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Abstract: The presence of complex discontinuity patterns, the inherent statistical nature of their
geometrical parameters, the uncertainties involved in the estimation of the discontinuity geometrical
and geo-mechanical properties and complex three dimensional (3-D) in-situ stress make the accurate
prediction of rock mass strength a difficult task. It has been a great challenge for the rock mechanics
and rock engineering professions to develop a rock mass strength criterion in three dimensions
that incorporates the effect of the minor and intermediate principal stresses and captures the scale
dependent and anisotropic properties resulting from the discontinuity geometry parameters, such as
the number of discontinuity sets, 3-D discontinuity intensity, and the distributions of the discontinuity
orientation and size. Rock mechanics and rock engineering researchers have dealt with this topic
for more than 55 years. The paper provides a critical review of the current state of the art regarding
3-D jointed rock mass strength criteria. The shortcomings of several rock mass strength criteria are
discussed. The historic development of rock mass strength criteria that incorporate the effect of the
minor and intermediate principal stresses and capture the scale dependent and anisotropic properties
is presented. The most advanced 3-D rock mass strength criteria currently available in the literature
are presented, including suggested future improvements.

Keywords: rock mass strength; anisotropy; scale effects; intermediate principal stress; discontinuity
geometry; fracture tensor components; discontinuity mechanical properties; physical modeling;
empirical modeling; numerical modeling

1. Introduction

Most naturally occurring discontinuous rock masses comprise intact rock interspaced
with different types of discontinuities. Fissures, fractures, joints, faults, bedding planes,
folds, shear zones and dykes are different types of discontinuities that exist in rock masses.
Discontinuities may be divided into major and minor using the feature size. Large features
may be considered as major discontinuities, and the rest of the small features may be
considered as minor discontinuities. For most of the civil and mining engineering projects
at the upper most level (for the domain size considered for analysis), the rock masses
contain only a few major discontinuities.

For such projects, major discontinuities can be considered as single features, and
their geometry may be represented deterministically. On the other hand, due to the large
number and inherent statistical nature, the geometry of minor discontinuities should
be characterized statistically. Henceforth, the minor discontinuities are referred to as
either “joints” or “fractures” in this paper. Due to the presence of discontinuities, the
geomechanical response of discontinuous rock masses can be highly complicated under
complex geology and in-situ stress systems. Therefore, mining and civil engineers face
many difficulties in tackling the design and construction tasks associated with geotechnical
systems that are in or on discontinuous rock masses.

Such geotechnical systems cover a wide range of surface and underground excavations
made for ore extraction, tunnels for hydropower and transport, dams, deep foundations,
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natural and man-made rock slopes, and underground repositories for oil, gas, and haz-
ardous waste. In dealing with these rock engineering projects, rock mass stability is
the main concern for the engineers. To arrive at safe and economical designs, it is very
important to have a good understanding of the rock mass strength.

Rock mass strength depends on the (a) lithology; (b) discontinuity geometry network,
including the number of discontinuity sets, their intensity and the spatial distribution of the
orientation, size and spacing; (c) geo-mechanical properties of the discontinuities including
roughness, strength and deformation of asperities and filling material; (d) geo-mechanical
properties of the intact rock; (e) in-situ stress system; (f) size of the rock mass; (g) shape of
the rock mass; (h) loading/unloading stress path; (i) loading rate; (j) pore pressure in the
rock mass; and (k) environmental conditions (such as the temperature, humidity etc.) of
the rock mass.

The presence of complicated fracture networks, the inherent statistical nature of their
geometrical parameters and the variabilities and uncertainties involved in the estimation
of their geometrical and geo-mechanical properties and in-situ stress make the accurate
prediction of rock mass strength a difficult, challenging task [1,2]. On the other hand,
unfortunately, understanding of the mechanical behavior of rock masses is crucial to
designing safe and economical structures in or on rock masses.

To obtain intact rock mechanical properties, usually 50 mm (approximately 2 inch)
diameter samples according to ASTM or ISRM guidelines are tested. At this size, the
distribution of micro-cracks with the location of the sample has an influence on the scatter
for the considered rock block property. A further increase of sample size will include the
influence of one or more fractures. When the sample size contains only a few fractures, the
sample properties vary considerably from one sample to another, reflecting the statistical
inhomogeneity with respect to the influence of fractures. This variability decreases as the
sample size is further increased to contain more fractures and to make the sample more
statistically homogeneous with respect to the fractures.

Beyond a certain minimum volume, the mass property of the rock may not change
significantly (from a practical point of view) with respect to the effect of fractures. This
minimum volume may be used as the element size to represent the equivalent mass
property of a statistically homogeneous rock mass volume that contains a significant
number of fractures. This volume may be termed as a “Representative Elementary Volume”
(REV) and may be of great importance for engineering purposes. Each rock mass property
may have a different REV value. For some rock masses, the REV sizes may be small
compared to the size of the problem domain of interest. For such cases, the REV sizes and
associated properties will be very useful for engineering applications.

For some other rock masses, REV sizes may be large compared to the size of the
problem domain. In such cases, if one knows how the rock mass property of interest
varies between the intact rock value and the REV value with respect to the joint geometry
parameters and block size, this will be quite useful for dealing with the latter category of
rock masses in engineering applications. It is important to keep in mind that the variability
of the rock mass property at the REV size or greater than the REV size will be smaller
compared to the rock mass property at sizes less than the REV size. If the sample size is
increased further to allow major discontinuities to enter the sample, then the rock mass
property will vary reflecting the influence of major discontinuities.

In summary, the REV sizes and the corresponding REV mechanical properties can be
used to represent the combined equivalent continuum behavior of minor discontinuities
(joints) and intact rock. To this system of the rock mass, the major discontinuities can be
added as single features to complete the representation of the whole rock mass. Estimation
of the REV size, the REV mechanical properties and orthotropic constitutive models for
jointed rock masses at the three-dimensional (3-D) level has been reported by Kulatilake
et al. [2] and Wu and Kulatilake [3]. These results clearly indicated that the strength and
deformability of rock masses show very significant scale effects and anisotropic behavior
at the 3-D level due to pre-existing fracture systems.
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It has been a great challenge for the rock mechanics and rock engineering professions
to develop a rock mass strength criterion in 3-D that incorporates the effect of important
fracture geometry parameters and intermediate principal stress and to capture the scale
effects and anisotropic properties of jointed rock masses. Rock mechanics and rock engi-
neering researchers have dealt with this topic for more than 55 years. The aim of this paper
is to provide the state of the art of the estimation of 3-D jointed rock mass strength criteria
using physical, empirical, analytical and numerical modeling methodologies.

2. Physical Modeling Applications to Estimate Rock Mass Strength
2.1. Large Scale In-Situ Tests

Currently, the methods to estimate the strength properties of jointed rock masses
can be categorized into direct and indirect methods. Direct methods include laboratory
and in situ tests. Laboratory results obtained from small-sized specimens that include
only micro-joints are very different from the results obtained from large-scale blocks
because the laboratory samples cannot accommodate the whole spectrum of different size
discontinuity network that is present in the field. A significant number of in-situ tests
have been performed on various rock types to study the effect of size on the rock mass
compressive strength using various sample sizes with different width to height (w/h)
ratios [4–17].

Some of these investigators also performed corresponding laboratory tests on the
same rock types. Bieniawski and Van Heerden [17] and Heuze [18] have reviewed the work
done prior to their publications on scale effects on rock mass strength. The reported results
of these investigations clearly show the reduction of rock mass strength with increasing
size up to a certain size, beyond which change becomes insignificant from a practical
point of view. Bieniawski [10] observed this size to be about 1.5 m for coal. Jahns [7]
and Pratt et al. [15] noted this size to be about 1.0 m for diorite and iron ore, respectively.
Bieniawski [10] observed the strength of the largest sample size (2 m) to be about 0.15 of
the smallest laboratory sample size.

Pratt et al. [15] noted the previously mentioned ratio to be 0.1. Bieniawski and Van
Heerden [17] provided valuable guidelines for experimental procedures to perform large
scale in-situ tests. They also suggested various empirical equations to relate the rock mass
uniaxial strength to the w/h ratio. It is important to note that the relations developed from
in-situ tests in the above stated studies primarily depend on the discontinuity network of
the tested rock masses. However, unfortunately, in these early investigations, no attempt
was made to map the discontinuity network before subjecting the rock mass to mechanical
behavior testing. Therefore, the reported relations are highly site dependent and have
qualitative value only.

2.2. Jointed Block Testing with a Significant Number of Fractures in the Laboratory

To obtain realistic results for jointed rock mass mechanical properties, many large
volumes of rock of different sizes with a number of different known joint configurations
should be tested at significant stress levels under different stress paths. Such an experiment
program is almost impossible to conduct in the laboratory. With in situ tests, such an
experimental program would be very difficult, time-consuming and expensive. The results
of laboratory model studies on rock-like materials [18–27] have shown that many different
failure modes are possible with jointed rock and that the internal distribution of stresses
and strains within a jointed rock mass can be highly complex.

Yang et al. [23], Kulatilake et al. [24–26] and Mehranpour et al. [27] found that the
failure modes can be divided into three types, namely splitting failure through the rock
blocks, sliding along joint planes and a mixed splitting-sliding mode. They also demon-
strated that the failure strength exhibits pronounced anisotropy mainly due to the effects of
joint orientation. Even though these jointed blocks included a significant number of joints,
all the included joints were persistent joints. Only a few experimental studies have been
performed using a significant number of non-persistent joints [28–31].
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Prudencio and Van Sint Jan’s [29] paper presents the results of biaxial tests performed
on physical models of rock with non-persistent joints. The failure modes and maximum
strengths developed were found to depend on, among other variables, the geometry
of the joint systems, the orientation of the principal stresses and the ratio between the
intermediate stress and intact material compressive strength· These test results showed
three basic failure modes: failure through a planar surface, stepped failure and failure by
the rotation of new blocks.

Planar failure and stepped failure were associated with high strength behavior and
small failure strains, whereas rotational failure was associated with a very low strength, duc-
tile behavior and large deformation. Chen et al. [31] investigated the combined influence
of the joint inclination angle and joint continuity factor (lengths of the joints divided by the
total length of the block) on the strength and deformation behavior of the jointed rock mass
for gypsum specimens with a set of non-persistent open flaws under uniaxial compression.

Complete axial stress–strain curves were classified into four types, i.e., single peak,
softening after multi-peak yield platform, hardening after multi-peak yield platform and
multi-peak during softening. To investigate the brittleness of the specimens, the ratio of the
residual strength to the maximum peak strength as well as the first and last peak strains
were studied. At the same joint inclination angle, the ratios between the residual strength
and the maximum peak strength and the last peak strains were observed to increase while
the first peak strain decreased with the increase of joint continuity factor. At the same joint
continuity factor, the curves of the three brittleness parameters versus the joint inclination
angle were found to be either concave or convex single-peak or wave-shaped.

In summary, the mechanical behavior of jointed blocks with a significant number of
non-persistent joints was found to be more complicated and significantly different to those
with persistent joints. The mechanical behavior depended on the number of joints, joint
orientation, size, density, spacing, arrangement and whether the joints were open or closed.
It is important to note that, as the joint density increases, the behavior around each joint is
affected by the presence of the rest of the joints in the jointed block.

He et al. [32] performed CT scanning tests to detect the pre-existing fracture systems of
36 cubical coal blocks. Systematic procedures were developed to construct the pre-existing
fracture geometry of the cubical coal blocks from the CT images. Based on the constructed
fracture systems, the fracture tensor components were calculated to capture the directional
effects of the fracture system of the cubical coal blocks.

The effect of the pre-existing fracture system and different combinations of confining
stresses on the strength of coal masses was investigated using some true triaxial test results
and the computed fracture tensor components (see Kulatilake et al. [2] for details on the
fracture tensor components). The strength of the cubical coal blocks in the loading direction
was found to be closely related to the summation of the fracture tensor components in
the two perpendicular directions to the loading direction and the level of the confining
stress system.

3. Empirical Rock Mass Strength Criteria
3.1. Mohr–Coulomb and Hoek–Brown Strength Criteria

One indirect way to estimate the rock mass strength is through empirical equations.
Several empirical rock mass strength criteria have been suggested in the literature. The
oldest one is the Mohr–Coulomb criterion. The Mohr–Coulomb criterion provides a linear
prediction to the rock mass strength without consideration of the intermediate principal
stress, σ2. On the other hand, the experimental test results indicate that the rock mass
strength exhibits non-linear properties and dependence on σ2.

This criterion over-predicts the rock mass strength at higher confining stress levels and
provides an unreasonable tensile strength value. Therefore, for practical use, this criterion
is always combined with a tension cut-off. In addition to the above shortcomings, no
guidelines are available to relate the two strength parameters given in the Mohr–Coulomb
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criterion to discontinuity geometry and discontinuity mechanical parameters. It has been
used in practice mainly due to its simplicity.

Most of the rest of the rock mass strength criteria are used with a certain rock mass
classification system. Edelbro [33] reviewed twenty-one different rock mass classification
systems developed by different researchers in the 20th century. Each system is applied to a
specific area, such as tunneling, rock support, mining, and rock slopes.

All these rock mass classification systems only provide a rough evaluation for the rock
mass quality with the following shortcomings: (a) all the parameters used in these rock
mass classification systems are scalar based, which is not adequate for the description of
the anisotropic behavior of the rock masses; (b) the rock quality designations (RQD) used in
some rock mass classification systems are highly orientation and location dependent; (c) the
RQD can be considered as one dimensional joint frequency; in the rock mass classification
systems, which include both RQD and joint spacing, the same factor is double counted;
and (d) the most important geometric feature of discontinuities—the joint orientation—is
not explicitly used in all the systems, even though some systems provide an adjustment for
joint orientation.

The Hoek and Brown rock mass strength criterion [34] was introduced in 1980 as an
attempt to provide input data for the analyses required for the design of underground
excavations in hard rock. This is an empirical criterion developed through the trial and
error curve fitting of different parabolic functions to standard triaxial test data. The choice
of a parabolic function appears to have originated from one part of the equation given for
Griffith’s crack theory [35,36]. It also involved Hoek’s experience on research results with
respect to the brittle failure of intact rock [37] and Brown’s experience on research results
of model studies of jointed rock mass behavior [20].

The empirical parameters of the criterion were first developed for intact rock, and
then those parameter values were reduced by linking them to Bieniawski’s [38] Rock Mass
Rating (RMR) classification system. Since 1980, the criterion has been updated several
times [39–42]. The most current appears to be the Generalized Hoek–Brown criterion. The
empirical parameters of this criterion are related to the Geological Strength Index (GSI)
introduced by Hoek et al. [39].

The GSI is determined based on the structure of the rock blocks and the surface con-
ditions of the joints. The number of joint sets and the fracturing level are considered in
evaluating the structure of the rock blocks. The roughness/smoothness, degree of weather-
ing, degree of alteration, and presence and type of filling are considered in evaluating the
surface conditions of the joints. Cai et al. [43] modified the descriptive term “the structure
of the rock blocks” to “quantitative block volume” and the descriptive term “the joint
surface condition” to “quantitative joint condition factor” in estimating the GSI value for a
rock mass.

The Generalized Hoek–Brown criterion is expressed by the following equation:

σ′1 = σ′3 + σci

(
mb

σ′3
σci

+ s
)a

(1a)

where σci is the uniaxial compressive strength of the intact rock; mb is a reduced value of
the material constant mi given in the Hoek–Brown equation for intact rock, and the relation
between the two is given by

mb = mi exp
(

GSI − 100
28− 14D

)
. (1b)

s and a are constants for the rock mass given by the following relations:

s = exp
(

GSI − 100
9− 3D

)
(1c)
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a =
1
2
+

1
6

(
e−GSI/15 − e−20/3

)
. (1d)

D is a factor that depends upon the degree of disturbance to which the rock mass has been
subjected by blast damage and stress relaxation. It varies from 0 for undisturbed in situ
rock masses to 1 for very disturbed rock masses. Guidelines for the selection of D are given
in Hoek et al. [41].

Relations are also available between GSI and RMR as well as between GSI and Q
system [44] as given below:

(a) For better quality rock masses (GSI > 25): for RMR76 > 18, GSI = RMR76 and for
RMR89 > 23, GSI = RMR89 − 5.

(b) For rock masses having GSI values less than 25, Hoek et al. [40] suggested using the
Q system [44] to obtain the GSI value.

GSI = 9 ln Q + 44. (2)

Being a non-linear strength criterion, the Hoek–Brown criterion provides more rea-
sonable predictions compared to that of the Mohr–Coulomb criterion. In addition, a lot of
information is available to estimate the empirical parameters given in the Hoek–Brown cri-
terion. Both the Mohr–Coulomb and Hoek–Brown criteria are easy to use simple empirical
equations. Therefore, in practice, the Hoek–Brown criterion has been used more often than
the Mohr–Coulomb criterion. However, the Hoek–Brown criterion does not incorporate
the effect of σ2 and cannot capture the anisotropy, scale effects and ductile behavior of a
rock mass.

In addition, the RMR, Q and GSI systems include the RQD. For the same rock mass,
infinitely many values can be obtained for the RQD by considering different directions.
This creates significant uncertainty and variability in estimating a single value for RMR,
Q or GSI. Due to the assumption of isotropic behavior of the rock mass, the Hoek and
Brown criterion can only be applied to highly fractured rock masses with highly randomly
oriented fracture systems. Some investigators extended this criterion to 3-D versions to
incorporate the influence of σ2 [45–49]. None of these 3-D criteria include the effect of joint
orientation and joint size explicitly. Therefore, these criteria cannot capture the anisotropy
and scale effect of rock mass strength.

3.2. Yudhbir et al., Shoerey et al., and Ramamurthy Strength Criteria

Yudhbir et al. [50], Sheorey et al. [51] and Ramamurthy [52] proposed different forms
of σ1 = f (σ3) equations to estimate rock mass strengths. Out of the three criteria, only the
Ramamurthy criterion includes factors considering the effect of the orientation of a sliding
joint or joint set; however, multiple joint sets are not considered in this criterion. The joint
orientation is not explicitly considered in all three criteria. It is important to note that all
three criteria cannot capture the influence of σ2, the scale effect and anisotropic rock mass
behaviors. For details on these three criteria, the reader is referred to Kulatilake [53].

3.3. Kulatilake et al. Strength Criterion

Kulatilake et al. [26] performed uniaxial and biaxial compression tests on glastone
model material intact prismatic samples of size 35.6 × 17.8 × 2.5 cm to determine the
strength of the intact model material. For intact prismatic samples, tensile fractures almost
perpendicular to the σ2 direction were observed for samples subjected to low levels of
σ2/σu ≤ 0.03. Note that σu is the uniaxial compressive strength of the intact model material.
Fracturing parallel, or slightly inclined, to the σ1 (major principal stress)-σ2 plane (i.e.,
normal to σ3 (minor principal stress) = 0) was observed for most of the intact samples that
were subjected to high levels of σ2 (σ2/σu > 0.03). A new intact rock failure criterion in 3-D
given by Equation (3) was proposed by Kulatilake et al. [26]. In the equation, J1 and J2D
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represent the mean stress (one third of the first invariant of stress tensor) and the second
invariant of the deviatoric stress tensor, respectively.

J2D = A + BJ1 + CJ1
2 (3a)

where J1 =
1
3
(σ1,I + σ2 + σ3) (3b)

J2D =
1
6

(
(σ1,I − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
)

(3c)

and A, B and C are empirical material constants. In Equation (3b,c), σ1,I, σ2, and σ3
represent, respectively, the major principal stress applied on intact rock samples at failure,
intermediate principal stress, and minor principal stress. In the case of a biaxial state of
stress, J1 and J2D reduce to 1/2× (σ1,I + σ2) and 1/3×

(
σ1,I

2 − σ1,Iσ2 + σ2
2), respectively.

Therefore, the new intact rock failure criterion in the case of a biaxial state of stress can be
expressed as: (

σ1,I
2 − σ1,Iσ2 + σ2

2
)
= 3A +

3B
2
(σ1,I + σ2) +

3C
4
(σ1,I + σ2)

2. (4)

The intact material strength data of glastone showed a good fit to the new criterion
(regression coefficient of determination of 0.97) along with an almost equally strong fit
for modified Wiebols and Cook criterion [54]. However, the Drucker and Prager [55] and
Mogi [56] criteria showed poor fits for the glastone data.

Uniaxial and biaxial compression tests on prismatic jointed blocks of size
35.6 × 17.8 × 2.5 cm were performed using the same biaxial load frame used to test intact
prismatic samples. Both persistent and impersistent smooth joint configurations were
included in producing jointed model material blocks. The results indicated three failure
modes for the jointed blocks: (a) tensile failure through intact material; (b) combined shear
and tensile failure or only shear failure on joints; and (c) mixed failure of the above two
modes depending on the joint geometry. The fracture tensor component [2] was used
to quantify the directional effect of the joint geometry, including the number of fracture
sets, fracture density, and probability distributions for the size and orientation of the
fracture sets.

The strength results obtained for the jointed glastone blocks were used along with the
strength results obtained for the intact glastone blocks in developing the following new
rock mass failure criterion (see Equation (5)) for biaxial loading conditions. In Equation
(5a), σ1,b and F22 are, respectively, the jointed rock block strength under biaxial loading
and the fracture tensor component in the σ2 direction; σ1,I is the intact rock strength under
biaxial loading conditions and is estimated using Equation (4). In Equation (5b), σu,I is the
uniaxial compressive strength of the intact model material; and ω0, a and b are parameters
of the rock mass strength criterion.

σ1,b/σ1,I = exp(−ωF22) (5a)

where ω = ω0/
(

a(σ2/σu,I)
b + 1

)
. (5b)

The parameter ω0 is obtained from the relation given in Equation (6) between the
uniaxial compressive strength of the jointed block, σu,b, F22 and σu,I.

σu,b/σu,I = exp(−ω0F22). (6)

Figure 1 shows the comparison obtained between the predictions and observed values
for the relation between ω and σ2/σu,I for the glastone material. Figure 2 shows the rock
mass failure criterion on the σ1/σu,I versus σ2/σu,I space for different F22 values. This
figure clearly shows the importance of σ2 on the jointed rock mass strength.
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4. Analytical Modeling Applications to Estimate Rock Mass Strength

The second indirect approach to study rock mass strength behavior is through the
analytical decomposition technique. Jennings [57] expressed the combined strength of
joint and rock bridges through the following equation by a simple linear weighing of the
strength contributed by each fraction of material:

τ = k
(
cj + σ tan φj

)
+ (1− k)(cr + σ tan φr). (7a)

In Equation (7a), (cj, φj) and (cr, φr) represent the cohesion and friction angles of the
joint and intact rock, respectively, and k is the joint continuity factor given by

k = Lj/
(

Lj + Lr
)

(7b)

where Lj and Lr are the length of the joint and rock bridge, respectively. Note that
Equation (7) ignores the interaction between the joints and intact rock and assumes si-
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multaneous failure of the intact rock and joints. This means it disregards the possibility of
progressive failure. Amadei [58] also used the analytical superposition theorem to describe
the strength of a regularly jointed rock mass under the full range of states of stress that are
likely to be encountered in situ with one or several stress components being tensile. The
intact rock was modeled using the Hoek and Brown criterion.

The joints were modeled with no tensile strength and the shear strength described
by the Coulomb criterion. Again, the interactions between the intact rock and joints were
ignored in producing the derivation. In these derivations, simplified fracture systems
are used with constant deterministic spacing and deterministic size and orientations for
joint sets. In reality, joints are of finite size, and all the joint geometry parameters are
inherently statistical.

Therefore, even though this early research has given some analytical thinking with
respect to developing rock mass strength criteria, the assumptions made in these models
are quite difficult to satisfy for most in-situ rock masses. Bekaert and Maghous [59] and
Pouya and Ghoreychi [60] also have used analytical approaches, selecting suitable intact
rock and rock discontinuity strength criteria and applying simplified methods to combine
them to develop rock mass strength criteria. These methods are rarely applicable in
dealing with field rock masses, which are typically more complicated than the assumed
simplified models.

5. Numerical Modeling Applications to Estimate Rock Mass Strength

The third indirect approach available to estimate rock mass strength is the numerical
decomposition technique. This technique calculates the strength of rock masses using a
numerical model, incorporating the strength and deformability properties of the intact
rock and joints. This technique allows the incorporation of any joint network to the jointed
rock mass and also includes interactions between the joints and intact rock. Mainly, the
following three types of numerical modeling have been used to model rock mass strength:
(a) Finite Element Modeling (FEM), (b) Distinct Element Modeling through 3DEC [61]
and (c) Particle Flow Modeling through PFC3D [62,63]. The following sections provide a
summary of the literature available on the aforementioned numerical modeling categories.

5.1. FEM-Based Numerical Modeling Applications to Estimate Rock Mass Strength

A pioneering scale effect research performed using this approach at the two-dimensional
level using the finite element method [1] with Goodman’s joint element [64] showed
anisotropic, scale dependent mechanical behavior for jointed rock masses. The REV and
the equivalent continuum behavior for mechanical properties have been investigated at the
2-D level using the finite element method [1,60,65,66]. However, since the finite element
method is based on continuum mechanics, the simulation of large displacements and large
rotations is difficult with the method, even though they may occur in jointed rock masses.

5.2. Distinct Element Based Numerical Modeling Applications to Estimate Rock Mass Strength

The distinct element method introduced by Cundall [67] and further developed by
Lemos et al. [68], Cundall [69] and Hart et al. [70] is a powerful technique to perform stress
analyses in discontinuous blocky rock masses. In this method, the rock mass is modeled
as an assemblage of rigid or deformable blocks. Discontinuities are considered as distinct
boundary interactions between these blocks, and joint behavior is prescribed for these inter-
actions. The distinct element algorithm includes not only continuum theory representation
for the blocks but also force displacement laws, which specify the forces between blocks,
and a motion law, which specifies the motion of each block due to unbalanced forces acting
on the block.

By taking into account the interaction of intact blocks and joints, the distinct element
method can effectively calculate the mechanical behavior of block systems under different
stress and displacement boundary conditions. The method employs an explicit solution
procedure. An advantage of the explicit method is that, because matrices are never formed,
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large displacements, rotations and complex constitutive behavior for both the intact mate-
rial and joints are possible with no additional computing effort. For details on the distinct
element theory, the readers are referred to the publications mentioned in this paragraph.

To use the distinct element method for stress analysis, first the problem domain
should be discretized into polygons in 2-D and polyhedra in 3-D. To achieve this for rock
masses with finite size actual joint configurations, Kulatilake et al. [71] and Wang and
Kulatilake [72] introduced some fictitious joints that behave as intact rock to the domain to
interact with actual joints. After performing a detailed study under different stress paths,
Kulatilake et al. [71] provided recommendations to select the proper mechanical property
values for these fictitious joints to reflect the intact rock behavior.

Using these techniques, pioneering detailed investigations have been performed to
study the effect of finite size joint geometry networks on the deformability and strength
of jointed rock blocks, REV size and equivalent continuum behavior at the 2-D [73] and
3-D levels [2,74]. The results of these studies have shown anisotropic, scale dependent
mechanical behavior for jointed rock masses.

An incrementally linear elastic, orthotropic constitutive model has been suggested at
the 3-D level to represent the pre-failure mechanical behavior of jointed rock blocks [2].
This constitutive model has the capability to capture the anisotropic, scale-dependent
behavior of jointed rock blocks. In that model, the effect of the joint geometry network
in the rock mass is incorporated in terms of fracture tensor components, which captures
the effect of all the joint geometry parameters—the number of joint sets, joint density and
distributions of orientation and size.

Wu and Kulatilake [3] applied similar procedures as stated above to investigate the
effect of a fracture system that existed in a limestone rock mass located at the Yujian River
Dam site, China on the rock block strength and deformability, REV sizes for mechanical
properties and equivalent continuum behavior by performing numerical stress analyses in
three perpendicular directions (x, y and z) on different block sizes ranging between 5 m and
50 m. Figure 3 shows the relation obtained between the jointed rock block strength in the i
direction/intact rock block strength (Si/SI) and block size for the investigated limestone
rock mass. This plot shows the rock mass strength scale effect, anisotropy, REV behavior
and equivalent continuum behavior.
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Figure 4 shows the unique relation obtained between the jointed rock block strength
in the i direction/intact rock block strength (Si/SI) and the addition of the fracture tensor
components in the j and k directions, which are perpendicular to the i direction. The
fracture tensor component in a certain direction combines the effect of orientation and
size probability distributions and the mean 3-D intensity of fractures coming from all the
fracture sets in the rock mass in the selected direction [2].
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It is important to note that, in Figure 4, the calculated values obtained from the three
perpendicular directions are given. An incrementally linear elastic, orthotropic constitutive
model has also been suggested to represent the pre-failure mechanical behavior of the
jointed rock mass at a refined level. In summary, these numerical studies showed the
possibility of developing relations between the rock mass strength and rock mass joint
geometry properties.

Section 3.3 discussed the Kulatilake et al. [26] rock mass strength criterion developed
for biaxial loading conditions. Recently, He et al. [32] extended the Kulatilake et al. [26]
criterion to the polyaxial stress condition based on laboratory and 3DEC numerical mod-
eling on jointed coal blocks with non-persistent discontinuities. This was the first time
any research group in the world developed a 3-D coal mass strength criterion incorpo-
rating non-persistent joints, both σ3 and σ2, and the main fracture geometry parameters
(orientation and size distributions and 3-D intensity) explicitly. However, in the conducted
research, because 3DEC modeling was used, the effect of fracturing was not incorporated
in developing the rock mass strength criterion. He et al.’s [32] criterion is given below
through Equations (8) and (9).

JCMS
ICS

= exp(−ω(F22 + F33)) (8)

ω

ω0
=

1

a(σ2/ICSu)
b + c(σ3/ICSu)

d + 1
. (9)

In Equation (8), JCMS and ICS are the jointed coal mass strength and intact coal
strength under the same combination of σ2 and σ3, respectively; F22 and F33 are the
fracture tensor components in the directions of σ2 and σ3, respectively. In Equation (9), ω
incorporates the effect of σ3, as well as σ2; ω0 is the ω value for the uniaxial compression
condition; ICSu is the intact coal strength under the uniaxial stress condition; and a, b, c and
d are empirical coefficients. Figures 5 and 6 show a few typical relations obtained between
the JCMS and the intermediate and minor principal stresses. For further details on distinct
element method applications, the readers are referred to the publications mentioned in
Section 5.2.
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5.3. PFC Based Numerical Modeling Applications to Estimate Rock Mass Strength

Some investigators have resorted to particle flow codes (PFC2D and PFC3D) [62,63,75]
to model jointed rock behavior under uniaxial loading [25,76–82], bi-axial loading [26] and
polyaxial loading [27]. PFC3D allows one to study the mechanical interaction behavior
between intact rock and joints incorporating a significant number of joints without making
unrealistic assumptions about the surrounding medium around each joint. In addition,
it allows failure through both the intact rock and joints under both tensile and shear
modes leading to progressive failure, which usually occurs in jointed blocks with non-
persistent joints.

Kulatilake et al. [25] performed pioneering research in providing a realistic calibration
procedure for micro-mechanical parameters of PFC3D for a contact bonded particle flow
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model. Using this model, they studied the jointed rock behavior of blocks with persistent
joints under uniaxial loading. They included spherical particles to model both intact
material and joints. In other words, they considered closed flaws. They mentioned the
difficulties they had in modeling the joint behaviour of closed flaws. Their focus was on
the global mechanical behavior of jointed blocks and possible failure modes.

Lee and Jeon [77] and Zhang and Wong [78] have used PFC2D to study crack initiation,
propagation and coalescence using one or two flaws. In their models, they removed
particles to simulate open flaws. They reported the successes, failures and difficulties that
they encountered in comparing their PFC results with experimental results.

By selecting appropriate micro-mechanical parameter values through a trial and error
procedure, Fan et al. [82] used PFC3D to study the macro-mechanical behavior of jointed
blocks with multi-non-persistent joints with high joint density under uniaxial loading. The
focus was to study the effects of joint orientation, the size and joint mechanical properties
on jointed block strength, deformability, the stress–strain relation and failure modes at the
jointed block level. The uniaxial compressive strength of the block, UCSB, was found to
depend heavily on the joint dip angle, β, and joint continuity factor, k (see Figure 7).
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The jointed blocks resulted in four failure modes as follows: (1) splitting failure;
(2) plane failure; (3) stepped path; and (4) intact material failure. These failure modes were
compared with the corresponding experimental results obtained from Chen et al. [30,31].
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The main features of each failure mode and possible relations between the failure modes,
UCSB and β and k values are given in Section 5 of Fan et al.’s [82] paper.

Based on laboratory and PFC3D numerical modeling, Kulatilake et al. [26] proposed
a rock mass strength criterion for biaxial loading conditions. The developed rock mass
strength criterion is given through Equations (5) and (6) in Section 3.3.

In He et al.’s [32] criterion, stated in Section 5.2, for a set of constant values of σ2
and σ3, ω is a constant for a specified rock mass irrespective of the directions of σ2 and
σ3. When the σ2 and σ3 directions rotate around the vector normal to the plane of σ2 and
σ3 (i.e., around the major principal stress, σ1, direction) the fracture tensor component in
the σ1 direction, F11, remains as a constant. As the first invariant of the fracture tensor
(F11 + F22 + F33) is always a constant, F22 + F33 also remain as constants. Therefore, under
the above-mentioned conditions, Equation (8) provides a constant value and cannot capture
the effect of σ2 on F22 and effect of σ3 on F33 separately in predicting the rock mass strength.

However, this is an important issue to incorporate in predicting rock mass strength.
This aspect was included in the rock mass strength criteria developed by Mehranpour
et al. [27] conducting polyaxial testing and PFC3D modeling. Mehranpour et al.’s [27] rock
mass strength criteria are expressed through Equations (10) and (11).

Sr =
σJ

σI
= exp−

 λ3

p3

(
σ3
σc

)q3
+ 1

F33 +
λ2

p2

(
σ2
σc

)q2
+ 1

F22

 (10)

where λ2, λ3, p2, p3, q2 and q3 are empirical coefficients. In Equations (10) and (11), σJ and
σI are the jointed block strength and intact block strength, respectively. The number of
empirical coefficients is high in Equation (10). To reduce the number of coefficients, the
second rock mass strength criterion is given with less empirical coefficients, a2, a3, b2 and
b3, as given in Equation (11).

Sr =
σJ

σI
= exp−

[
a3

(
e−b3(σ3/σc)F33

)
+ a2

(
e−b2(σ2/σc)F22

)]
. (11)

For the details of the used procedures and extensive rock mass strength criteria
fitting results, the reader is referred to Mehranpour et al. [27]. For further detail on the
PFC3D theory and applications, the readers are referred to the publications mentioned in
Section 5.3.

6. Needed Improvements for the Currently Existing Rock Mass Strength Criteria

Note that Mehranpour et al.’s [27] criterion was developed for a plaster-based synthetic
rock mass using persistent joints. The use of only persistent joints was a major limitation of
this rock mass strength criterion.

Rock masses may fail under the following modes: (a) failure through intact rock
under the tensile or shear mode or a combination of the two modes; (b) separating on
discontinuities under tensile mode; (c) sliding on discontinuities under shear mode; (d) a
combination of the modes (b) and (c); and (e) different combinations of the modes (a), (b)
and (c). It will be an extremely difficult task to develop a 3-D rock mass strength criterion
that can capture failures under all the previously mentioned modes.

Even though He et al. [32] and Mehranpour et al. [27] provide the most advanced
rock mass strength criteria available in the rock mechanics literature, it is likely that both of
those may not capture rock mass failures resulting from all of the aforementioned modes.
Therefore, in the future, attempts should be made to extend the Mehranpour et al. [27] rock
mass strength criteria to develop a new deterministic 3-D rock mass strength criterion that
is capable of capturing failures resulting from all the above-mentioned modes for jointed
blocks with non-persistent joints.

It is recommended that future investigations should be performed to include the joint
weathering and infilling conditions and ground water conditions in the developed 3-D rock
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mass strength criteria. The developed 3-D rock mass strength criteria should be applied
to different types of rock masses of sedimentary, igneous and metamorphic origins with
both orthogonal and non-orthogonal fracture systems to generalize the applicability of the
included coefficients of the developed 3-D rock mass strength criteria.

Variability and uncertainty are unavoidable in estimating rock discontinuity geometry
networks [2,83,84] and the geo-mechanical properties of intact rock and rock disconti-
nuities [85–87]. These aspects were not addressed in developing the He et al. [32] and
Mehranpour et al. [27] rock mass strength criteria because those attempts were limited to
developing a deterministic 3-D rock mass strength criterion. However, those were found to
be huge successes. Now, the time has come to, first, improve the deterministic He et al. [32]
and Mehranpour et al. [27] criteria and, then, to extend the deterministic criterion to a
probabilistic version by incorporating the aforementioned variability and uncertainty. It
will be the first time in the world any research group attempting to develop a probabilistic
3-D rock mass strength criterion with the features mentioned above.

7. Conclusions

The intermediate principal stress plays a major role with respect to the rock mass
strength. However, most of the rock mass strength criteria available in the literature, in-
cluding the most widely used criterion in rock engineering, do not include the intermediate
principal stress. The majority of the available rock mass strength criteria, including the
most widely used criterion in rock engineering, assume isotropy.

Therefore, those have a chance of applying only to rock masses that are heavily frac-
tured and do not have preferred discontinuity sets and orientation directions. On the other
hand, most rock masses contain a few discontinuity sets, which provides distinct disconti-
nuity orientation directions. Such rock masses exhibit anisotropic rock mass strength. The
majority of the available rock mass strength criteria do not include joint size/block size as
a parameter in the rock mass strength criterion. These rock mass strength criteria do not
have the capability to predict changes of the rock mass strength with the block size.

This author feels that a proper rock mass strength criterion in three dimensions should
incorporate the intermediate principal stress, the intensity of all the discontinuity sets
and the probability distributions of the orientations and size for all the discontinuity sets
explicitly in the strength criterion. Significant progress has been made in this direction
(see [2,3,26,27,32,74,82]). The 3-D rock mass strength criteria developed by He et al. [32] and
Mehranpour [27] already include the intermediate principal stress and the aforementioned
discontinuity geometry parameters explicitly through the fracture tensor components to
capture the scale dependent and anisotropic rock mass strength.

However, the He et al. [32] and Mehranpour et al. [27] rock mass strength criteria
still require further modifications at the deterministic level to increase their capability in
predicting failures resulting from all the different modes for jointed blocks having non-
persistent joints. In addition, the improved deterministic He et al. [32] and Mehranpour
et al. [27] criteria require extension to a probabilistic version by incorporating the variability
and uncertainty associated with estimation of the discontinuity geometry parameters and
discontinuity mechanical properties.
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