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The Ulm Fracture Healing Model, was originally developed by Simon et al. [8].
Further improvements of the model can be attributed to Niemeyer et al. [5]. In-
spired by the work of Pauwels, Claes and Heigele [3] depicted the hypothesis of
mechano-regulated fracture healing by local hydrostatic and distorsional strain
states. Later on, Ament and Hofer [1] gained the idea to implement a fuzzy logic
to the differentiation process and applied a feedback control system to the healing
process. Simon et al.[8] combined the idea of Claes and Heigele with the approach
of Ament and Hofer to develop a more advanced, dynamic model of secondary
fracture healing. Over time, further knowledge gained by various Ulm researchers
was added. Special improvements were implemented by Niemeyer[4] focusing on
the distraction osteogenesis process in the diaphysis.

Figure 1 shows the schematic procedure of the bone healing simulation. In the
following, a short summary of every step is described.
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Geometry setup[Step 1]

FE mesh generation[Step 2]

Initial biological state and boundary conditions[Step 3]

Estimate compound material properties
from tissue composition (rule of mixture)

[Step 4]

Determine mechanical stimuli
(static structural finite element analysis)

[Step 5]

Determine vascularity and bone concentration
in local environment

[Step 6]

Compute tissue concentration changes
(fuzzy logic controller)

[Step 7]

Update and renormalize concentrations[Step 8]

Output current state[Step 9]
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Figure 1: Schematic illustration of the bone healing simulation procedure; Figure
is based on [4, Figure 1.28 on p. 47]
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Step 1: The healing region Ω ⊂ R3 is defined as a subset of the three-
dimensional space.

Step 2: In order to perform a Finite Element Analysis (FEA), the healing area
Ω is dicretized in Finite Elements (FE) Ti ⊂ R3.

Step 3: The healing domain Ω consists of a variety of different biological tis-
sues, such as lamellar and woven bone, cartilage and soft tissue. Moreover, the
vascularity is taken into account. Thus, five state variables are introduced, which
represent the relative concentration of woven bone and lamellar bone, fibrocar-
tilage, soft tissue and the degree of vascularity respectively. The concentration
distributions are modeled in the form of five scalar fields

cτ : Ω× [0,∞)→ [0, 1], (r, t) 7→ cτ (r, t) , (1)

where τ ∈ {lb, wb, c, s, v} :=
⋃
τ (lb for lamellar bone, wb for woven bone, c for

fibrocartilage, s for soft tissue and v for vascularity). Since the scalar fields clb,
cwb, cc and cs represent relative tissue concentrations, they have to sum up to one,

i.e. clb(r, t)+cwb(r, t)+cc(r, t)+cs(r, t)
!

= 1 ∀r ∈ Ω, ∀t ∈ [0,∞) or, in other words,
one of these variables is redundant and can be neglected - Simon et al. chose cs.
So, the biological state of the system is entirely expressed by the four main state
variables clb, cwb, cc and cv.

Considering the biological state at a fixed time point t the scalar field cτ is
assumed to be constant within an arbitrary FE Ti. Since cτ is a piecewise constant
function (step function), the biological state of element Ti is determined by four
numbers clb,i, cwb,i, cc,i and cv,i (compare Figure 2).

So, the biological state of the whole healing domain at a certain point in time
can be represented by four vectors

cτ ∈ [0, 1]n ⊂ Rn, cτ :=


cτ,1
cτ,2

...
cτ,n

 (2)

for τ ∈ {lb, wb, c, v}.
In order to describe the initial biological state of the entire healing domain, ev-

ery element Ti needs to be assigned a mixture of the relative tissue concentrations
and a relative vascularity at the beginning of the healing simulation. Furthermore,
boundary conditions and other constraints are applied to the FE-model [8, p. 81].
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Figure 2: Left: Finite Element Mesh consisting of triangles (in 2D); Right: Bio-
logical state of element Ti determined by clb,i, cwb,i, cc,i, cs,i = 1− clb,i −
cwb,i − cc,i and cv,i

Step 4: For the computation of the relevant strains, the mechanical properties
of each element have to defined for the FEA. Hereby a linear isotropic material is
described by the Young’s modulus Ei and the Poisson’s ratio νi. Since the elements
in the healing simulation consist of an individual mixture of different materials, the
mechanical properties for each element Ti is estimated individually. The approach
used by Simon et al., the rule of mixture, determines those properties by weighting
the corresponding pure tissues Young’s modulus Eτ and the Poisson’s ratio ντ with
the relative tissue concentrations by

Ei =
∑
τ ∈

⋃
τ

Eτ · c3τ,i and νi =
∑
τ ∈

⋃
τ

ντ · cτ,i, (3)

where Eτ and cτ are the material parameters corresponding to the distinct tissue
types. The expression originates from experimental data of Carter and Hayes [2],
where the apparent compressive modulus of trabecular bone was analyzed and
stated that the elastic modulus scales with the cube of the mineral density. We
showed that this rule of mixture had problems [7], when mixing soft tissue with
little hard tissue. Therefore, the tissues are ascendingly sorted (Eτ1 < Eτ2 < ... <
EτN ) and the resulting Young’s modulus is calculated with:

Ei = Eτ1 · cτ1,i +
N∑
j=2

(
Eτj − Eτj−1

)
·

(
N∑
k=j

cτk,i

)3

, (4)

for N the number of tissue types.
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Step 5: Through the FEAs resulting displacements, the mechanical stimuli
acting on each element are deduced based on the tissue differentiation hypothesis
of Pauwels [6] and Claes and Heigele [3]. Simon et al. distinguished between
two invariants: A pure volumetric change (dilatational strain) and a pure shape
distortion (distortional strain) as illustrated in Figure 3.

Dilatational strain Distortional strainOriginal shape

Figure 3: Left: Dilatational strain (pure volumetric change); Right: Distortional
strain (pure shape distortion); Figure is based on [4].

Step 6: The tissue differentiation does not only depend on the biological state
of the element itself and the mechanical stimuli acting on it, but also on the bone
tissue concentration and relative vascularity within the local environment. For in-
stance, bone formation can only take place on the surface of already existing bone
tissue (appositional growth) and through angiogenesis new blood vessels form from
pre-existing vessels. So, in order to predict the changes of tissue composition and
perfusion, the bone tissue concentration and vascularity in the local environment
of the considered element have to be taken into account.

Step 7: In this step, the current biological state serves as an input to a Fuzzy
Logic Controller (see Figure 4). Herein the tissue differentiation processes are
implemented and control the changes in vascularity, bone tissue concentration
and cartilage concentration (see [4, p. 53-56, 326–333]).

In its current state, the model is able to capture the following biological pro-
cesses:

• Intramembranous ossification: Fibrous connective tissue evolves into woven
bone

• Chondrogenesis: Formation of cartilage out of connective tissue

• Endochondral ossification: Fibrocartilage transforms to bone tissue

• Bone maturation: Woven bone is slowly replaced by lamellar bone

• Tissue destruction: Too high mechanical loads may cause the destruction of
existing cartilage or bone tissue
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• Bone resorption: Existing bone tissue is replaced by soft tissue if the me-
chanical stimulation falls below a certain threshold.

• (Re-)Vascularization: Initially avascular tissue is revascularized over time.
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Figure 4: Tissue differentiation process modeled by Fuzzy Logic Controller; Left:
Input; Right: Output; Figure is based on [4, Figure 1.32 on p. 54]

Step 8: To guarantee that the tissue concentrations sum up to 1 for each element

i.e. cb,i + cc,i + cs,i
!

= 1 ∀i ∈ {1, ..., n} (compare Figure 2), the concentration
compositions are normalized For further information the reader is referred to [8,
p. 82-85] and [4, p. 53-56, 90–94, 315–333].

Step 9: Finally, the simulation results, e.g. the current biological state of all
FEs, is stored.

The Ulm Healing Model is a dynamic model. So, the procedure from step 4
to 9 is repeated several times, where each iteration represents a certain period of
time, for instance one day. This is done by an explicit Euler scheme. When the
iteration counter i reaches imax, the simulation terminates.
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