Geotechnics, Volume 1, Issue 1 (September 2021) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Critical Analysis of Nonlinear Base-Isolated Building Considering Soil–Structure Interaction under Impulsive and Long-Duration Ground Motions
Geotechnics 2021, 1(1), 76-94; https://0-doi-org.brum.beds.ac.uk/10.3390/geotechnics1010005 - 30 Jun 2021
Viewed by 242
Abstract
Critical responses are investigated for nonlinear base-isolated buildings considering soil–structure interaction under near-fault ground motions and long-duration ground motions. A double impulse and a multi impulse are employed to simulate the nonlinear critical responses of the models under such ground motions. The base-isolation [...] Read more.
Critical responses are investigated for nonlinear base-isolated buildings considering soil–structure interaction under near-fault ground motions and long-duration ground motions. A double impulse and a multi impulse are employed to simulate the nonlinear critical responses of the models under such ground motions. The base-isolation story is assumed to consist of lead rubber bearings and to have a bilinear force–deformation relation. Two types of critical timings for a MDOF building model supported by a swaying-rocking spring-dashpot system are derived: (1) the timing that maximizes the total input energy to the whole system and (2) the timing that maximizes the instantaneous input energy to the base-isolated building excluding the swaying-rocking system. These two types of critical timings are compared through numerical examples. Finally, time-history response analyses were conducted under the critical double impulse, the corresponding one-cycle sine wave, and the critical multi impulse. The effect of the soil–structure interaction on the maximum responses of the nonlinear base-isolated building is clarified. Full article
(This article belongs to the Special Issue Soil-Water-Structure Interaction)
Show Figures

Figure 1

Review
Review of Recent Developments and Understanding of Atterberg Limits Determinations
Geotechnics 2021, 1(1), 59-75; https://0-doi-org.brum.beds.ac.uk/10.3390/geotechnics1010004 - 20 May 2021
Cited by 1 | Viewed by 569
Abstract
Among the most commonly specified tests in the geotechnical engineering industry, the liquid limit and plastic limit tests are principally used for (i) deducing useful design parameter values from existing correlations with these consistency limits and (ii) for classifying fine-grained soils, typically employing [...] Read more.
Among the most commonly specified tests in the geotechnical engineering industry, the liquid limit and plastic limit tests are principally used for (i) deducing useful design parameter values from existing correlations with these consistency limits and (ii) for classifying fine-grained soils, typically employing the Casagrande-style plasticity chart. This updated state-of-the-art review paper gives a comprehensive presentation of salient latest research and understanding of soil consistency limits determinations/measurement, elaborating concisely on the many standardized and proposed experimental testing approaches, their various fundamental aspects and possibly pitfalls, as well as some very recent alternative proposals for consistency limits determinations. Specific attention is given to fall cone testing methods advocated (but totally unsuitable) for plastic limit determination; that is, the water content at the plastic–brittle transition point, as defined using the hand rolling of threads method. A framework (utilizing strength-based fall cone-derived parameters) appropriate for correlating shear strength variation with water content over the conventional plastic range is presented. This paper then describes two new fine-grained soil classification system advancements (charts) that do not rely on the thread-rolling plastic limit test, known to have high operator variability, and concludes by discussing alternative and emerging proposals for consistency limits determinations and fine-grained soil classification. Full article
(This article belongs to the Special Issue Soil-Water-Structure Interaction)
Show Figures

Figure 1

Article
Geomechanical Behaviour of Uncemented Expanded Polystyrene (EPS) Beads–Clayey Soil Mixtures as Lightweight Fill
Geotechnics 2021, 1(1), 38-58; https://0-doi-org.brum.beds.ac.uk/10.3390/geotechnics1010003 - 28 Apr 2021
Viewed by 365
Abstract
Lightweight fill can be advantageous in embankment construction for the purposes of reducing the (i) bearing pressures on the underlying soil foundation, (ii) destabilizing moments for constructed earthen slopes, and (iii) earth pressures acting behind retaining walls. This paper investigates the merits/limitations of [...] Read more.
Lightweight fill can be advantageous in embankment construction for the purposes of reducing the (i) bearing pressures on the underlying soil foundation, (ii) destabilizing moments for constructed earthen slopes, and (iii) earth pressures acting behind retaining walls. This paper investigates the merits/limitations of particulate expanded polystyrene (EPS) beads mixed with clayey sand (CS) soil as lightweight fill, considering both geotechnical and environmental perspectives. The bench-scale geotechnical testing programme included standard Proctor (SP) compaction, California bearing ratio (CBR), direct shear (sheardox), oedometer and permeability testing performed on two different gradation CS soils amended with 0.5, 1.5 and 3.0 wt.% EPS, investigating two nominal bead sizes equivalent to poorly-graded medium and coarse sands. Compared to the unamended soils, the compacted dry density substantially decreased with increasing EPS beads content, from 2.09 t/m3 (0 wt.% EPS) to as low as 0.33 t/m3 for 3 wt.% (73 v.%) of larger-sized EPS beads. However, from analyses of the test results for the investigated 50 to 400 kPa applied stress range, even 0.5 wt.% (21 v.%) EPS beads caused a substantial mechanical failure, with a drastic decay of the CBR and compressibility parameters for the studied CS soils. Given the more detrimental environmental cost of leaving myriads of separate EPS beads mixed forever among the soil, it is concluded that the approach of adding particulate EPS beads to soils for producing uncemented lightened fill should not be employed in geotechnical engineering practice. Full article
(This article belongs to the Special Issue Soil-Water-Structure Interaction)
Show Figures

Figure 1

Article
Numerical Study of the Behavior of Back-to-Back Mechanically Stabilized Earth Walls
Geotechnics 2021, 1(1), 18-37; https://0-doi-org.brum.beds.ac.uk/10.3390/geotechnics1010002 - 19 Apr 2021
Viewed by 471
Abstract
Back-to-back mechanically stabilized earth (MSE) walls can sustain significant loadings and deformations due to the interaction mechanisms which occur between the backfill material and reinforcement elements. These walls are commonly used in embankments approaching bridges, ramps, and railways. The performance of a reinforced [...] Read more.
Back-to-back mechanically stabilized earth (MSE) walls can sustain significant loadings and deformations due to the interaction mechanisms which occur between the backfill material and reinforcement elements. These walls are commonly used in embankments approaching bridges, ramps, and railways. The performance of a reinforced wall depends on numerous factors, including those defining the soil, the reinforcement, and the soil/reinforcement interaction behavior. The focus of this study is to investigate the behavior of back-to-back mechanically stabilized earth walls considering synthetic and metallic strips. A two-dimensional finite difference numerical modeling is considered. The role of the soil friction angle, the distance of the reinforcement elements, the walls’ width to height ratio, and the quality of the soil material are investigated in a parametric study. Their effects on the critical failure surface, shear displacements, wall displacements, and tensile forces on the reinforcements are presented. The interaction between back-to-back reinforced walls strongly depends on the distance between walls and modifies the critical failure surface location. Full article
Show Figures

Figure 1

Article
Effect of the Particle Size on the TDA Shear Strength and Stiffness Parameters in Large-Scale Direct Shear Tests
Geotechnics 2021, 1(1), 1-17; https://0-doi-org.brum.beds.ac.uk/10.3390/geotechnics1010001 - 25 Jan 2021
Cited by 4 | Viewed by 819
Abstract
The increase in the number of discarded tires every year is becoming a major issue all over the world. Tires stockpiles and landfills have become a critical issue as they are considered a fertile environment for the breeding of rats and insects, a [...] Read more.
The increase in the number of discarded tires every year is becoming a major issue all over the world. Tires stockpiles and landfills have become a critical issue as they are considered a fertile environment for the breeding of rats and insects, a real fire hazard that may take up to months to extinguish and occupy a valuable, large area of land. One of the safest effective ways of recycling tires is that to use them as backfilling material, among different usages, in civil engineering projects due to their low unit weight and specific gravity. However, to use any material in the construction industry, several material properties must be evaluated, including the shear strength and stiffness parameters. Many factors control the measured parameters. One main factor that is known to have a significant effect is the particle size. This paper focuses on evaluating the effect of the particle size on the shear strength and stiffness parameters of six tire-derived aggregate (TDA) samples having particle sizes range between (9.5–101.6 mm) using a large-scale direct shear machine. The tests were conducted under three normal stresses: 50.1, 98.8 and 196.4 kPa using a constant shearing rate of 0.5 mm/min. The results of this study showed an increasing angle of internal friction as the maximum particle size increases. Moreover, the secant shear modulus also exhibited an increase by increasing the maximum particle size. Furthermore, equations to estimate the stress-strain curves of Type A-TDA for different confidence levels were developed, and their predictions were compared with experimental results to assess their suitability. Full article
Show Figures

Figure 1

Back to TopTop