerator
technologies of piezoelectric [28,29], triboelectric [30,31] have been developed frequently,
to build low-power/self-sustainable human–machine interactive systems.

Figure 1. Schematic illustration for the development progress of triboelectric human–machine interfaces and their ap-
plications in the 5G/IoT era. Reprinted with permission from Reference [32], Copyright 2021, Wiley. Reprinted with
permission from Reference [33], Copyright 2020, Wiley. Reprinted with permission from Reference [34], Copyright 2019,
Springer Nature. Reprinted with permission from Reference [35], Copyright 2019, Elsevier. Reprinted with permission
from Reference [36], Copyright 2019, Elsevier. Reprinted with permission from Reference [37], Copyright 2013, American
Chemical Society. Reprinted with permission from Reference [38], Copyright 2019, Elsevier. Reprinted with permission from
Reference [39], Copyright 2015, American Chemical Society. Reprinted with permission from Reference [40], Copyright
2018, Elsevier. Reprinted with permission from Reference [41], Copyright 2019, Wiley. Reprinted with permission from
Reference [42], Copyright 2019, Elsevier. Reprinted with permission from Reference [43], Copyright 2017, AAAS. Reprinted
with permission from Reference [44], Copyright 2018, American Chemical Society. Reprinted with permission from Refer-
ence [45], Copyright 2021, Wiley. Reprinted with permission from Reference [46], Copyright 2018, Elsevier. Reprinted with
permission from Reference [47], Copyright 2018, Springer Nature.
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Triboelectric nanogenerator (TENG), first reported by Prof. Zhong Lin Wang in
2012 [48], has been widely developed as energy harvesters for mechanical energy scav-
enging, ranging from natural wind energy [49–53], blue energy [54–59] to the human
body’s biomechanical energy [37,43,60–64], thanks to its exceptional merits of good output
performance, wide material choices, good scalability, simple fabrication and low cost. Con-
sidering that the kinetic energies generated from the daily activities of humans, e.g., hand
motion, joint rotation, foot motion, etc., contain valuable information of the corresponding
motions, so such kinds of motion-induced energies could be collected by the nanogener-
ators towards a fully self-powered sensing strategy for human–machine interactions as
well as health status monitoring purpose [65]. Compared with piezoelectric-based sensors
that are commonly difficult for design customization due to the limitation of materials
and complexity of the fabrication process [66–69], TENGs show the advantages of wide
choices of stretchable and flexible materials, e.g., fabric, silicone rubber, plastic thin film,
etc., and versatile operation modes, i.e., contact-separation mode, liner-sliding mode, single
electrode mode and freestanding triboelectric-layer mode [70,71]. Therefore, TENGs have
been successfully designed into various structures for different interactions (Figure 1),
such as touchpad interface [35–38,41,72], auditory-based interface [39,73,74], 3D motion
manipulator [33,40,42], etc., and can be further designed as self-powered wearable HMIs,
e.g., electronic skin (e-skin) [43,75–77], data glove [32,44], wearable band [45,46], intelligent
sock [78,79], breath-driven mask [80], etc., for advanced robotic manipulation, IoT con-
trol, VR game control/rehabilitation, personal identification and advanced sport analysis,
showing the wide application prospects of triboelectric in HMIs area.

The new era of artificial intelligence (AI) provides a new possibility to enhance the
functionalities of HMIs via machine learning (ML) enabled data analytics [81,82], where
the subtle features hidden behind the real-time signal spectrum could be extracted automat-
ically towards more advanced human–machine interactions, e.g., gesture recognition [83],
voice recognition [84], pose estimation [85], personal identification [86], object classifica-
tion [87,88], etc. Thus, due to these benefits, combining TENGs with ML-enabled analytics
reveals a promising research direction for the development of HMIs with enhanced in-
telligence and low power consumption, which has attracted great attention in the past
few years [73,89–93]. Besides, integrating TENGs with other sensing mechanisms, such
as piezoresistive [76,94], pyroelectric [95–99], etc., to implement a multimodal sensing
system capable of perceiving different sensory information simultaneously, i.e., tactile,
strain, temperature, etc., is also a good strategy to broaden the applications of TENG-based
HMIs. In addition, to build a complete human–machine interaction system, the haptic
feedback function enabled by mechanical actuators [100,101], i.e., wire actuator, pneumatic
actuator, vibration motor, etc., is indispensable to provide users with a more immersive
experience for specific applications, e.g., robotic collaborative operation [102,103], VR game
manipulation [104–108], etc., and deserves to be further integrated into current TENG-
based HMI solutions to boost up the capability of information interpretation. Furthermore,
by integrating self-powered TENG sensors with energy harvesters or passive wireless
techniques, e.g., near-field communication (NFC) [109], surface acoustic wave (SAW) [110],
etc., battery-free systems can also be achieved towards fully self-sustainable/zero-power
HMI terminals under the future IoT framework.

Herein, in this review, we systematically introduce the recent progress in the TENG-
based HMIs from the following sections: (1) glove-based HMIs for advanced manipulation,
gesture recognition and tactile sensing; (2) wearable HMIs for other biomechanical signal
collection, e.g., eye motion, facial expressions, voice, posture, etc.; self-powered HMIs for
(3) robotic perception and (4) smart home applications; (5) ML-enabled intelligent HMIs,
and the possible future research direction enabled by the (6) haptic-feedback technology
and towards (7) self-sustainable/zero-power/passive HMI terminals. In the end, current
issues and the potential development trends for TENG-based HMIs are also provided for
future research in this 5G/IoT era.
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2. Glove-Based HMIs

As we all know, nearly all the conventional HMIs are inseparable from the fine
operation of our hands: the keyboard needs ten-finger tapping, the mouse needs to be
moved and clicked by the hand, and the gamepad needs the finger to press the button and
operate the joystick, etc. Compared with the proportion of nerve areas in other parts of the
body, the sensory and motor nerve areas hidden in hands and fingers are huge [111,112],
making each finger can bend and stretch independently to a certain extent, and can also
expand and shrink the lateral intervals. This degree of flexibility enables them to complete
quite complex gestures to achieve diversified operations. A glove, as a common wearable
item, is quite suitable to be further designed into glove-based HMI by integrating sensors
for highly sensitive finger motion tracking. One of the most mature sensing techniques
for data gloves is to use IMUs [113,114], consisting of accelerometers and gyroscopes.
However, the rigid sensing elements, complex data format and relatively high energy
consumption remain concerns. Other flexible solutions based on resistive [13–15,115–117],
optical fiber [25,27], etc., also reveal their own drawbacks, e.g., temperature effect, limited
sensing range, etc. Thus, the emerging sensing technology based on triboelectric, with the
advantages of diversified material selection, extremely simplified design and self-powered
characteristics, provides a new research direction for designing the next generation of
low-power data gloves [118–124].

He et al. proposed a glove-based HMI using TENG textile as the sensing unit with the
minimalist design as shown in Figure 2a [125]. The conducting polymer made of poly (3,4-
ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), due to its advantages of
good physical and chemical stability, was chosen as the coating material to fabricate the
highly stretchable electrodes as well as the positive triboelectric parts in this fabric-based
contact-separation-mode TENG sensor. Additionally, a layer of silicone rubber thin film was
coated on the textile glove serving as the negative triboelectric contacting layer. There are
two kinds of sensor configurations in this design, where the arch-shaped sensor is utilized
to measure the finger bending motions, while the sensors mounted at the sides of the fingers
are to detect the contacts between the index finger and its adjacent fingers. Based on these
two configurations, the movement of the index finger in all directions can be recognized
to realize the intuitive control of aircraft minigame in cyberspace, and the car/drone
movement in the real 3D space. Moreover, the function of a mouse can also be mimicked
by this glove-based HMI for web surfing and alphabet writing, providing a simpler, power-
compatible interactive method in daily life. However, for the actual applications of such
a kind of textile glove, the humidity in the environment or the sweat generated from the
human body may negatively affect the triboelectric output [126,127]. So to solve this issue, a
more advanced design with superhydrophobicity of the triboelectric textile for performance
improvement enabled by a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE)
coating approach was reported by Wen et al. as shown in Figure 2b [128]. The anti-sweat
capability enables the TENG sensor to remain at 80% voltage output even after a 1 h exercise.
By leveraging machine learning technology, complex gestures’ recognition function could
be realized with the minimal sweat effect, which was successfully demonstrated to be
further utilized for real-time VR/AR control applications, i.e., shooting games, baseball
pitching and floral arrangement.

The abovementioned two works are all based on the arch-shaped TENG strain sen-
sors [129,130], meaning that a large air space needs to be reserved between two contact
layers and a relatively limited sensing range: obvious sensor response only occurs at the mo-
ment of contact and separation of the friction layers. For this problem, Zhou et al. proposed
a TENG strain sensor based on a unique yarn structure as illustrated in Figure 2c [131]. The
core of the sensing unit is composed of a conductive yarn coiled around a rubber microfiber,
with the entire body sheathed by a polydimethylsiloxane (PDMS) sleeve. Varying degrees
of deformation will result in a constant and continuous change in the contact area between
the PDMS sleeve and the coiled conductive yarn, enabling the sensor with good linearity
and sensitivity within a large strain range (20–90%). After integrating a wireless printed
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circuit board (PCB) for signal collection, processing and transmission, a wearable sign-to-
speech translation system could be achieved with the multi-class support vector machine
(SVM) machine-learning algorithm, whose overall accuracy could be maintained higher
than 98.63% with fast response time (<1 s), showing a cost-effective approach for assisted
communication between signers and non-signers, as well as the prospect of TENG-based
HMI in the field of healthcare.

Figure 2. Glove-based HMIs. (a) A smart glove using TENG textile sensor for cursor control and web surfing application.
Reprinted with permission from Reference [125], Copyright 2019, Elsevier. (b) A superhydrophobic textile glove enabled by
carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating for VR/AR applications. Reprinted with permission from
Reference [128], Copyright 2020, Wiley. (c) A yarn structural TENG strain sensor enabled glove for sign language recognition.
Reprinted with permission from Reference [131], Copyright 2020, Springer Nature. (d) A multifunctional glove capable
of bending sensing, sliding event detecting, as well as haptic stimulation for augmented AR/VR experiences. Reprinted
with permission from Reference [132], Copyright 2020, AAAS. (e) A joint motion TENG quantization sensor enabled glove
for the robotic collaborative operation. Reprinted with permission from Reference [133], Copyright 2018, Elsevier. (f) An
electronic skin integrating triboelectric and piezoresistive sensing mechanisms for grasping tactile perception. Reprinted
with permission from Reference [94], Copyright 2017, Elsevier. (g) A multifunctional fingertip tactile sensor capable of
pressure sensing, temperature perception and material identification. Reprinted with permission from Reference [134],
Copyright 2020, AAAS. (h) Nanophotonic modulator enabled readout strategy for TENG-based continuous pressure
sensing. Reprinted with permission from Reference [135], Copyright 2020, American Chemical Society.
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To further enrich the function of the glove-based HMI, Zhu et al. integrated TENG-
based finger bending sensors, palm sliding sensors, and also piezoelectric mechanical
stimulators onto one 3D-printed glove which realizes the multidirectional bending sens-
ing, sliding event detecting, as well as haptic stimulation simultaneously for augmented
AR/VR experiences (Figure 2d) [132]. By attaching multiple elastomer-based TENG tactile
sensors onto different joints of each finger, the perception of motions of each phalanx with
multiple degrees of freedoms (DOFs) could be achieved, where these sensors provide more
useful subtle features regarding the finger bending compared with other common solutions
that installing one sensor node per finger [136–139]. In the meanwhile, the sensory infor-
mation of the normal and shear force could also be collected by the TENG palm sliding
sensor to realize diversified sensing, especially for grasping-related tasks, revealing a new
possibility of multifunctional HMI solution based on TENGs for VR entertainment and
training applications.

Though these works based on the contact-separation mode TENG strain sensors
have shown the great potential of TENG enabled glove-based HMI as effective gesture
interfaces, limitations are still there and need to be further improved. One of the main
issues is that most of these studies use the generated output peaks’ amplitudes to judge the
bending degree [120,140], which is unstable and could be easily influenced by the varying
environmental factors, e.g., humidity, etc. Due to the fast decline of the stimuli-induced
electrical states caused by electrostatic equilibrium, the generated pulse-like signals can
only reflect the momentary motion of finger bending. Other valuable information, e.g.,
bending speed, the degree at a certain moment during the entire bending movement, etc.,
will be lost in such kind of signal format. One possible solution is to use grating-sliding
mode TENG for better quantifying the bending degree/speed by counting the generated
output peak number. A joint motion TENG quantization sensor for the robotic collaborative
operation application was developed by Pu et al. as illustrated in Figure 2e [133]. When
the slider is driven by the finger to slid forward/backward across the well-designed
interdigitated electrodes, the alternating output signal in a series of periodic narrow pulses
will be generated, where the bending degree and speed could be easily distinguished based
on the pulse number and width respectively. The minimum resolution of the TENG joint
sensor can reach 3.8◦ and could be further improved with finer grating segments. With
such kind of measurement method, the real-time continuous robot bending control can be
realized with high precision, demonstrating a more stable and reliable solution of TENG-
based strain/displacement sensor with strong tolerance to environmental interference.

Besides the strain sensors for the finger bending monitoring, the tactile sensory infor-
mation also plays a key role in glove-based HMI for mimicking the biological perception sys-
tem of human skin to provide a more complete anthropomorphic feedback in contact force
detecting, roughness recognition, as well as temperature sensing applications [141–143].
Due to the high sensitivity and fast response to tiny stimuli, TENGs have been frequently
investigated to simulate the fast adapting (FA) sensory cells of the skin that respond to
dynamic touch and vibration [144,145] and can be further integrated with other traditional
sensors based on resistance or capacitance that mimic the slow adapting (SA) cells due to
the signal maintenance capability, to form a multimodal tactile sensory system [76,146].
As depicted in Figure 2f, an electronic skin that simultaneously perceives the lateral and
vertical movements of the fingertip during grasping tasks was reported by Chen et al. [94].
In this design, the carbon nanotube-poly-dimethylsiloxane (CNT-PDMS) electrode layer
works as a freestanding TENG sensor for roughness differentiation according to the gener-
ated output peaks when the device slides across the object surface, where rougher objects
commonly contribute more peaks during the sliding motion. The porous CNT-PDMS layer
serves as the static pressure sensor based on the mechanism of piezoresistive, making
the tactile HMI also capable of real-time status monitoring, e.g., holding or releasing,
etc., during the grasping/tapping operation process. A similar but more advanced mul-
tifunctional tactile sensor was proposed by Wang et al. as shown in Figure 2g [134]. The
main difference between this device and previous tactile designs lies in the functionality
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of the TENG layer. The electrification layer made of hydrophobic polytetrafluoroethy-
lene (PTFE) film here is utilized for material identification based on the varying electron
affinity ability of different materials [147], and 10 different flat materials have been suc-
cessfully demonstrated to be inferred with a simple lookup table algorithm. Moreover,
apart from the pressure sensing ability brought by the piezoresistive property, the sponge-
like graphene/polydimethylsiloxane (PDMS) composite also shows thermoelectric effects,
which can be used for detecting the temperature of contacted objects with a high resolution
of 1 kelvin, reveling the possibility to further enhance the diversity of the functions for
TENG-integrated tactile HMIs.

Limited by the pulse-like output signals as mentioned above, the TENG-based tactile
sensing units developed in most works were used for dynamic touch/vibration sensing
and cannot be used to detect the continuous force variation due to the fast shift of electrical
states. In this case, combining with resistive/capacitive sensors becomes necessary, and
a fully self-powered sensing system could not be achieved. Actually, the problem of the
electrical state shifts could be suppressed by using a high-impedance readout circuit to
maintain the triboelectric output [148,149]. However, a complicated sensing system with an
amplifying circuit for small current collection is needed. To address this issue, Dong et al.
proposed a strategy by using the robust nanophotonic aluminum nitride (AlN) modulators
to read the TENG output, as shown in Figure 2h [135]. The TENG sensor can work in the
open-circuit condition with negligible charge flows due to the electrically capacitive nature
of AlN modulators, and the stimuli-induced triboelectric voltage can be transformed to
AlN modulators’ optical output based on the electro-optic Pockels effect. Owing to the
negligible charge flow and the high-speed optical information carrier, continuous force
sensing with good linearity and stability was successfully achieved based on the TENG
tactile sensor with nanophotonic readout circuits, demonstrating the potential to replace
resistive/capacitive sensors as SA sensing units in anthropomorphic skin, and to realize a
fully TENG-based self-powered multifunctional tactile HMI.

3. Other Wearable HMIs

In addition to the glove-based HMIs, due to the advantages of high output, lightweight,
high flexibility/stretchability and applicability of various structural designs [150,151],
TENGs have also been developed into sundry biomechanical sensors for other biosignal
collection, e.g., eye motion, facial expressions, voice, posture, etc., as self-powered wearable
HMIs to bring great convenience to people [152–154], especially those with disabilities, in
the era of information and IoT.

Among these mechanical motions, eye blinking has been proven as a new, simple and
effective triggering method for handicapped people to realize convenient electrical appli-
ance control for smart healthcare/home purposes [155–157]. A TENG-based micromotion
sensor for eye blink motion monitoring with high sensitivity was reported by Pu et al. as
shown in Figure 3a [158]. This sensor works in single-electrode mode and has a multilay-
ered structure, where a fluorinated ethylene propylene (FEP) thin film and a natural latex
thin film serve as the tribo-layers in this device, with an acrylic thin annulus as the spacer
to reserve the necessary space for the contact and separation process. This tiny sensor could
be easily mounted on the arms of glasses by fixators to capture the mechanical micromotion
of the skin around the eyes, and function as an intuitive HMI to control electrical appli-
ances, e.g., table lamp, electric fan and doorbell, via the simple trigger signal generated
while eye blinking. By using a wireless module for data transmission, a hands-free typing
system based on the input method of adjusting the number of blinks in a period was also
successfully demonstrated, which may bring great convenience to our daily life, especially
for the disabled, or people whose hands are fully occupied while working. Similarly, a
non-attached electrode-dielectric TENG sensor for eye blinking sensing was reported by
Anaya et al. as illustrated in Figure 3b [159]. This sensor is fully made of soft materials, i.e.,
PEDOT:PSS coated conductive textile and silicone rubber, and shows good comfortability
when placed on the lateral skin tissue of the eye to detect the orbicularis oculi muscle
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motion. Due to the near-field transmission of signals based on the non-contact electrostatic
induction, the output electrode could be mounted on the temple of the eyeglasses without
a wire connected to the main sensor unit, which significantly improves the simplicity of
the whole system. By analyzing the trigger signal induced by eye blinking, diversified
hands-free human–machine interaction applications, including cursor control, car/drone
control, etc., could be realized to assist people with mobility impairment. Additionally, the
developed HMI could also be used for eye fatigue monitoring to evaluate the tiredness of a
driver and give proper warnings to avoid danger.

Apart from the eye movements, fluctuations induced by the movements of other facial
muscles, e.g., masseter muscle, etc., are also good choices to be translated into control
command as communication aid HMI for the disabled [160]. Inspired by the frogs’ croaking
behavior, Zhou et al. reported a bionic TENG-based sensor for masseter muscle motion
monitoring as illustrated in Figure 3c [161]. By imitating the oral structure and acoustic
capsule, the flexible PDMS elastomer was made into a sensing membrane and a deformable
vibrating membrane, with an air layer as the spacer, to amplify the small fluctuations
of the masseter muscle into a significant movement of the vibrating membrane, due to
the varying deformations of films with different radiuses under the same volume change.
TENG technology was then integrated to convert the vibration of the film into an electrical
signal, which could be further utilized in a Morse code communication system, a hands-
free typing tool, as well as an intelligent authentication system, to achieve the efficient
collaboration between the disabled and the digitalized world.

Another biosignal that can be effectively utilized for the human–machine interaction
purpose is the human voice, which has attracted great attention recently due to the rapid
development of voice recognition based on artificial intelligence technology [162–164].
TENG-based acoustic devices have also been investigated a lot towards self-powered
microphones [39,73,74,165–168]. Although these flexible acoustic devices show good
performance and functionality, they are still rigid, which hinders their applications in the
wearable device platform that can be comfortably integrated with the human skin. For
this issue, Kang et al. developed a skin-attachable microphone with high transparency
and adhesion by using hybrid freestanding nanomembranes (NMs) combined with a
micropatterned PDMS and a holey PDMS film in a sandwich structure as illustrated in
Figure 3d [169]. The holey PDMS film effectively enhances the vibration of the freestanding
NM membrane compared with a planar PDMS film, result in a larger output voltage
and excellent sensitivity. The time-dependent waveform of a speech recorded by the
wearable TENG microphone was also demonstrated, which was very much in line with the
original sound waveform, proving the good acoustic sensing capability of the developed
microphone especially when attached to a person’s neck. Then a personal voice security
system was successfully established to recognize the users’ identity with high accuracy by
perceiving the collected voiceprint, showing its potential as HMI for biometric purposes.
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Figure 3. Other wearable HMIs. (a) A TENG-based micromotion sensor for eye blink motion monitoring. Reprinted with
permission from Reference [158], Copyright 2017, AAAS. (b) A non-attached electrode-dielectric TENG sensor for eye
blinking sensing. Reprinted with permission from Reference [159], Copyright 2020, Elsevier. (c) A bionic TENG-based
sensor for masseter muscle motion monitoring. Reprinted with permission from Reference [161], Copyright 2021, Wiley. (d)
A skin-attachable TENG microphone with high transparency and adhesion. Reprinted with permission from Reference [169],
Copyright 2018, AAAS. (e) A wearable two-dimensional TENG touchpad for robotic arm manipulation. Reprinted with
permission from Reference [170], Copyright 2018, American Chemical Society. (f) A bioinspired spider-net-coding (BISNC)
TENG patch for multidirectional drone control. Reprinted with permission from Reference [171], Copyright 2019, Wiley.
(g) A minimalistic exoskeleton enabled by triboelectric bidirectional sensors for upper limbs’ joint motion monitoring.
Reprinted with permission from Reference [172], Copyright 2021, Springer Nature. (h) A badge-reel-like TENG stretch
sensor for spinal information collection. Reprinted with permission from Reference [173], Copyright 2021, Springer Nature.

In addition, a tactile sensing patch is also a common form of wearable HMI by collecting
finger touching/sliding movements to realize simple manipulation commands [174–179]
Currently, TENG tactile HMIs commonly consist of a large number of sensing pixels, where
each pixel is connected to an independent output, resulting in complex readout circuits and
output signals [180–187]. In order to simplify the outputs to effectively reduce the difficulty
and cost of data collection and processing, some novel solutions with minimalistic electrode
design have been demonstrated recently [188–193]. A two-dimensional TENG patch with a
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5 × 5 pixel matrix for finger trajectory sensing was developed by Chen et al. as shown in
Figure 3e [170]. With only four edge electrodes, the accurate position of the finger sliding
or touching along the x and y axis of the patch surface could be achieved with a minimum
resolution of ~1.6 mm based on the output ratio of two pairs of opposite electrodes, which
greatly reduce the total number of output channels for multi-pixel sensing. By utilizing
another one-dimensional TENG patch to detect the position along the z-axis, the real-time
three-dimensional manipulation of a robotic arm was demonstrated and could be applied
in various complicated operations, e.g., welding, handling, spraying, etc. A more advanced
design was proposed by Shi et al., as depicted in Figure 3f [171], where a bio-inspired spider-
net-coding TENG interface was developed for multi-directional sliding sensing with only
one output electrode. By adjusting the electrode widths and positions along with different
directions, the output signal patterns could be differentiated according to the relative amplitude
and positions of the generated peaks in the time domain and could be further transferred
into binary codes for more straightforward signal processing. Such a coding method enables
the minimalistic TENG tactile interface with good reliability and robustness, and makes it
applicable for diversified human–machine interaction applications, e.g., drone control, security
code, etc.

Though some of the abovementioned HMIs have shown the possibility to realize the
robotic control by defining specific commands according to the sensor signals, the number
of commands is limited by the sensor design and data format, and as a result, diversified
operations for multi-tasks may not be achieved. Additionally, some customized interaction
commands also require a certain learning cost for the users. To realize a more intuitive
HMI for parallel manipulation with enhanced degrees of freedom in the applications of
advanced industrial automation or virtual reality interactions, the sensory information
of the human pose is of great significance [194–197]. Zhu et al. proposed a customized
exoskeleton enabled by triboelectric bidirectional sensors for upper limbs’ joint motion
monitoring as depicted in Figure 3g [172]. With the well-designed grating patterns and
the bistable switch integrated into the sliding-mode TENG rotational sensor, the rotating
degree, direction, and speed can be achieved simultaneously to accurately reflect the
real-time status of shoulder rotations, wrist twisting, as well as finger bending with a
minimum resolution of 4◦, and can be further utilized to collaboratively control the robotic
arms and virtual character in both real and cyber space. Moreover, a ping-pong/boxing
game was demonstrated to verify the capability of the control system for complex and
coherent movements, revealing its potential for virtual sports training and rehabilitation
applications. Apart from the movements of upper limbs, spinal bending is also essential
towards a more complete pose monitoring. A badge-reel-like stretch sensor based on a
similar grating-structured TENG was reported by Li et al. as shown in Figure 3h [173].
By analyzing the generated peaks’ number, high sensitivity of 8 V mm−1 and a minimum
resolution of 0.6 mm with good robustness and low hysteresis can be achieved for this
wearable badge reel, which can be used for patients’ spinal shape change monitoring
when serving as a rehabilitation brace. In addition, such a kind of spinal information
is valuable when combined with other limb motions towards a whole-body movement
detection, which can be widely used for human motion capture and reconstruction in the
3D animation/game industry.

4. Robotic-Related HMIs

With the gradual rollout of AI technology around the world, intelligent robots will
play a more important role in our society and will gradually replace humans in labor-
intensive or dangerous tasks, from the industries of service, manufacturing and medical,
to daily life assistant, as well as future scientific-related space exploration [198]. As the
medium to perceive the external world and enhance the interactions with humans, sensors
based on TENGs have also been investigated a lot to mimic the bionic sensory system for
robots’ tactile sensing [199–203], gesture/motion monitoring [204,205], gait analysis [206],
etc., thanks to their good compatibility brought by TENGs’ wide material choices.
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As shown in Figure 4a, a typical TENG tactile sensor for robot perception was re-
ported by Yao et al. [207]. With the novel interlocking microstructures enabled by the
surface morphology of natural plants, and the polytetrafluoroethylene (PTFE) tinny burrs
fabricated on the tribo-layers, the pressure sensing sensitivity was effectively enhanced
by 14-fold compared with sensors using flat tribo-surfaces. Owing to the high flexibility,
the developed sensor can be easily attached to a robotic hand, to measure the pressure
distribution, as well as finger bending, during handshaking with humans. Additionally,
the capability of the sensor for surface roughness and object hardness recognition was also
demonstrated, showing its potential for more advanced robotic dexterous operation and
human–machine interactions.

In addition to the perception of external tactile stimulation, auditory information is
also a straightforward communication strategy for robots to receive feedback information
from the outside world and interact with humans [208,209]. A TENG-based auditory
system for social robotics was reported by Guo et al. as illustrated in Figure 4b [210]. This
developed tiny auditory sensor shows ultrahigh sensitivity of 110 mV/dB based on the
triboelectricity generated by contact-separation motions of the Kapton and FEP layers
during the air flow-induced vibrations. With the special design of the annular or sectional
inner boundary architecture, a broadband response from 100 to 5000 Hz could be achieved,
which almost covers the human voice’s frequency range. After being integrated onto a
smart robot, the auditory sensor was successfully utilized to capture the music sound
waveform with high quality, which can be further used for high-accuracy voice recognition
in human–robot interaction applications.

During the parallel control process of robots, the sensing of the robot’s pose and
motions is also critical, which can be used as feedback information to achieve more precise
control and status monitoring [211,212]. As depicted in Figure 4c, Wang et al. reported
a self-powered angle sensor that can be mounted on robotic arms for high-resolution
angular monitoring [213]. Two rotary sliding TENGs are integrated with the difference in
the overlaps of electrodes, to form a detectable phase difference between the two output
electrodes for rotating direction detecting, i.e., clockwise or anti-clockwise. By counting
the generated pulse number and calculating the corresponding consumption time, the
overall rotation angles and the angular velocity can be obtained respectively, with a high
resolution (2.03 nano-radian), high sensitivity (5.16 V/0.01◦), and good signal-to-noise ratio
(98.68 dB). A robotic arm equipped with this angle sensor was successfully controlled to
reproduce the traditional Chinese calligraphy, proving the effectiveness of the collected
signals for accurately reflecting the movement trajectory of the robot.

Thanks to the merits of good flexibility and multi-degree deformation [214–216], soft
robots [217–219] made of soft materials, e.g., silicone rubber, thermoplastic polyurethane
(TPU), etc., can perform conformal contact with external objects and environments, which
make them applicable to various scenarios instead of making specific designs for different
product lines like the widely used rigid robotic manipulators, thereby greatly reducing the
costs. Considering that many commonly used TENG and soft robot materials have similar
Young’s modulus, flexible TENG-based sensors have been frequently developed recently to
realize the tactile/deformation perception for soft robots with good compatibility [220–223].



Nanoenergy Adv. 2021, 1 92

Figure 4. Robotic-related HMIs. (a) A TENG tactile sensor with interlocking microstructures for touch pressure perception.
Reprinted with permission from Reference [207], Copyright 2019, Wiley. (b) A TENG-based auditory system for social robotics.
Reprinted with permission from Reference [210], Copyright 2018, AAAS. (c) A TENG angle sensor for high-resolution angular
monitoring of the robotic arm. Reprinted with permission from Reference [213], Copyright 2020, Wiley. (d) A flexible/stretchable
TENG skin for soft robot tactile perception. Reprinted with permission from Reference [224], Copyright 2018, Wiley. (e) An
intelligent soft gripper enabled by TENG-based tactile and bending sensor for grasped object recognition. Reprinted with
permission from Reference [225], Copyright 2020, Springer Nature. (f) A triboelectric-photonic hybridized smart skin for
robot tactile and gesture sensing. Reprinted with permission from Reference [226], Copyright 2018, Wiley. (g) A self-powered
potentiometric–triboelectric hybridized mechanoreceptor for soft robot tactile sensing. Reprinted with permission from Refer-
ence [227], Copyright 2020, Wiley. (h) A quadruped robot equipped with TENG-enabled biomimetic whisker mechanoreceptors
for exploration applications. Reprinted with permission from Reference [228], Copyright 2021, Wiley.
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A TENG robotic skin for soft robot tactile perception was proposed by Lai et al. as
shown in Figure 4d [224]. The sensing skin is made of silicone rubber with triangular micro
prisms patterned on the surface to enhance the pressure sensitivity (9.54 V kPa−1). With
the high stretchability of 100%, the sensor could be easily integrated into a soft gripper to
sense the different motions during grasping tasks, including approaching, grabbing, lifting,
lowering and dropping, according to the variation of the open-circuit voltage in different
stages. The self-muscle motion perception of a robotic crawler could also be achieved
by integrating multiple tribo-skins, showing its scalability for large-area soft robot tactile
sensing. Besides the tactile sensing skin, Jin et al. also integrated a gear-structural TENG
bending sensor into a soft gripper to form a multifunctional sensory system to detect the
tactile and deformation related information simultaneously as indicated in Figure 4e [225].
With the distributed electrodes along with the tactile sensor patch, the accurate position
of the external stimuli on the sensor surface could be extracted based on the output ratio
of different channels. Moreover, the continuous bending monitoring of the pneumatic
finger could be realized by counting the generated peak numbers of the TENG bending
sensor, with a minimum resolution of about 12◦. By fusing the data from these two types
of sensors, more valuable information, including grasping position, contact area, object
shape and size, could be achieved for grasping tasks, providing the possibility for the
soft manipulator to implement high-accuracy object recognition with the help of machine
learning analysis.

However, as mentioned in the tactile sensor part, the pulse-like output signals make
the TENGs more sensitive to the external dynamic stimuli, and the real-time static sta-
tus monitoring, i.e., deformation or pressure, of the soft robots can be achieved by fus-
ing with other sensing mechanisms, e.g., capacitive, resistive, photonic, etc., towards a
multifunctional sensory system [229,230]. As shown in Figure 4f, Bu et al. proposed a
triboelectric-photonic smart skin for robots’ tactile and gesture sensing [226]. By doping the
aggregation-induced emission (AIE) powder into the flexible silicone rubber substrate with
the grating-structured metal film for exposure area adjustment, the photoluminescence and
photocurrent are tunable for continuous tensile measurement under the lateral stretching
range of 0–160%. Due to the high electron affinity ability of the silicone rubber, the triboelec-
tric output can also be generated when external stimuli occur, which can be used for vertical
static pressure detection with a maximum sensitivity of 34 mV Pa−1. After integrating onto
a robotic hand, the precise joint bending and touch pressure monitoring can be achieved
simultaneously, demonstrating the applicability of the triboelectric-photonic fused sensory
system for soft robot-related HMI applications. Another hybridizing strategy based on
the triboelectric and potentiometric for soft robot perception was reported by Wu et al.
as illustrated in Figure 4g [227]. Inspired by the slow adapting (SA) and fast adapting
(FA) capabilities of human skin, the potentiometric sensing mechanism that is sensitive to
the static or slowly varying stimuli is utilized to detect the compressive strain induced by
the external force, while the triboelectric mechanism suitable for dynamic stimuli sensing
can provide the instantaneous signal information at the beginning or ending moments of
the stimulation. With this multifunctional sensing capability brought by the complemen-
tary effects of these two mechanisms, more valuable information, including the pressure
and duration during the process of approaching, touching, holding and releasing, can be
obtained towards a more detailed object manipulation monitoring for soft robotic grippers.

Expert for these humanoid robots, animal-like exploration robots have also become a
hot topic recently. By sending these robots to natural or harsh environments where people
cannot go, valuable sensory data or physical tasks could be achieved for environmental
monitoring or space exploration purposes [231–234]. To endow the robots with the capabil-
ity to respond to complex environmental situations, e.g., avoiding obstacles, etc., varying
advanced sensing technologies based on the mechanisms of piezoresistive, piezoelectric,
optical and magnetic have been investigated [235–238]. However, thanks to the advan-
tages of lightweight and low power consumption, TENGs have become a new strategy
for developing self-sustainable exploration robots [230]. As shown in Figure 4h, inspired
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by the hair-based sensory system that animals used to explore the environment, An et al.
developed a TENG-enabled self-powered biomimetic whisker mechanoreceptor for robotic
tactile sensing [228]. The sensor consists of a fluorinated ethylene propylene (FEP) layer
serving as the animal whisker, covered by a biomimetic hair follicle made of two metal
electrodes. When the whisker swings between the two electrodes, the potential distribution
will change due to the triboelectricity and electrostatic induction, which can be used to
reflect the deflection direction and amplitude based on the signs and magnitude of the
transferred charges, respectively. When integrated into a quadruped robot, the biomimetic
whisker can help robots detect the movements of surrounding objects by analyzing the
amplitude and frequency of the vibrational signal. The real-time pressure applied on its
feet can also be achieved to reflect the gait and ground environment information, which can
effectively help it pass complex roads in harsh environments for exploration applications.

5. HMIs for Smart Home Applications

The rapid development of numerous smart electronics enables a large variety of
applications in the ambient environment to realize the smart home, with the intelligent
monitoring and response systems for healthcare monitoring, elderly/children care, fall
detection, body motion monitoring, automation, and security [239,240]. The current main-
stream technologies for smart home applications include camera-based image recognition
and commercial humidity/temperature sensors [241]. Although these technologies are
continuously developing, drawbacks still exist such as video-based privacy concerns, large
power consumption, bulky volume, and rigidity. Considering the fast development of
the energy harvesting/self-powered sensing technology (triboelectric, etc.), lowpower
HMIs can be realized with high convenience, low cost, and self-powered sensing ability to
reduce the overall power consumption and extend the lifetime of the system [5,242,243].
Additionally, because of the energy harvesting capabilities, these HMIs can also scavenge
the ambient energy and convert it into electricity for potential wireless communication.

As a good substitute for mechanical switches, flexible touchpads with multiple ar-
rays/units have been investigated frequently by using TENG technology to achieve self-
powered HMIs to interact with household appliances [244–247]. For these multi-array
touchpads, there are two common ways for wire connection. One is connecting each unit
to an output channel, which will lead to a messy wiring layout with complex processing
circuits. Another method is to build cross nodes of X-axial channels and Y-axial channels,
by which the total output channels will be reduced greatly, but the issues of crosstalk
between the intersected channels could not be avoided. To solve these problems, Pu et al.
developed a subdivision-structural 3D touchpad as illustrated in Figure 5a [248]. With the
novel subdivision structure, the overlapping area between the intersected electrodes is
significantly reduced, which can effectively suppress the crosstalk problems and improve
the position sensing resolution. Additionally, the pressure sensing function was also real-
ized by integrating another three-layer TENG unit for the touch or press differentiation
purpose. This sensing array was successfully further designed into an anti-peek built-in
code lock, where the information of the position and pressure can be integrated to form
a more complex access password compared with the methods that are only based on the
number location, effectively improving the safety factor of the authorization system in the
smart home.



Nanoenergy Adv. 2021, 1 95

Figure 5. HMIs for smart home applications. (a) A subdivision-structural 3D touchpad enabled authorization system.
Reprinted with permission from Reference [248], Copyright 2020, Elsevier. (b) A sliding-mode TENG-based control disk
interface. Reprinted with permission from Reference [249], Copyright 2020, Elsevier. (c) A triboelectric-based transparent
secret code. Reprinted with permission from Reference [250], Copyright 2018, Wiley. (d) A double-sided information
card with a reference barcode component for reliability improvement. Reprinted with permission from Reference [251],
Copyright 2017, Elsevier. (e) A large-scale and washable TENG textile enabled bedsheet for sleep behavior monitoring.
Reprinted with permission from Reference [252], Copyright 2017, Wiley. (f) A self-powered identity recognition carpet
system using TENG-based e-textile for safeguarding entrance. Reprinted with permission from Reference [253], Copyright
2020, Springer Nature. (g) TENG enabled smart mats as a scalable floor monitoring system. Reprinted with permission
from Reference [254], Copyright 2020, Springer Nature.
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Another smart method to simplify the output channels of touchpads is using binary
codes to define more functions with as few electrodes as possible. As shown in Figure 5b,
Qiu et al. reported a sliding-mode TENG-enabled control disk interface based on the binary
coding mechanism [249]. Two sensing electrodes with specific patterns are attached to the
panel, where one serves as the binary bit “1”, and the other serves as the binary bit “0”.
Due to the variation in the width and location of these two electrodes along with different
sliding directions, eight sensing transitions can be achieved based on the 3-bit binary code,
e.g., “001”,”010”, etc., for smart appliances control. Additionally, the sliding speed can also
be utilized to adjust the light brightness or fan speed. After integrating a soler cell to form
a hybrid energy harvester, the self-sustainable capability could be achieved by scavenging
both the light energy and the mechanical energy from hand tapping. Moreover, this control
disk can also be designed into a password input interface with more than 262,000 potential
combinations for smart home authentication applications.

Apart from the password input panel, the barcode is also a widely-used strategy as
the information carrier for personal identification/authentication applicable in smart home
applications [255,256], and can be developed with the TENG technology towards a self-
powered identification system. As depicted in Figure 5c, a triboelectric-based transparent
secret code was proposed by Yuan et al. [250]. The information is hidden in the patterned
indium tin oxide (ITO) electrodes, with a fluorinated ethylene propylene (FEP) film covered
on top serving as the tribo-layer. The elongated design of the ITO stripes can effectively
enlarge the contacting area within a short sliding time, and the different lengths will
contribute to the variation of the output amplitudes, which can be further translated into
the binary information of “1” or “0” with a reasonable threshold value by a sliding-check or
roll-to-roll reader for security defense purposes. However, the peak height enabled sensing
method is sliding velocity-dependent, and the non-uniform sliding speed may result in
the error in the peak amplitudes, as well as the corresponding identified information. To
solve this issue, Chen et al. proposed to use a reference barcode component to improve the
reliability of the identification system [251]. As illustrated in Figure 5d, the information
card is double-sided, where one side is patterned with the standard barcode electrodes
with equal intervals as the reference component, and the other side is patterned with
the information barcode that is aligned, swiped and measured simultaneously with the
reference one. By comparing the number and positions of the generated positive and
negative peaks from two sides, the coded information could be easily converted into the
digital information of “1” and “0” with high accuracy even under non-uniform sliding
speed by human hands, demonstrating a more reliable coding method for self-powered
access system in practical usage.

In this fast-paced era, people are under increasing pressure from work and life, leading
to more and more people being annoyed by the sleeping disorder, which may further
increase the risk of other health problems, e.g., obesity, heart disease, and diabetes [257]. To
realize the long-term sleep behavior monitoring for sleep quality assessment, many works
have been done based on real-time pressure sensing [258,259]. However, most of these
technologies are still restricted by the issues of low sensitivity, high fabrication cost, and non-
washability, limiting their practical applications for large-area sleeping monitoring in daily
usage. Recently, the fast development of TENG-based textile technology shows the great
potential of TENGs to be further designed into smart clothes for wearable or household
scenarios with high sensitivity and low cost [260–262]. By utilizing this technology, a
large-scale and washable smart textile based on TENG arrays was developed by Lin et al.
as shown in Figure 5e [252]. The proposed bedsheet has three layers, where a layer of
wave-shaped PET film is sandwiched by two layers of Ag-coating conductive fabrics. When
external stimuli occur, the applied pressure will enlarge the contact area between the PET
layer and the two conductive layers, thus resulting in the electrical potential change and
generating the outputs. With this optimal design, the smart textile shows a good sensitivity
of 0.77 V Pa−1 with a fast response time (<80 ms), as well as high durability and stability
even after being washed in tap water. By connecting multiple TENG units to form a sensing
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array, the information of the body’s posture, position and pressure distribution over an
entire night could be collected, providing a reliable dataset for analyzing the sleep quality.
Additionally, the smart bedsheet can also serve as a warning system to prevent the elderly
from falling off the bed, demonstrating a new possibility to realize the real-time remote
healthcare service in the smart home.

To avoid the privacy concerns introduced by cameras, floor-embedded sensors can be
implemented to extract the abundant sensory information associated with human activities
in the smart home, such as the indoor position and gait-based individual identity [263–265].
Thanks to the advantages of low cost, easy fabrication and wide choices for triboelectric
materials, TENG-based sensors commonly show good scalability and are compatible with
large-scale manufacturing, making them suitable to be further designed into the floor-
based HMIs [266–268]. A self-powered identity recognition carpet system enabled by
TENG-based e-textile for safeguarding entrance was reported by Dong et al. as illustrated
in Figure 5f [253]. The carpet consists of 128 black and white squares of the same size,
where the black blocks are attached with the TENG fabrics serving as the sensing region,
and the white blocks are used to reduce the interference between the adjacent sensing
regions. According to the generated output peaks in these black sensing blocks, the walking
trajectories of a visitor can be mapped with high accuracy and good stability, which can be
further compared with the correct password path to validate the authentication. However,
in this design, each sensing block is connected to an independent output channel, which
means a complex wire connection and high signal processing cost. To simplify the output
channels of the multi-array sensing system, a more advanced design of the smart mat
was reported by Shi et al. as shown in Figure 5g [254]. Six distinct electrode patterns
with varying coverage rates, i.e., 0% to 100% with 20% intervals, were designed and
fabricated by screen printing, acting as sensing arrays for this floor mat. Due to that
different electrode areas will contribute to different amounts of induced charge, the arrays
are self-distinguishable and can be connected in an interval parallel manner to form a
3 × 4 mat array with minimal two-electrode outputs. So that the indoor positioning
and activity monitoring can be achieved with minimal output terminals and minimized
system complexity, which also benefits the backend signal processing and data analysis.
Furthermore, with deep learning enabled data analytics, the identity information associated
with gait patterns can be extracted from the output signals, and high recognition accuracy
of 96% could be achieved for 10 persons based on their specific walking gaits, enabling
diversified applications in the smart home such as position sensing, activity/healthcare
monitoring, and security.

6. ML-Enabled Advanced HMIs

In terms of complex data analysis, the new trend of AI-enabled machine learning
has shown a new direction for enhancing the functionalities of sensors [1,269,270]. Due
to the powerful feature extraction capabilities of machine learning, more comprehen-
sive/detailed sensory information can be utilized to realize diversified applications, e.g.,
gesture/pose estimation, voice recognition, object recognition, etc. [81,87,164], for advanced
human–machine interactions as illustrated in Figure 6.
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Figure 6. ML-enabled advanced HMIs. (a) A TENG-based smart keyboard for keystroke dynamics monitoring. Reprinted with
permission from Reference [271], Copyright 2018, Elsevier. (b) Deep-learning-enabled TENG socks for gait analysis. Reprinted
with permission from Reference [272], Copyright 2020, Springer Nature. (c) A deep-learning-enabled TENG glove for sign
language translating. Reprinted with permission from Reference [273], Copyright 2021, Springer Nature. (d) A TENG-enhanced
smart soft robotic manipulator for AIoT virtual shop applications. Reprinted with permission from Reference [274], Copyright
2021, Wiley. (e) A bioinspired deep-learning-based data fusion architecture integrating the vision data and somatosensory data
for high-accuracy gesture recognition. Reprinted with permission from Reference [275], Copyright 2020, Springer Nature.
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Recently, several AI-enabled TENG-based HMIs have been successfully
developed [89,92,276–278] based on the algorithms of support vector machine (SVM),
neural network (NN), etc., where the subtle features hidden in the triboelectric waveform,
including contact sequence, impact vibration, etc., have been proven to effectively enhance
the recognition capability of the intelligent sensory system. Compared with state-of-art
works [279–281] that using a large number of resistive/capacitive sensor nodes for high-
accuracy ML analysis, the minimalistic approach of TENGs shows comparable performance
with significantly lower power consumption. Here, in this section, some typical examples
of TENG-based intelligent HMIs for diversified applications are reviewed.

For cybersecurity applications, keystroke dynamics enabled authentication system
has been proven as an effective approach to enhance the security level based on people’s
typing attributes with non-invasive monitoring characteristics [282–284]. A TENG-based
smart keyboard for keystroke dynamics monitoring was developed by Wu et al. as illus-
trated in Figure 6a [271]. There are a total of 16 silicone-based keys with high flexibility
and stretchability forming a multichannel keypad array, where each key consists of a
contact-separation-mode TENG to convert the typing behavior into electrical signals, and a
shield electrode to minimize the environmental interference. By using an analog-to-digital
converter (ADC) to collect the open-circuit-voltage signals, keystroke-related features, i.e.,
typing latencies, hold time and signal magnitudes, can be acquired simultaneously with
specific signal processing, e.g., denoising, baseline elimination, etc. Following the principal
component analysis (PCA) for feature dimensionality reduction, a multi-class SVM classier
was utilized to recognize the identities of 5 users based on the established dataset (150 sets
of data for each user), and high accuracy of 98.7% could be achieved, showing the feasibility
of the keystroke dynamics enabled authentication system for practical usage.

In addition to the keystroke dynamics, identification based on gait analysis is also a
promising technology for biometric authentication applications [46,285]. With the help of
artificial intelligence, complex personal information regarding the identity, health status as
well as real-time activity of the users could be delivered at the same time by analyzing the
gait patterns acquired from the floor- or sock-based sensory system. Zhang et al. proposed
deep learning-enabled TENG socks for gait analysis as depicted in Figure 6b [272]. A
textile-based TENG pressure sensor, consisting of a silicone rubber film with patterned
frustum structures as the negative tribo-layer, a nitrile thin film as the positive tribo-layer
and two conductive textiles as output electrodes, was fabricated and integrated onto a
smart sock for gait monitoring with high sensitivity (0.4 V kPa−1) and large sensing range
(>200 kPa). With an optimized four-layer one-dimensional (1D) convolutional neural net-
work (CNN) model for automatic feature extraction from the original walking spectrums, a
high recognition accuracy of 96% could be achieved for 5 participants with varying weights,
and could still be maintained higher than 93.5% when the number of people increased to
13, making it applicable for most indoor scenarios, e.g., home or office. By combining this
intelligent sock with an IoT module for wireless communication, an artificial intelligence
of thing (AIoT)-enabled two-stage recognition platform was established at the cloud server
to realize the functions of family member identification and real-time indoor activities, i.e.,
run, walk and jump, monitoring simultaneously, revealing its potential for future smart
home applications.

With AI for comprehensive sensory information extraction and autonomous learn-
ing, sophisticated hand gestures could be discriminated for glove-based HMIs towards
advanced control or sign language interpretation applications [286,287]. Though several
works have demonstrated the feasibility of developing TENG-based sign language per-
ception platforms with minimalistic design and high recognition accuracy [131,139,288],
most of them are limited to the identification of only several discrete and simple words or
letters and are not suitable for real-time sentence recognition. To deal with these issues,
Wen et al. developed a more advanced TENG-enabled sign language recognition system
with improved glove design and training strategies as shown in Figure 6c [273]. Apart
from the strain sensors that are mounted on each finger for finger bending monitoring,
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some sensors are placed on the wrists, fingertips and palms of the signers to capture subtle
features towards more comprehensive sign language gestures. By utilizing a 5-layer CNN
for feature extraction, high accuracy of 91.3% and 93.5% could be achieved for 50 words
and 20 complete sentences respectively based on a non-segmentation method. To further
extend its potential for new/never-seen sentences recognition, a segmentation strategy was
used, where the signal spectrum of a whole sentence was split into word units first and then
based on the correlation between the word units and the sentence, the original sentence’s
information could be reconstructed by the AI framework with an accuracy of 85.58%. With
this novel learning approach, new/never-seen sentences could also be identified with an
average accuracy of 86.67%, showing a new methodology to effectively expand the dataset
and improve the practicality of the sign language recognition system.

As mentioned in the section on robotics-related HMIs, TENG-based sensors have
been frequently investigated for developing low-power-consumption robot perception
systems due to the advantages of high flexibility and self-powered property. However,
most of the abovementioned works mainly focus on the simple manual analysis of the
collected sensory information [221,223], e.g., deformation, tactile, etc. For realizing more
advanced interactive functions, e.g., pose estimation, surface roughness perception and
object recognition, AI-enabled analytics are needed, to capture more valuable features
and endow the self-discrimination ability [225]. A TENG-enhanced smart soft robotic
manipulator for AIoT enabled virtual shop applications was reported by Sun et al. as
shown in Figure 6d [274]. A TENG bending sensor consisting of a rotating gear was utilized
to monitor the real-time deformation of the pneumatic finger according to the generated
peak numbers during the stretching process, and a TENG tactile sensor with distributed
electrodes design was used for contact position and area detection. With the aid of 1D
CNN ML algorithm for data processing, an intelligent robotic gripper that fuses these
two kinds of sensory information could be easily achieved to realize a high recognition
accuracy of 97.143% for 28 grasped objects with different shapes and sizes. Moreover,
temperature distribution information could also be implemented by a poly(vinylidene
fluoride) (PVDF) pyroelectric temperature sensor, towards a comprehensive and fully self-
powered perception system. This AI-enhanced smart gripper with multifunctional sensing
capability was further applied in a digital-twin-based virtual shop to provide users with
real-time feedback information of the goods, as well as a more immersive experience of
online shopping, showing great potential to realize advanced human–machine interactions
in unmanned working space.

Due to the existence of environmental interferences, the performance of sensors could
be affected in different environmental conditions, e.g., humidity effect for triboelectric
sensors, etc. [127], which may result in poor stability of the established recognition system.
For those TENG HMIs based on the sensing mechanism of grating sling or output ratio
as mentioned above, though the output amplitudes will be influenced under varying
environmental conditions, the generated peak numbers or the output ratio of distributed
electrodes will not change, resulting in strong resistance to environmental interference. So,
the ML result achieved from such kinds of output data will show better robustness without
the effect of environmental elements. While for the ML results obtained from the real-
time output spectrum, the variation in voltage amplitude under different environmental
conditions will inevitably affect the results of machine learning. However, if we collect the
data under different environmental conditions and combine them into a more generalized
data set, i.e., each category contains the data that captured under different environmental
conditions, the influence of environmental elements on accuracy will be avoided to a
certain extent due to the more generalized trained model. Similarly, the influence from the
different human behavior habits could also be avoided by enhancing the generalization
ability of the dataset, where the data from different users are collected, thus taking into
account the individual differences.

Another possible solution for this issue is to fuse sensors based on different mech-
anisms to build a more robust sensory system by utilizing the complementary effects
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of different sensors [289–291]. In Figure 6e, Wang et al. proposed a bioinspired deep-
learning-based data fusion architecture that integrates the vision data and somatosensory
data for high-accuracy gesture recognition in a harsh/dark environment [275], where
the somatosensory information could contain complementary features for maintaining
recognition accuracy especially when images are noisy and under- or over-exposed. To
ensure high compatibility with visual information, a highly transparent stretchable strain
sensor using single-walled carbon nanotubes (SWCNTs) was developed, which can collect
high-quality somatosensory data without affecting the visual information. With the visual
data captured by commercial cameras, a bioinspired somatosensory-visual (BSV) associated
architecture was then reported for further multimodal data fusion, which can mimic the
biological visual and somatosensory interactions in the area of the multisensory neuron of
the human brain. By using this approach for human gesture recognition, high accuracy
of 100% can be maintained even with low-quality images, proving the complementary
effect of the somatosensory information on vision-based gesture recognition. Additionally,
this architecture has also been demonstrated for more accurate robot manipulation, where
98.3% accuracy could be achieved with enough illumination and 96.7% accuracy could still
be maintained in the dark environment, illustrating its applications for human–machine
interactions in harsh environmental scenarios. Such a data fusion strategy provides a good
development direction for future TENG-based HMIs with better stability and applicability.

7. Haptic-Feedback Enabled HMIs

The completeness of an HMI system not only rely on the dexterous sensing units
which can monitor various human physiological signals and motions, but also requires a
specialized feedback module that can provide necessary stimulations to assist the cognition
of the manipulation status, so that a control-feedback loop is able to be established [292].
Noticeably, the consistency between the artificially stimulated sensation and the real
sensation to humans is the key to improve the user experience and the value of the
feedback information. Therefore, a majority of the feedback research is also focusing
on the biomimetic stimulators, include kinesthetic feedback which can reflect the spatial
movement of different body parts, and cutaneous feedback which is in charge of performing
the tactile and thermal stimulations to various skin’s receptors [293–296].

With the concern of conformability to the human body, wire and pneumatic actuators,
as commonly used actuation techniques, are also adopted in feedback systems for achieving
kinesthetic actuation [297,298]. Kang et al. reported a polymer-based soft wearable exo-
glove using tendon-driven feedback, as shown in Figure 7a [299]. The main functional
part consists of a body with stretchable designed finger modules, and the thimbles which
are connected to the corresponding finger modules. The actuation wires are then covered
by the sheaths embedded in the main body and linked to the motor box. This device can
help disabled people to recover the capability of hand grasping. Motor-based vibrators
are frequently used in mobile phones and joysticks as feedback units. Yu et al. developed
a skin-integrated wireless haptic interface for VR and remote interactions by making the
electromagnetic vibrator array (Figure 7b) [300]. This elastomer packaged device can be
directly attached to the human skin, and it is powered wirelessly via an NFC coil. The
design of serpentine Cu connectors ensures the stable performance under strain.
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Figure 7. Haptic-feedback enhanced HMIs. (a) Soft wearable exo-glove using a tendon driven feedback for assisting people with
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disabilities. Reprinted with permission from Reference [299], Copyright 2019, Mary Ann Liebert. (b) skin-integrated
electromagnetic vibrator based wireless haptic interface for VR and remote interactions. Reprinted with permission from
Reference [300], Copyright 2019, Springer Nature. (c) Mimicking the muscle motions via hydraulically amplified self-healing
electrostatic actuator. Reprinted with permission from Reference [301], Copyright 2019, Wiley. (d) Low-voltage dielectric
elastomer actuator (DEA) based fingertip haptic feedback can provide feel-through stimulation. Reprinted with permission
from Reference [302], Copyright 2020, Wiley. (e) Pyramid microstructured DEA for vibrational stimulus under AC voltage.
Reprinted with permission from Reference [303], Copyright 2018, AIP Publishing. (f) Near-infrared (NIR) light induced
thermoelastic deformation for programmable vibrotactile feedback system. Reprinted with permission from Reference [304],
Copyright 2021, American Chemical Society. (g) A glove with high force density electrostatic clutch for VR feedback.
Reprinted with permission from Reference [305], Copyright 2019, Wiley. (h) A multimode electrostatic actuator with
hydraulically amplified haptic feedback for creating tactile stimulus. Reprinted with permission from Reference [306],
Copyright 2020, Wiley. (i) A large reconfigurable pneumatic haptic array made by shape memory polymer activated by
heating. Reprinted with permission from Reference [307], Copyright 2017, Wiley. (j) Refreshable braille display system
based on pneumatic actuation and TENG based DEA. Reprinted with permission from Reference [308], Copyright 2020,
Wiley. (k) Electrical discharge based feedback system using TENG array with ball electrode. Reprinted with permission
from Reference [309], Copyright 2020, AAAS. (l) A multi-modal sensing and feedback glove with liquid metal based
resistive strain sensor, vibrator, and thermal feedback units. Reprinted with permission from Reference [310], Copyright
2020, Wiley. (m) Skin-like thermo-haptic device with thermoelectric units using Peltier effect. Reprinted with permission
from Reference [311], Copyright 2020, Wiley.

Dielectric elastomer actuator (DEA) is becoming another popular research direction in
recent years. The electric field induced deformation of DEA can be reshaped into vibration,
stretching, bending and other modes, by applying the different designs [312]. In Figure 7c,
Wang et al. presented a hydraulically amplified self-healing electrostatic actuator that can
mimic the muscle contraction motions under the applied electric field [301]. The actuator
is made of rectangular polymer shells filled with a liquid dielectric, and the electrodes are
coated at both ends. Hence, the applied voltage can induce a Maxwell stress cause the
electrode to zip together and the shell is then contracted due to the hydraulic pressure. This
actuator achieved a maximum linear contraction of about 24% at a loading of 0.2 N. On the
other hand, as shown in Figure 7d, a feel-through low-voltage DEA made by multi-layer
PDMS based DEA sandwiched by single-walled carbon nanotube (SWCNT) electrodes for
fingertip haptic feedback is demonstrated by Ji et al. [302]. The combination of three active
layers is only 18 µm thick, which can ensure the mechanoreceptors of the skin remain
sensitive to external stimuli. By applying the voltage, the surface area of the elastomer
increases or decreases to stretch or compress the skin for feedback. Similarly, Pyo et al.
presented a pyramid microstructured DEA layer. The applied AC voltage can also deliver
the vibrational stimulus (Figure 7e) [303]. Interestingly, Hwang et al. developed a light-
driven and low-power vibrotactile actuator using thin poly(3,4-ethylenedioxythiophene)
doped with p-toluenesulfonate (PEDOT-Tos) and PET film, as illustrated in Figure 7f [304].
The irradiation of near-infrared (NIR) light from LED can initiate a thermoelastic bending
deformation due to the mismatch of thermal expansion coefficient. Therefore, with the
assistance of LED array, a programmable vibrotactile feedback system is demonstrated.

There are also researches focus on electrostatic force-based feedback. The applied
voltage can cause the attraction of two electrodes under the difference of electrical potential.
In Figure 7g, Hinchet et al. designed a high force density electrostatic clutch for making
the VR feedback glove [305]. The clutch is simply made by the conductive textile with poly
vinylidene fluoride, trifluoroethylene, 1,1-chlorotrifluoro- ethylene (P(VDF-TrFE-CTFE)
based high friction insulation layer. The proposed device can generate frictional shear
stress up to 21 N cm−2 at 300 V, which can be used for blocking the finger motion during
VR events. In the meantime, Leroy et al. presented a multimode electrostatic actuator
with hydraulically amplified haptic feedback, as illustrated in Figure 7h [306]. The liquid
dielectric is encapsulated within a chamber formed by the flexible membrane and central
stretchable membrane. The electrode pairs are then located at the surroundings of the
center. The voltage-induced electrostatic force will force the electrode to attract and squeeze
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the outer region of the chamber, and hence, the central membrane will be expanded under
hydraulic pressure. By controlling the electrode designs and activation sequences, the
device can realize the multimode haptic feedback.

To enhance the feedback functionality of the pneumatic actuator with minimal air
inlet, various techniques are also integrated to tune the activation region of the device.
Besse et al. reported a large reconfigurable pneumatic haptic array with the aid of flexible
shape memory polymer (SMP) membrane, as depicted in Figure 7i [307]. The heater can
change Young’s modulus of the SMP membrane and allow it the deform under positive
or negative air pressure. As a result, the array design of the chambers and membranes
enables the dense reconfigurable tactile system. On the other hand, Qu et al. developed a
refreshable braille display system based on pneumatic actuation and TENG-based DEA
(Figure 7j) [308]. A similar air chamber with a membrane design is adopted. As mentioned
earlier, the DEA can be stretched under applied TENG voltage. Together with the air
pressure, the DEA membrane is then raised up to form a braille dot.

Moving forward, TENG is also directly used as a feedback unit via the generated
voltage. As shown in Figure 7k, Shi et al. designed a TENG array with ball electrodes to
make a feedback system for VR [309]. When the slider is sliding across the TENG array, the
electrical output can be generated via the triboelectrification effect. With the direct contact
of the ball electrodes to human skin, the TENG electrostatic discharge can be delivered as
electrical virtual tactile stimulation. Hence, the sliding trajectory can be sensed on the skin
as a feedback function.

Thermal sensation, as another important function of human skin, can bring a new
dimension of feedback to enrich the reconstruction of the environment in cyber or remote
space. The collection of temperature information is also critical to prevent potential damage
during remote control. Oh et al. developed a multimodal sensing and feedback glove with
a resistive strain sensor, vibrator, and thermal feedback units (Figure 7l) [310]. By applying
the direct ink writing technique, eGaIn liquid metal is printed into meandered shape to
make the units with both strain sensing and thermal feedback functions via the power
supply. Moving forward, the capabilities of both heating and cooling is the next challenge
for those wearable and flexible feedback systems. As illustrated in Figure 7m, a skin-like
thermo-haptic device with thermoelectric units is developed by Lee et al. [311]. This device
consists of Cu serpentine electrode, thermal conductive elastomer, and n-type/p-type
thermoelectric-based pellets. Based on Peltier effect, this flexible thermo haptic skin can
alternate the heating and cooling modes with the temperature difference of 15 ◦C.

In general, haptic feedback technologies can drastically boost up the capability of
information interpretation, instead of receiving digitized data. Equipment with wearable
feedback systems not only paves the way for immersive interaction, but also improves the
efficiency of manipulation via rapid cognition of the target environment [313,314]. The
research of more feedback parameters, such as smell and airflow, will eventually establish
a fully biomimetic feedback system.

8. Towards Self-Sustainable/Zero-Power/Passive HMI Terminals in the 5G/IoT Era

In this information age, the expansion of the Internet of things not only comes from mo-
bile phones, tablets, and computers, but also thanks to other millions of smart devices [315]
that are connected to the Internet through wireless communication technologies, e.g.,
WI-FI, Bluetooth, etc. Though the sensors based on self-powered mechanisms [154,316],
i.e., triboelectric and piezoelectric, in the IoT devices may do not need a power supply,
such signal transmission modules still mean high power consumption, especially when
there are massive sensor nodes under the IoT framework. In addition, as the traditional
power supply for portable devices, batteries experience drawbacks of high contamination
and limited lifespan, as well as the annoying replacement or recharging process. To ef-
fectively extend the lifespan of portable or remote devices, energy harvesters, which can
convert biomechanical energies or wasted energy in the ambient into electricity based on
the mechanisms of electromagnetic, piezoelectric, and triboelectric, have been frequently
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investigated recently to replace batteries as the power supply units towards self-sustainable
IoT systems/HMIs [317–319].

As shown in Figure 8a, an intelligent walking stick, consisting of a top press TENG for
contact point sensing, a rotational TENG for gait abnormality detection and a rotational elec-
tromagnetic generator (EMG) for energy harvesting, was reported by Guo et al. [320]. With
the deep-learning-enabled data analytic, complicated sensing functions including disability
evaluation, identity recognition and activity status identification could be implemented
through the TENG sensor outputs. Additionally, the linear-to-rotary structure enables the
integrated EMG to harvest the ultra-low-frequency biomechanical energy from human
motions and provide an average output power of 27.5 mW under 1 Hz stimuli. By stacking
two EMGs for higher power output and using customized circuits for power management,
a self-sustainable system capable of locomotion tracing and temperature/humidity moni-
toring was successfully achieved, where a temperature/humidity sensing module could
be driven continuously with 1 Hz working, and a GPS and wireless module could work
6 s after every 90 s charging. Moreover, by transmitting the TENG sensor signal to an AI
cloud/server via the 5G network for further analysis, real-time monitoring of the user’s
location and well-being status could be achieved in outdoor environments, showing the
feasibility of sustainable HMIs enabled by energy harvesters for future IoT applications.

Figure 8. Self-sustainable/zero-power/passive HMIs. (a) A sustainable intelligent walking stick for real-time monitoring of
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the user’s location and well-being status in outdoor environments. Reprinted with permission from Reference [320],
Copyright 2021, American Chemical Society. (b) A wireless tactile patch enabled by TENG’s direct coupling. Reprinted
with permission from Reference [321], Copyright 2017, Wiley. (c) A zero-power TENG wireless network via the mechanical
switch enabled frequency boosting up strategy. Reprinted with permission from Reference [322], Copyright 2019, Elsevier.
(d) A passive wireless TENG sensor using a surface acoustic wave resonator (SAWR). Reprinted with permission from
Reference [323], Copyright 2020, Elsevier.

However, current sustainable HMIs enabled by the integrated energy harvesting
units are not suitable for continuous wireless monitoring or fast information exchange
due to the inevitable charging phase [61,324–326]. The additional energy harvesters or
power management circuits also increase the size and cost of the whole device, reducing
the applicability for wearable scenarios. To these issues, some works chose to utilize the
high-voltage transient of the TENG to realize wireless coupling, and achieve complete
zero power consumption on the sensor terminals with the minimalistic design [327,328].
As shown in Figure 8b [321], Mallineni et al. reported a wireless TENG tactile patch
consisting of graphene polylactic acid (gPLA) nanocomposite and Teflon serving as the
tribo-layers, which can generate a high electric field in the surrounding air enabling ~3 m
wireless sensing, thanks to the extremely high output voltage (>2 kV) through simple
mechanical stimuli, e.g., hand tapping. By connecting a customized signal processing
circuit to the receiver, the hand tapping signal could be real-time collected wirelessly
without a power supply or even signal transmitter at the sensor side, realizing a truly
zero-power sensing terminal. Such a self-powered HMI could function as a controller for
diversified smart home applications, e.g., activating lights, displays, photo frames, or even
security systems via Morse code based passwords, showing great advantages in terms
of size and cost when compared with conventional HMIs that need bulky power supply
components or wireless circuit modules. However, the wireless sensing solution using
signal amplitude as the sensing parameter is easily affected by the ambient environment,
so a more advanced self-powered wireless network that detects the frequency of the TENG
output via the mechanical switch enabled frequency boosting up strategy was proposed by
Wen et al. as shown in Figure 8c [322]. With the enhanced frequency brought by the switch-
induced instantaneous discharging, the TENG output signal could be easily transmitted
wirelessly through a couple of coils, serving as a reliable reference for force calibration with
high sensitivity (434.7 Hz N−1) and a large sensing range thanks to the stable resonant
frequency. By changing the wire connection of TENG sensor layers, i.e., in series or parallel,
or adjusting the capacitors connected to different pixels in a sensor array, the tunable
frequency could be achieved for complicated manipulation, e.g., the multiple-freedom-
degree 2D car control or 3D VR drone control, revealing the feasibility of zero-power HMI
based on the TENG-enabled frequency shift wireless sensing for IoT applications.

Another strategy to realize battery-free sensor nodes with continuous sensing capabil-
ity under the IoT framework is to use passive wireless technologies, including near-field
communication (NFC) [329,330], radio frequency identification (RFID) [331,332], and sur-
face acoustic wave (SAW) sensors [333,334]. Compared with the abovementioned wireless
transmission methods based on the TENG output enabled electric/magnetic coupling,
these passive wireless approaches commonly show better stability in varying environ-
mental circumstances, as well as smaller wireless sensing and receiving units. A passive
wireless TENG sensor using a surface acoustic wave resonator (SAWR) was reported by
Tan et al. as illustrated in Figure 8d [323]. By connecting a TENG force sensor to a SAWR,
the frequency and amplitude of the SAWR’s response signal can be modulated via the
TENG output, making the radio frequency (RF) signal contain the tactile related sensory
information which can be further extracted by the RF reader through the demodulating
process. All the energy in this wireless transmission system is provided by the remote
RF reader, making the sensor terminal a completely passive sensing node capable of con-
tinuous monitoring with a transmission distance larger than 2 m and high sensitivity of
23.75 kHz V−1. This system could also act as a passive controller for trigger signal detec-
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tion and Morse code based wireless manipulation, or as a wireless matrix keyboard with
resonators working under different center frequencies, showing the promising prospects of
distributed sensing or human–machine interaction in this 5G/IoT era.

9. Conclusions and Prospects

With the advantages of the wide material choices and diversified structural designs,
TENG-based sensing technology has been frequently investigated towards low-power
HMIs in this 5G/IoT era. In this review, we systematically summarize the key technologies
and progress of TENG-based HMIs in terms of different application scenarios, includ-
ing wearable HMIs, robotic-related HMIs and HMIs for smart home applications. By
using the ML analytic for automatic feature extraction, advanced interactions, such as
biometric authentication, gait analysis, gesture recognition and object recognition, can
be implemented to enhance the functionalities of TENG-based HMIs towards intelligent
interactive systems in the age of AI. The state-of-art haptic feedback technologies have also
been reviewed and discussed, which yields a promising research direction for developing
self-driven immersive HMIs when bringing in the TENG technology. Furthermore, the
integration of self-powered TENG sensors and energy harvesters or passive wireless trans-
mission technology also provides the possibility to realize battery-free/self-sustainable
HMI terminals.

Despite the viable progress in developing TENG-based HMIs for diversified applica-
tions, there are still challenges that remain to be solved for the current solutions. First, the
peak-like output signals make the TENG-based sensors only suitable for dynamic stimuli
sensing and cannot be used to detect the continuous variation due to the fast shift of elec-
trical states. Though methods based on grating-sliding mode TENG have been frequently
reported [133,172], the resolution is limited by the size and spacing of the grating, and
is difficult to reach a very high level without advanced fabrication processes [335], e.g.,
MEMS process, screen printing, micro-machine, etc., which means high fabrication cost.
Other methods based on high-impedance readout circuits [149] or nanophotonic modu-
lators [135,336] need complicated measurement systems, which are unlikely to be made
into portable sensing devices for daily usage. Therefore, a reliable and convenient way
to achieve continuous sensing capability for TENG-based HMIs that is compatible with
IoT mobile platforms is needed. Second, though the energy harvesting or passive wireless
transmission technology shows the feasibility to realize battery-free/self-sustainable HMI
terminals with TENG sensors, limitations still exist, e.g., intermittent operation for energy
harvester integrated system due to the charging phase, short transmission distance for
electric/magnetic coupling or passive wireless transmission, etc. Further investigation on
battery-free/self-sustainable systems with continuous operation capability and long wire-
less transmission distance is still desired. Third, the durability of TENG-based HMIs for
long-term usage, and the robustness of the sensor performance in varying environmental
conditions are also major concerns, considering the inevitable friction layer loss and the
triboelectric charge loss under the high humidity condition, which may cause instability
of the output and bring great challenges to the sensor collaboration. Moreover, TENG
sensors can be fused with other sensing mechanisms towards a multimodal sensor fusion
with AI analysis [337] for multifunctional purposes or more robust performance under
varying environmental conditions. In this regard, the seamless implementation of the
low-power/self-sustainable TENG-based HMIs will definitely shed light on the harmonic
coexistence of humans and machines in the future of the IoT era, along with the immersive
and efficient interactions in numerous scenarios.
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