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Abstract: In this article, a quantitative numerical study of the random distribution of the soil material
parameters to the probability density functions of the failure load and failure displacements of a
shallow foundation is presented. A modified Cam-Clay yield function is used for this scope into a
stochastic finite element numerical formulation. Several hypotheses for the random distribution of
the compressibility factor κ, of the material constitutive relation, the critical state line inclination c
of the soil, as well as of the permeability k of the continuum, have been tested and assessed with
Monte Carlo simulation accelerated with Latin hypercube sampling. It is validated that both failure
load and failure displacements follow Gaussian normal distribution despite the non-linear behaviour
of the soil. Furthermore, as the soil depth increases, the mean value of failure load decreases and
the failure displacement increases. The failure mechanism of clays can be determined with accuracy
using this numerical implementation, without the restrictions imposed by analytical solutions, taking
into consideration the eccentricity of the load in combination with non-linear constitutive relations.

Keywords: eccentric loading; stochastic finite element method; shallow foundation; footing settle-
ment; failure spline

1. Introduction

The ultimate load of shallow footing settlements and the corresponding material states
and displacements is one of the most researched areas in the field of Geomechanics. From
the seminal work of Terzaghi [1], who investigated the bearing capacity of soils, taking
into account the friction angle, soil depth and the density, a number of papers followed
investigating this problem. Among recent ones are [2–6], taking into account the failure
mechanism and applying Mohr–Coulomb material yield criterion alongside linear elastic
analysis. In most cases, 1D or 2D continua have been examined along with homogeneous or
layered soils: [7,8]. All studies presented were applied to the foundation design regulations
by introducing the friction variables N and shape-influence variables S. The three friction
variables N represent the three factors contributing to the total bearing capacity. Nq, Nc and
Nγ are defined for the contribution of possible vertical load in the lateral of the foundation,
the cohesion of the soil and the settlement dimensions, along with the total weight of the
soil, respectively. Correspondingly, the shape variables Sq, Sc, Sγ are interpreted [9–11].

The uncertainty quantification of the ultimate load of shallow foundations of saturated
porous media, with respect to the input uncertainty, such as the Young Modulus or the
permeability, has been researched with the adoption of the stochastic finite element method,
where the input variable and its uncertainty can be interpreted by using two alternative
methods. The first method supposes the properties of nodal points as random variables and
the shape functions implemented for the interpolation of the material spatial distribution
as deterministic relations [4,12–16]. A different approach is the adoption of random field
representation, such as the spectral representation or the Karhunen–Loeve expansion, or the
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spatial average method, to provide the material input variability [17–24]. In both simulation
methods, the sampling can be either non-biased through pseudorandom algorithms, or
an importance sampling method could be implemented, such as the Latin Hypercube
Sampling (LHS) [25,26]. Then, the standard Monte Carlo simulation can be performed.

Monte Carlo simulations can be applied to other scientific areas of geotechnics. The
generality of this method has led to implementation in many different practical applications.
Some of them are briefly presented alongside the corresponding scientific publications. For
seismic excitations in slopes, as well as for their stability, the computation of the safety factor
in relation to the slope angle, the cohesion and the friction angle can be estimated through
Monte Carlo analyses [27]. In the ground, vibrations occurring from blasting the risk
estimation can be assessed through stochastic procedures and Monte Carlo algorithms [28].
Moreover, in mine engineering and hard rock pillars, a stability analysis can be conducted
through stochastic finite element method and reliability assessment can be obtained [29].
Finally, a prediction of flyrock distance due to blasting can be obtained, assuming a random
distribution of the material of the rock domain and implementing a Monte Carlo simulation
technique [30].

Previous studies refer to 1D–2D elastic halfspace theory with material criterion as the
Mohr–Coulomb yield stress model. In the present paper, a numerical simulation perspective
with a Modified Cam-Clay material yield model proposed by [31] is implemented, which
is a precise and quantitatively valid material for clayey soil simulation [32]. This material
yield function with the adoption of a finite element model can represent the real load and
displacement field in every possible 3D-loading condition. The immoderate computational
cost, which is needed by the crude Monte Carlo simulation method, can be alleviated
with efficient computational schemes, as suggested in [33,34]. For the calculation of failure
load, an improved version of a recurrence-relation algorithm proposed by the authors [35],
which yields valid results with a small number of trials and with one initial guess trial,
is presented. The algorithm is theoretically set, proved and compared with the classic
bisection method. The goal of the present paper, which is an extension of previous work
by [35], is to quantify numerically, in the case of shallow foundations, the variability of the
failure load and failure displacement alongside the uncertainty quantification of the failure
spline in reference to the uncertainty of input parameters such the spatial distribution of
the material variables and the soil depth. The aforementioned results provide a reliability
analysis for the variability of the failure load, failure displacements and the corresponding
mechanism of the Meyerhoff spline. In addition, this study offers a numerical investigation
algorithm for fastening the procedure of failure-load estimation.

The numerical investigation consists of stochastic analyses of footing settlement failure
in clayey soils. A rectangular soil domain subjected to the equivalent forces of a shallow
foundation under single eccentricity is assumed, and three material variables are considered
uncertain: videlicet, the compressibility factor κ; the permeability factor k; and the critical
state line inclination c of the soil. The spatial distributions of the material parameters in
relation to the depth z of the soil domain are the linear, the constant variation and the
random field process, constructed from the Karhunen–Loeve series expansion, considering
an exponential auto-correlation function. In the constant and linear variation with respect
to depth, the truncated normal random variable [36,37] is presumed at the nodal points.
The LHS importance sampling method is adopted for obtaining the input random vectors.
The eccentricity of the footing settlement is parametrised with four possible values and
correlation lengths are parametrised with three possible values and contrasted to the
analogous solid problem in which the pore pressure is neglected.

2. Formulation of the Dynamic Soil–Pore–Fluid Interaction and the Numerical Solution

The response of porous media under static and dynamic loading conditions can
be predicted with the Biot mathematical system of equations. When a low-frequency
load is applied or static loading is considered, the formulation is simplified, leading to
a considerable alleviation of the complication of the problem and, subsequently, of the
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computational time needed. The u–p formulation of Biot system of equations comprises
the soil–fluid momentum balance alongside the Darcian flow, the stress–strain law and
the boundary conditions. In the present work, the u–p formulation is adopted, since static
forces are implemented to the clay soil domain.

The finite element discretisation of the u–p formulation takes the form:

Mẍ + Cẋ + Kx = f (1)

where

Mtot =

[
Mst 0

0 0

]
Ctot =

[
Cst 0
QT

c S

]
Ktot =

[
Kst −Qc
0 H

]
ftot =

[
feq
0

]
x =

[
u
p

]
(2)

Qc =
∫

V
BTmNpdv H =

∫
V
(5Np)Tk5Npdv S =

∫
V

Np 1
Q

Npdv (3)

f1 =
∫

V
(Np)T 5T (kb)dv (4)

k is the permeability matrix, b is the loading vector divided by the total mixture density
and Q is a factor influenced by the bulk moduli of fluid and soil skeleton. Np are the
shape functions of pore pressure in matrix representation. Mst, Cst, Kst are the standard
mass, damping and stiffness matrices of the solid skeleton. Furthermore, Qc, H, S are the
coupling, permeability and saturation matrices, respectively. Finally, feq corresponds to the
equivalent forces due to the external loading. Numerical schemes, such as the Newmark
direct integration method, are implemented to obtain the solution to the problem.

3. The Stress–Strain Material Constitutive Law
3.1. Plastic Yield Envelope and Structure Strength Envelope Mathematical Representation

The material yield function used for describing the material stresses in the solid
skeleton in this article is a modified Cam-clay-type model. This is a two-surface model: the
plastic yield envelope (PYE) for the definition of the elastic area and the structure-strength
envelope or Bond-Strength Envelope (BSE), which defines the limit states that PYE can
have [31,32,38–40]. BSE is mainly affected by the structure of the cohesive soil. If a stress
point lies in the BSE boundary, the structure degradation rate of the clayey soil is the
greatest. Both envelopes are assumed as ellipses and are portrayed in Figure 1.

The mathematical representation of an envelope is the following:

fg(ph, s, pL, sL, a) =
1
c2 (s− sL) : (s− sL) + (ph − pL)

2 − (ξa)2 = 0 (5)

In Equation (5), the general stress point σ has a hydrostatic component ph and a
deviatoric component s, while the centre of the ellipse L has a hydrostatic component pL
and a deviatoric component sL. Moreover, a is the halfsize of the large diameter of BSE, and
a similarity factor, ξ, is introduced. When the deviatoric part of the centre of the ellipse is
not zero and the hydrostatic part is not equal to a, then the generalised envelope coincides
with the plastic yield envelope of the stress point.

fg(ph, s, pL, sL, a) = fp(ph, s, pL, sL, a) (6)

However, if sL = 0 , pL = a then ξ = 1 and, consequently, the Bond-Strength Envelope
is obtained:

fg(ph, s, pL, sL, a) = F(ph, s, a) =
1
c2 s : s + (ph − a)2 − a2 = 0 (7)
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Figure 1. Generalised form of the modified Cam-Clay yield surfaces considering elastoplastic
behaviour in the p–q plane. a is the halfsize of the large diameter of BSE and ξ is a similarity factor,
while c is the critical state line inclination. BSE and PYE are the abbreviations for Bond-Strength
Envelope and Plastic Yield Envelope, respectively.

For the simulation of the elastic behaviour the integration point is assumed poroelastic.
The bulk modulus, proportional to the shear modulus as a consequence of a constant
Poisson ratio, is as follows:

Kbulk =
νph

κ
(8)

ν denotes the specific volume of the soil.
This material law for the majority of natural cohesive soils is substantially accurate,

especially when the friction angle is in the range of 17◦ and 30◦. The reliability of the
simulation of the constitutive behaviour holds for all possible loadings. In addition, since
the equations of the material-constitutive model are in closed form, the derived numerical
scheme is stable. Moreover, when large values of overconsolidation ratio (OCR) of a
cohesive soil are simulated, this yield function can be easily reconstructed to take possible
tensile stresses into consideration. The stresses and strains’ algebraic transformations
are implemented in order to have energy conjugate amounts by adopting the numerical
transformations used in von Mises yield criterion. In this context, the following variables
are introduced.

q =
√

3/2s : s , e =
√

2/3εdev : εdev (9)

The variable e is used to denote deviatoric strain measure, whilst q is used to denote
the deviatoric stress measure (Von Mises stress).

4. Random Processes, the Truncated Normal Distribution and the Latin
Hypercube Sampling
4.1. The Karhunen–Loeve Series Expansion and the Truncated Normal Distribution

The material uncertainty of the input can be interpreted either by considering the
nodal points as random variables with deterministic shape functions, or by performing
the Karhunen–Loeve series expansion for the computation of a realisation of a stochastic
process [41–47]. In this work, both approaches are adopted in order to assess the perfor-
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mance of each simulation method. For the first approach, which is proposed in [41], the
random function f0 is estimated with the use of shape functions Ni :

f0(x) =
N0

∑
i=1

Ni(x) f0,i (10)

where N0 is the total number of shape functions and the f0,i are the nodal point values,
which can be random variables following a probability density function (PDF).

In the present work, Ni are linear functions and the fi follow the truncated normal
distribution [36,37,48,49], which has a PDF described by the equation

gtr(x) =
φ(X0)

σd(Φ(B)−Φ(A))
(11)

In Equation (11), φ(X0) and Φ(X0) are the standard normal probability and cumulative
distribution function for X0, respectively and A, B, X0 are the normalised coordinates
of the subspace limits and x, respectively. Additionally, σd and the mean value of the
normalisation refers to the PDF of the random variable before truncation.

For the Karhunen–Loeve series expansion, let H1(x, ω) be a random field of mean µ(x)
based on a known auto-covariance function

Ch(x1, x2) = σ(x1)σ(x2)ρ(x1, x2) (12)

where ρ(x1, x2) is the correlation function and σ(x1) is the standard deviation of x1. Any
realisation H1 of the field with M number of eigenfunctions φi with corresponding eigen-
values λi can be expanded as:

H1(x, ω) = µ(x) +
M

∑
i=1

√
λiφi(x− T)ξi(ω) (13)

where ξi is a set of random variables of zero mean and covariance function E(ξi, ξ j) = δij.
Finally, for a Gaussian random field, as implemented in the present study, the ξi functions
are a set of standard normal random variables. This type of expansion is the most widely
used due to its high efficiency.

In the present paper the Karhunen–Loeve expansion is applied by adopting an expo-
nential auto-covariance function which has an analytical solution of the Fredholm eigen-
function problem

Ch(x1, x2) = σ2
d e

x1−x2
b (14)

where b is the correlation length. If the Fredholm equations cannot be solved analytically,
and this occurs when the auto-covariance function is more complicated, numerical methods
can be applied [18,44].

4.2. The Latin Hypercube Sampling

The samples of the random variables can be chosen by implementing pseudorandom
unbiased algorithms to generate a large random vector, or by variance-reduction methods
such as the importance sampling [50] and the Latin Hypercube Sampling (LHS) [25,26].
The implementation of the LHS method preserves a notable amount of computational time
in order to estimate the statistical moments of the output random variables.

In the Latin Hypercube approach, let X be a random vector (x1,x2, . . . , xn). The n
dimensional LHS method is stated as follows: for each random variable xi, the interval [0, 1]
of the cumulative distribution function (CDF) is intersected into N equal subintervals. Then,
from each subinterval, a random number is chosen and through the inverse CDF, a sample
of xi is obtained. Once samples for all subintervals and all the random variables are
acquired, then the xi vectors are randomly permuted and create the vector realisation X.
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With this procedure, it is assured that at each possible row and each possible column in the
(n × n) Euclidean space, exactly one sample is taken.

The ascendancy of this scheme is that a smaller amount of values in contrast with the
crude Monte Carlo simulation are needed to integrate the PDF of the input and, consequently,
to estimate the uncertainty of the output. In addition, the subintervals in each dimension
may not be equal, thus taking into account possible asymmetries of the PDF of the input.
In conclusion, this methodology can also be implemented to cross correlated variables, i.e.,
when the correlation matrix is not diagonal; thus, it has a general use to the uncertainty
quantification literature. In the present study, the variables are not cross correlated and
the LHS sampling is used to obtain the variables in the three-dimensional space of the
compressibility factor k, the critical state line inclination c and the permeability k.

The material random variables expressed by the PDF gtr of Section 4.1 and the ran-
dom field realisations experienced in Equation (13) influence the finite element system of
Equation (1). The corresponding matrices C, K and F are changing due to the randomness of
the compressibility factor κ, as well as the critical state line inclination c and the permeability k.
The selection of the samples follows the importance-sampling method of the LHS technique.

5. An Improvement of a Proposed Algorithm for the Determination of Failure Load in
Ramp Dynamic Load Function

In this section, an improvement of an algorithm proposed by the authors [35] for the
determination of failure load, when the dynamic loading function is the ramp loading
function, is presented. The aim of the algorithm is to find the failure load at exactly the end
of the ramp loading, as indicated in Figure 2.

Figure 2. Linearly increased-ramp dynamic load. λ stands for generalised dynamic load (i.e., Force,
load factor, applied stress) over time T.

The aim of this algorithm is to define the load factor λ∗, which causes failure of the
continuum at exactly the time T. An initial guess of λ1 is taken, and an initial time of
failure t1 is obtained. Then, for each new trial λn+1, if the load factor λn causes failure to
the continuum, it is given by the equation

λn+1 = aλn
tn

T
+ bλn (15)
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where a and b are weight coefficients chosen in order to improve the convergence speed. If
the load factor λn is not causing failure, then the maximum no-failure factor λmax−no− f ailure
is obtained from all previous trials implemented for the calculation of λn+1, as follows:

λn+1 = aλmax−no− f ailure + bλn (16)

It should be noted that, in practice, this recurrence relation usually converges “by the
failure region” which means that only relation (15) is implemented. The difference between
λn+1 and λn is given by:

λn+1 − λn = aλn
tn

T
+ (b− 1)λn (17)

In Equation (17), it is obvious that as n → ∞, tn → T. Consequently, the left side of
the equation tends to zero, and subsequently, the algorithm converges to the desired load
factor λ∗ if and only if

a + b = 1 (18)

In Table 1, an investigation of the weight coefficient’s influence on the convergence
speed is presented, with reference to the typical bisection method. In comparison with the
typical bisection method, where one should guess initial values of failure, safety values
λ1, f ail and λ1,no− f ailure, and then calculate the new load factor by the bisection of maximum
safety factor and minimum failure factor, this algorithm provides a lower or equal number
of trials for the same initial failure guess and convergence tolerance, as can be seen in
Table 1. Moreover, it needs only one initial guess, which in high-uncertainty problems is
very useful in general for avoiding divergence of the solution. Finally, as proven by the
numerical tests presented in Table 1 and in Section 6, the difference in failure load and
failure displacement between the two algorithms is less than 1%. The absolute percentage
difference is computed considering the bisection algorithm with initial value of safety stress
1000 kPa as an exact solution. The performance in terms of the computational time for the
100 deterministic analyses of a Monte Carlo simulation is also depicted in Table 1. The
proposed algorithm can save up from almost 5% to almost 55% of the time demanded for a
Monte Carlo analysis to be performed, in the case of a = 1 and b = 0, indicating a notable
advantage of the aforementioned recurrence relation in all the family of relations, indicated
by Equation (15).

Table 1. Comparison of the proposed algorithm with the bisection method for the calculation of the
failure load λ∗ and failure displacement.

Bisection
Algorithm

Bisection
Algorithm

Bisection
Algorithm

Proposed
Algorithm

a = 1/3 b = 2/3

Proposed
Algorithm

a = 1/2 b = 1/2

Proposed
Algorithm

a = 2/3 b = 1/3

Initial value
of failure stress (kPa) 5000 5000 5000 5000 5000 5000

Initial value
of safety stress (kPa) 1000 2000 3000 - - -

Convergence tolerance 0.01 0.01 0.01 0.01 0.01 0.01

Number of trials for
convergence 6 5 5 6 5 4

Displacement
of failure at convergence (m) 0.03054 0.03072 0.03054 0.03078 0.03079 0.03071

Load
of failure at convergence (kPa) 4484.38 4478.52 4484.38 4555.60 4518.22 4505.94

Computational time (mins) 750 833 663 631 584 475
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Table 1. Cont.

Proposed
Algorithm

a = 1 b = 0

Absolute
Percentage
Difference

a = 1/3 b = 2/3

Absolute
Percentage
Difference

a = 1/2 b = 1/2

Absolute
Percentage
Difference

a = 2/3 b = 1/3

Absolute
Percentage
Difference

a = 1 b = 0

Initial value
of failure stress (kPa) 5000

Initial value
of safety stress (kPa) -

Convergence tolerance 0.01

Number of trials for
convergence 3

Displacement
of failure at convergence (m) 0.03072 0.78 0.80 0.54 0.58

Load
of failure at convergence (kPa) 4477.50 1.59 0.75 0.48 0.15

Computational time (mins) 302 4.83 11.92 28.36 54.45

6. Numerical Tests on Stochastic Failure of Shallow Foundations with Random Linear
and Non-Linear Material Properties
6.1. Description of the Problem

The proposed numerical simulation model is implemented in porous problems as
portrayed in Figure 3 and is defined by the set of Equation (1). The monitored output
variables are the maximum settlement stress, considering linear variation over the surface
of the foundation, the normal force of the footing settlement, the maximum displacement
of the settlement—which is considered as the mean output value of the points A and B of
Figure 3—and the minimum displacement of the settlement, which is considered as the
mean output value of the points C and D of Figure 3. The loading conditions consist of the
nodal values q1 at points C and D and q2 at points A and B and represent, at each loading
case, the equivalent forces of a linear distributed loading case for a specific eccentricity of the
footing settlement. The eccentricity e = M

N is considered with four possible values, namely
0, h

12 , h
6 , h

3 . The finite element mesh consists of eight-node hexahedral finite elements with
linear shape functions for u and p, which results in an acceptable numerical accuracy [51,52].
The lengths of the soil domain in X, Y and Z directions are lx = 5 m, ly = 5 m and lz = 4 m,
respectively. The stresses due to geostatic loading are directly imported as initial conditions
with the relations σv = γz, σx = σy = 100 kPa associated with stress point L of Figure 1.
The duration of the simulation in all cases is one day in order to have quasi static conditions,
and at each load case, a time step of dt = 0.001 d is implemented. The other deterministic
properties of the soil are given in Table 2.

Table 2. Deterministic parameters of the soil domain.

λ
κ ainitial kPa aresidual kPa OCR ν0

2G
Kbulk

ξ γ kN
m3

10 1600 400 4 1.627 0.75 0.05 20

In Table 2, ν0 stands for the initial specific volume of the soil and λ for the inclination
of isotropic compression line for the respective virgin, normally consolidated clay, which
is considered proportional to κ. The following equations apply to boundary surfaces:
ux(z = h) = uy(z = h) = uz(z = h) = 0, and the lateral boundary surfaces are free of
constraints. The input material uncertainty consists of the material variables, the compress-
ibility factor κ, the critical state line inclination c and the permeability factor k.

For the compressibility factor κ, the spatial distribution along the depth is consid-
ered either linear (κL) or constant (κC). In the κL case, κz=0 = 0.008686 and the ratio R
follows the truncated normal distribution with R = κz=max

κz=0
. The mean value of the ratio is

µR = 0.469 and the corresponding CoV is 0.25; as a consequence, κz=max,mean = 0.004074.
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These values are selected in order for the mean stiffness of the soil to correspond to a
shear velocity of 200 m

s . In Figure 4 the spatial distribution of κL is depicted. It should be
mentioned that the bulk and the shear moduli are assumed proportional, since the Poisson
ratio is assumed to be constant and, consequently, κ is directly associated with the shear
velocity. When κ is considered constant, the mean value of κ is κµ = 0.004074 and the CoV
is 0.25.

Figure 3. Geometry of the finite element mesh. The dimensions are OX = 5 m, OY = 5 m, YZ = 4 m,
and for the equivalent forces, it holds that q2 ≥ q1. The finite element mesh consists of hexahedral
finite elements with linear shape functions.

For the critical state inclination c, the constant spatial distribution with respect to
depth is adopted. Two possible hypotheses for the absolute value are assumed. If a random
variable case is adopted cR, the friction angle φ0 follows the truncated normal distribution
PDF with the mean value of µφ = 23◦ and standard deviation of σφ = 2◦, which provides
values for φ which are in an acceptable closed space for natural clays [31]. Values of φ0 are
generated through the generation of samples from the standard normal distribution with
the Latin Hypercube Sampling and then are transformed into the truncated normal PDF

gtr. Subsequently, c is computed from c =
√

2
3

6sin(φ0)
3−sin(φ) . Alternatively, for the deterministic

case cD, c = 0.7336 for friction angle µφ = 23◦.
For the permeability k, the constant spatial distribution with respect to depth is

adopted. The absolute value may be considered in two approaches. If a random variable
case is adopted kR, the mean value is µk = 10−8 and the CoV is CoVk = 0.25. On the other
hand, for the deterministic case kD, k = 10−8 .

Two types of analyses are examined: the solid analyses, where the pore pressure is
neglected, and the porous analyses, where the water flow is taken into account. The solid
analyses performed, specified with (S), are depicted in Table 3, incorporating linear (L) or
constant (C) distribution for κ and deterministic (D) or random variable (R) cases for c. The
corresponding abbreviated porous analyses performed are portrayed in Table 4, incorpo-
rating linear (L), constant (C) and random field (RF) distribution for κ; deterministic (D),
random variable case (R) and random field (RF) distribution for c; and deterministic (D),
random variable case (R) and random field distribution (RF) for k.
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Figure 4. Graphical representation for the linear spatial distribution of the compressibility factor.
Horizontal axis stands for the compressibility factor κ and the vertical axis for the depth of the
soil point in meters. The spatial distributions for the mean value µ of the ratio R = κz=max

κz=0
and the

corresponding distributions for µ + σ and µ− σ.

Table 3. Non-porous (solid) analyses performed.

κ c Abbreviation

Constant Deterministic S-κC-cD

Linear Deterministic S-κL-cD

Constant Random S-κC-cR

Linear Random S-κL-cR

Table 4. Porous analyses performed.

κ c k Abbreviation

Constant Deterministic Deterministic P-κC-cD-kD

Constant Random Deterministic P-κC-cR-kD

Linear Deterministic Deterministic P-κL-cD-kD

Linear Random Deterministic P-κL-cR-kD

Constant Deterministic Random P-κC-cD-kR

Constant Random Random P-κC-cR-kR

Linear Deterministic Random P-κL-cD-kR

Linear Random Random P-κL-cR-kR

Random Field, b = 2 Random Field, b = 2 Random Field, b = 2 P-κRF-cRF-kRF−2

Random Field, b = 4 Random Field, b = 4 Random Field, b = 4 P-κRF-cRF-kRF−4

Random Field, b = 8 Random Field, b = 8 Random Field, b = 8 P-κRF-cRF-kRF−8
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In the random field processes the mean values are considered: κmean = 0.008686,
cmean = 0.7336 and kmean = 10−8 m3s

Mgr following [53–55]. The standard deviations imple-
mented are: σκ = 0.25κmean, σφ = 2◦ and σk = 0.25kmean. The auto-correlation function of
Equation (14) is adopted in all stochastic processes. The values of correlation length are
b = 2 m (kRF−2), b = 4 m (kRF−4) and b = 8 m (kRF−8). The spatial distributions for κ, κL
and κC, as well as the random variable distributions for all material variables correspond
to a random variable case analysis. For c, a constant deterministic analysis is adopted.
The random field (RF) distributions refer to the Karhunen–Loeve series expansion and
realisations of the spatial stochastic process, and are computed through equation H1 of
Section 4.1 with the use of the auto-covariance function given by Equation (14).

The simulations are static, whilst the number of Fredholm eigenfunctions taken into
consideration is eight. Failure is defined when the first Gaussian Point exhibits softening
behaviour (i.e., plastic-hardening modulus H < 0). Each Monte Carlo simulation was
applied for 100 samples, using the Latin Hypercube Sampling method, which was found
sufficient in achieving convergence for the mean value and standard deviation of the
monitored displacements, as is portrayed in Figures 5 and 6. It should be noted that the
cross correlation in all material variables is neglected, and consequently, the correlation
matrix has a diagonal form.
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Figure 5. Convergence of the mean value of a randomly selected Monte Carlo simulation for the
output failure load. In the horizontal axis, the number of samples; and in the vertical axis, the
percentage difference of the mean value in relation to the statistical moment in the 100 samples.
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the output failure load. In the horizontal axis, the number of samples; and in the vertical axis, the
percentage difference of the standard deviation in relation to the statistical moment in the 100 samples.
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6.2. Presentation of the Results
6.2.1. Ultimate Failure Load and Displacement

The results for the statistics of failure load and failure displacement are depicted in
Tables A1–A3 and in Figures A1–A6. In these tables, the mean values (µν) of the maximum
settlement stress, the normal force of the shallow foundation, the maximum and the mini-
mum displacements and the rotation of the footing are depicted alongside the coefficient of
variation (CoV) (σδ), as well as the maximum (M) and minimum µ values obtained from the
Monte Carlo simulation. It should be noted that in Figures A1–A6, the PDFs of the normal
force of the shallow foundation and the maximum settlement displacement are portrayed,
while for the maximum footing stress, the minimum displacement and the rotation of the
foundation of the corresponding figures are in the supplementary materials section, which
is distinct from the main manuscript file.

As can be distinguished from Table A1, when the pore pressure is neglected, greater
mean failure displacements and lower CoV are obtained when κL is assumed compared to
κC, whilst greater mean failure stress and force and corresponding uncertainty are obtained
when κC is assumed for all eccentricities considered, except for eccentricity h

6 and random
variable case for c. In the numerical simulations performed, the largest CoV of the output
for failure stresses and forces is 40% of the input uncertainty, while the maximum CoV of
the output for the displacements and the rotation is almost the same as the input variability
of 0.25 (see the variable umin in the S-κC-cR analysis for e = h

3 ). The mean value of umax in
S-κL-cD for e = 0 is 13% larger than the corresponding value for e = h

3 , while the mean
value for φ, in S-κL-cD for e = h

3 is 3.3 times greater than the corresponding value for
e = h

12 . Consequently, the critical spatial distribution of κ for the CoV of the output of
monitored stresses, forces, displacements and rotation is the κC assumption. The PDFs
of solid analyses are portrayed in Figures A1 and A2, where it can be concluded that for
failure stresses, the mean value is increased with the increase in the eccentricity, whilst in
normal forces, the opposite behaviour occurs. For failure displacements, the increase in
the eccentricity causes a decrease in the mean value, and this also applies to the settlement
rotation. This behaviour in the displacements and the rotation of the foundation can be
attributed to the fact that in the κL assumption, the upper layers of the soil, which are
the most compressible, have smaller CoV of κ, causing lower CoV for displacements and
strains. The assumption of constant distribution along the depth of the soil mass tends to
be more homogeneous and stiff, and subsequently, the Gauss Points have greater stiffness,
and greater failure stress and forces occur.

The CoV of the failure stresses and forces in porous analyses is less influenced by the
change in the eccentricity, unlike the output variability of the failure displacements and
rotation, as it is portrayed in Table A2. The largest output CoV of maximum footing stress,
which is found at P-κC-cR-kD for e = h

3 , is 44% lower than the input uncertainty, whilst
the corresponding maximum CoV of umax is 2.6 times larger than the input variability of
0.25 and is located at P-κC-cD-kR for e = h

12 . Therefore, when taking into account the pore
pressure in the soil domain, a reduction in the variability of the failure stresses and forces
occurs, whilst in failure displacements, when there is constant spatial distribution for κ, a
significant variability increase takes place, as is indicated in Figures A3 and A4. For the ro-
tation of the footing settlement, when the constant distribution of the compressibility factor
is assumed, there is a slight divergence from the uncertainty of the input. This behaviour
is explained from the fact that when constant spatial variability of a material variable is
assumed, all Gauss Points are associated with larger uncertainty, leading to greater CoV for
strains and displacements. Considering that the bulk modulus of Equation (8) in porous
problems is generally smaller than the corresponding solid problems, it is deduced that
smaller mean values of failure load and smaller variability are expected, due to tensile
failure of the first Gauss point. This will be demonstrated numerically in Section 6.2.2.

Porous analysis with all the material variables following a stochastic process is per-
formed as a more general case, since it takes into account the spatial uncertainty of the
material properties of the soil. In the case of porous random field analyses, the largest CoV
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of the output for maximum stresses is 36% lower in relation to the input variability, and
similar conclusions apply for the maximum foundation displacement umax. For the rotation
of the settlement φ, the largest uncertainty of the input is very close to the variability of
the input of 0.25, and is found when the eccentricity is h

3 and b = 4 m. The mean values of
failure maximum stresses in porous random field analyses are slightly smaller (divergence
up to 17%) than the corresponding porous random field analyses with deterministic shape
functions for κ, c, k whilst the mean values for maximum failure displacements are greater
than the respective analyses with linear distribution for κ, with divergence in the vicinity of
20%, as portrayed in Table A3. In porous random field analyses the increase in correlation
length decreases the CoV of the output in failure stresses, forces and displacements in all
eccentricities, while for the rotation of the foundation, the maximum uncertainty occurs
when b = 4 m. The unfavourable situation arises when the normal force is small thus the
critical spatial distribution is considered the one with the smallest mean value as output.
Consequently, the critical spatial distribution for the mean value of N is the random field
representation for all three material input variables. The PDFs of P-κRF-cRF-kRF analyses
are portrayed in Figures A5 and A6.

The results obtained provide qualitative indications as well as quantitative measure-
ments of the effect of the input uncertainty of each material variable in porous failure
problems. The compressibility factor κ influences the mean value and the variability of
all monitored variables. This influence on the CoV of the output is more notable when
the distribution of κ with respect to depth is constant. This holds in both porous and non-
porous problems, which can be attributed to the fact that κ is directly related to the bulk
modulus, and consequently has a significant influence on the strains, the displacements
and the stiffness of the soil domain, leading to a greater influence of the ultimate load.

The permeability k affects failure stresses, forces and failure displacements and ro-
tations to a lesser extent. The spatial variability of k has a small influence on the CoV of
the output in most Monte Carlo simulations for κ and c. For the same porous consolida-
tion problem with the same load and deterministic parameters, the output displacement
and stress field are not influenced by the permeability, since the pore pressures are fully
dissipated, as observed by the numerical results.

In conclusion, the variability of critical state line inclination c of the material model
appears to have the most notable effect on the output variability for maximum footing
settlement and forces when the constant distribution and random variable case is adopted,
and greater mean values are obtained when the cR case is implemented. Similar conclusions
can be made for the displacements and the rotations of the footing settlement. When a
deterministic value for c is chosen, the output variability of the maximum stresses and
forces is negligible, leading to the conclusion that the influence of this material variable
is the most important in comparison with κ and k. This is explained by the fact that c is
directly associated with the failure state of the Gauss point, which influences the limit state
of the soil mass.

In order to demonstrate that the monitored output variables follow the truncated
normal or the log-normal distribution, the histograms of three randomly selected Monte
Carlo simulations for an output monitored variable with the corresponding distribution
fitting are presented in Figure A7. As shown in the diagrams, the empirical PDF estimated
by the histograms can be modelled by the truncated normal PDF gtr described in Section 6
or the log-normal PDF, respectively. The limit values M and µ indicated in Tables A1–A3
are valid values to set the truncation of the PDF.

In order to numerically prove the nature of the output random vectors, the Kolmogorov
–Smirnov test is used [56–58]. In all output probability density functions, the null hypothesis
H0 at the 5% significance level is accepted, as shown in Table A4, whereas for the Monte
Carlo simulation analyses depicted in Figure A7, the aforementioned test is implemented.
The maximum absolute deviation of the theoretical and empirical cumulative distribution
function (CDF) computed by the Monte Carlo simulations of Figure A7 are compared to
the critical difference for accepting H0. It can be seen that the critical value is greater than
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the maximum absolute difference of the CDFs; consequently, the output random vectors
follow a Gaussian-type distribution. This comes in agreement with the previous research
literature [43].

6.2.2. Ultimate Stresses–Strains and Failure Mechanism

The results for the ultimate stress–strain relations and failure mechanisms are pre-
sented in tables located in the supplementary materials section. In these tables, the follow-
ing parameters are considered: mean values, CoV and minimum values for the volumetric
stresses, denoted as pvol ; and deviatoric von Mises stresses, denoted as qdev, explained in
Section 3.1. Furthermore, the mean value with the CoV of the volumetric strains, denoted
as evol ; and the deviatoric strains, denoted as edev, are also included in the aforementioned
tables, while the probability of first Gauss Point failure for all simulations is also presented.
At this point, it is pointed out that the volumetric strain at failure is tensile.

As can be seen in solid analyses, larger variability of the output and smaller minimum
value of failure stress is obtained when cR case is considered. In most cases, this distribution
also provides larger mean values. The same spatial distribution for critical state line
inclination provides larger uncertainty of the strains at failure in almost all eccentricities,
which on average are in the proximity of 12‰ for the linear distribution assumption for κ
and in the proximity of 5‰ for the constant distribution for the compressibility factor. In
general, from the results of the Monte Carlo simulations, it can be seen that the percentage
plastic deviatoric strains are greater; consequently the distortional failure is critical. Finally,
in all cases, the Gauss point (3.21, 2.21, 3.79) is the most probable failure point when the
eccentricity is not zero.

In porous analyses with deterministic shape functions for κ, c, k larger stress variability
is obtained at e=0 with deterministic value for c, and when the eccentricity is not zero, the
cR case is critical. The change in the permeability notably influences the output uncertainty
when the κC-cR is assumed for eccentricities h

12 , h
6 . The largest output uncertainty in failure

strains occurs at e = 0, κC-cD-kD analysis. From the results acquired with Monte Carlo
analyses, it can be concluded that when the eccentricities are small (e = h

12 ), the deviatoric
failure is critical, while when larger eccentricities occur, in general the linear distribution
for κ provides deviatoric failure and the constant distribution for the compressibility factor
provides volumetric failure. In conclusion, the most probable failure Gauss point is the
(3.21, 2.79, 3.79) for e = 0 and h

12 . The point (3.21, 2.79, 3.79) is also critical for e = h
6 except

from the linear distribution assumption for κ and random variable case for c, whereas the
critical Gauss point is the (3.21, 2.21, 3.79). Finally, (3.21, 2.21, 3.79) is the most probable
failure point for e = h

3 for all possible assumptions that do not implement random field
processes for the material variables in discussion.

In porous analyses with random field representation for κ, c, k, greater output CoV
for stresses is obtained in general for b = 2 m. The volumetric strains and the deviatoric
strains have, in all eccentricities, critical correlation length b = 4 m. Taking into account
the numerical results acquired by the analyses performed, when the eccentricity is greater
than zero, the distortional failure occurs. Finally, the most probable failure Gauss point in
small eccentricities is the (3.21, 2.79, 3.79) whilst for larger eccentricities, (3.21, 2.79, 3.79) is
the critical failure mechanism point for all correlation lengths assumed. As the eccentricity
equals to the one-third of the height of the footing settlement, the probability of the most
probable point tends to 100%.

7. Conclusions

In this work, the uncertainty quantification of the failure of shallow foundations
on clayey soils is presented, taking into consideration the pore pressure–soil interaction
with the implementation of the stochastic finite element method. The aim of this work
is to provide a numerical tool for obtaining accurate quantitative results regarding the
failure stresses, forces, displacements and rotations of the footing settlement on clayey
soil domain in relation to the input uncertainty of soil material variables. The proposed



Geotechnics 2022, 2 362

numerical simulation model is valid for every possible assumption for the geometry, the
loading properties and the material distribution of the soil domain. In this context, a
detailed finite element simulation alongside an accurate and reliable material constitutive
model is implemented. The practical application of this article consists of the numerical
implementation of the stochastic finite element method through Monte Carlo analysis to a
spatially random cohesive soil domain that is subjected to a shallow foundation load that
causes failure. The cohesive soil domain has material constitutive model of a Modified Cam-
Clay yield function and the output random vectors of failure load, failure displacement
and the integration Gauss point that the failure mechanism initially occurs are obtained
and assessed.

The numerical results acquired portray that the monitored output variables of maxi-
mum stresses, forces, displacements and rotation follow a Gaussian random distribution
despite the excessive material non-linearity, which occurs in failure situations. The random-
ness of material poroelasticity plays an important role in the output uncertainty for failure
stresses, forces and failure displacements, especially when it has a constant distribution
along the depth of the soil domain. The same observation holds for the critical state line
inclination variable c. When the constant distribution for κ is assumed, the CoV of the
output maximum displacement exceeds the corresponding variability of the input with an
increase which is up to 2.6 times larger. The porous variable of permeability influences the
uncertainty of the output material variables to a lesser extent. In porous media problems,
the failure load is smaller compared to the corresponding solid problems.

The random field representations for κ, c and k provide the maximum mean failure
strains, especially when the correlation length is smaller. In porous random field analyses
for all eccentricities, the distortional failure is critical. When deterministic shape functions
for the material variables are considered, for smaller eccentricities the deviatoric failure is
the critical. For larger eccentricities of the footing settlement, if the compressibility factor is
assumed linear over the depth of the soil domain, the volumetric failure is critical, whilst
for a constant distribution for κ, the deviatoric failure occurs. Finally, in most cases (3.21,
2.79, 3.79) is the critical Gauss point failure onset, except from the eccentricity h

3 , whereas
the most probable Gauss point for failure is the (3.21, 2.21, 3.79), which can be considered
as the starting point of the failure mechanism through the Meyerhoff spline.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geotechnics2020016/s1, Figure S1: PDFs of the maximum settle-
ment stresses in kPa for non porous medium. κL, κC stands for the linear and constant distribution
for κ respectively and cD, cR stands for the deterministic and random distribution for c respectively.
Subplot (a), (b), (c), (d) stand for eccentricity 0, h

12 , h
6 , h

3 , respectively; Figure S2. PDFs of the minimum
displacement in m for non porous medium. κL, κC stands for the linear and constant distribution
for κ respectively and cD, cR stands for the deterministic and random distribution for c respectively.
Subplot (a), (b), (c), (d) stand for eccentricity 0, h

12 , h
6 , h

3 , respectively; Figure S3. PDFs of the rotation
of the settlement in rad for non porous medium. κL, κC stands for the linear and constant distribution
for κ respectively and cD, cR stands for the deterministic and random distribution for c respectively.
Subplot (a), (b), (c) stand for eccentricity h

12 , h
6 , h

3 , respectively; Figure S4. PDFs of the maximum
settlement stresses in kPa for porous analyses with deterministic shape functions for the stochastic
material variables. κL, κC stands for the linear and constant distribution for κ respectively while
cD, cR stands for the deterministic and random distribution for c respectively and kR, kD stands
for the random and deterministic distribution for k. Subplot (a), (b), (c), (d) stand for eccentricity
0, h

12 , h
6 , h

3 respectively; Figure S5. PDFs of the minimum displacement in m for porous analyses
with deterministic shape functions for the stochastic material variables. κL, κC stands for the linear
and constant distribution for κ respectively while cD, cR stands for the deterministic and random
distribution for c respectively and kR, kD stands for the random and deterministic distribution for k.
Subplot (a), (b), (c), (d) stand for eccentricity 0, h

12 , h
6 , h

3 respectively; Figure S6. PDFs of the rotation of
the settlement in rad for porous analyses with deterministic shape functions for the stochastic material
variables. κL, κC stands for the linear and constant distribution for κ respectively while cD, cR stands
for the deterministic and random distribution for c respectively and kR, kD stands for the random

https://www.mdpi.com/article/10.3390/geotechnics2020016/s1
https://www.mdpi.com/article/10.3390/geotechnics2020016/s1
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and deterministic distribution for k. Subplot (a), (b), (c) stand for eccentricity h
12 , h

6 , h
3 respectively;

Figure S7. PDFs of the maximum settlement stresses in kPa for porous analyses with random field
representation for the stochastic material variables. κRF2, κRF4 , κRF8 stands for correlation length
b = 2, 4, 8 for κrespectively whilst cRF2, cRF4, cRF8 stands for correlation length b = 2, 4, 8 for c
respectively and kRF2 , kRF4 , kRF8 stands for correlation length b = 2, 4, 8 for k. Subplot (a), (b), (c),
(d) stand for eccentricity 0, h

12 , h
6 , h

3 respectively; Figure S8. PDFs of the minimum displacement in
m for porous analyses with random field representation for the stochastic material variables. κRF2,
κRF4 , κRF8 stands for correlation length b = 2, 4, 8 for κ respectively whilst cRF2 , cRF4 , cRF8 stands
for correlation length b = 2, 4, 8 for c respectively and kRF2 , kRF4 , kRF8 stands for correlation length
b = 2, 4, 8 for k. Subplot (a), (b), (c), (d) stand for eccentricity 0, h

12 , h
6 , h

3 respectively; Figure S9.
PDFs of the rotation of the settlement in rad for porous analyses with random field representation
for the stochastic material variables. κRF2, κRF4 , κRF8 stands for correlation length b = 2, 4, 8 for κ

respectively whilst cRF2 , cRF4 , cRF8 stands for correlation length b = 2, 4, 8 for c respectively and kRF2 ,
kRF4 , kRF8 stands for correlation length b = 2, 4, 8 for k. Subplot (a), (b), (c) stand for eccentricity h

12 , h
6 ,

h
3 respectively; Table S1. Monte Carlo results for the stresses (kPa), the strains (‰) and the probability
of the first Gauss point failure for non porous medium. µν, σδ, µ stand for the mean value, the
coefficient of variation, the minimum value of the output random vector. pvol , qdev, evol , edev denote
the volumetric stress at failure, the deviatoric Von Mises stress at failure, the volumetric strain at
failure and the deviatoric scalar value for strains at failure respectively; Table S2. Monte Carlo results
for the stresses (kPa), the strains (‰) and the probability of the first Gauss point failure for porous
analyses with deterministic shape functions for the stochastic material variables. µν, σδ, µ stand for
the mean value, the coefficient of variation, the minimum value of the output random vector. pvol ,
qdev, evol , edev denote the volumetric stress at failure, the deviatoric Von Mises stress at failure, the
volumetric strain at failure and the deviatoric scalar value for strains at failure respectively; Table S2.
Monte Carlo results for the stresses (kPa), the strains (‰) and the probability of the first Gauss point
failure for porous analyses with deterministic shape functions for the stochastic material variables.
µν, σδ, µ stand for the mean value, the coefficient of variation, the minimum value of the output
random vector. pvol , qdev, evol , edev denote the volumetric stress at failure, the deviatoric Von Mises
stress at failure, the volumetric strain at failure and the deviatoric scalar value for strains at failure
respectively.
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Nomenclature
The following symbols are used in this manuscript:

N f Friction variables
Nq Friction variable indicating the influence of possible vertical load in the lateral

of the foundation
Nc Friction variable indicating the influence of the cohesion of the soil
Nγ Friction variable indicating the influence of the settlement dimensions

alongside the total weight of the soil

http://mgroup.ntua.gr/
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S f Shape variables
Sq Shape variable indicating the influence of possible vertical load in the lateral

of the foundation
Sc Shape variable indicating the influence of the cohesion of the soil
Sγ Shape variable indicating the influence of the settlement dimensions

alongside the total weight of the soil
κ Compressibility factor
c Critical state line inclination
k Permeability in units m3s

Mgr
φ0 Friction angle
M Total mass matrix
C Total damping matrix
K Total stiffness matrix
Ms Solid skeleton mass matrix
ρd Density of the soil
B Deformation matrix
E Elasticity matrix
Cs Solid skeleton damping matrix
Ks Solid skeleton stiffness matrix
m Unity matrix
b Loading vector
k Matrix of permeability in units m3s

Mgr
NP Shape functions for pore pressure
Nu Shape functions for displacements
S Saturation matrix
Qc Coupling matrix
H Permeability matrix
fS Equivalent forces due to external loading
Q Variable for combining the influence of bulk moduli of fluid and soild skeleton

in porous problems
σ Total stress tensor
s Deviatoric component of the stress tensor
ph Hydrostatic component of the stress tensor
a Halfsize of the Bond-Strength Envelope
sL Deviatoric component of the stress point of the centre of the Plastic

Yield Envelope
pL Hydrostatic component of the stress point of the centre of the Plastic

Yield Envelope
ξ Similarity factor between the Plastic Yield Envelope and Bond

Strength Envelope
fg Generalized elliptic envelope
fp Plastic Yield Envelope (PYE)
F Bond-Strength Envelope (BSE)
ν Specific volume of the soil
q von Mises stress
e Deviatoric strain measure
εdev Deviatoric component of the strain tensor
f Random function
fi Value of the random function at nodal points
Ni Shape functions
N0 Total number of shape functions
h1 Truncated normal PDF
φ(x) Standard normal PDF
Φ(x) Standard normal CDF
σd Standard deviation of the random variable before truncation
A, B, X0 Normalised coordinates of the subspace of the truncated PDF

limits and x, respectively
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H1(x, ω) Karhunen–Loeve random field
Ns Number of subintervals in the Latin Hypercube Sampling
µ(x) Mean value of the random field
X(x1, x2, . . . , xn) Random vector created by the Latin Hypercube Sampling
Me, λi, φi Total number of eigenvalues λi and eigenfunctions

φi respectively
b Correlation length
COV(ξi, ξ j) Covariance function
λ∗ Load factor causing failure of the body at exactly the time which ends

the rampload function
T Time which the rampload function ends
Tp Symmetrization factor of the stochastic process
λn Trial load factor of step n causing failure
tn Time of failure at the generalized load factor λn
λmax−no− f ailure Maximum trial load factor which causes safety
λ1, f ail Initial trial load factor causing failure
λ1,no− f ailure Initial trial load factor which causes safety
q1 − q4 Equivalent forces of the shallow foundation
e = M

N Eccentricity
lx − ly − lz Dimensions of the total finite element mesh
σv, σx, σy Geostatic stresses in vertical direction and directions x and y respectively
λ Inclination of isotropic compression line for the respective normally

consolidated clay
ainitial Initial halfsize of the ellipse
aresidual Residual halfisize of the ellipse
OCR Overconsolidation ratio
G Shear modulus
Kbulk Bulk modulus
γ Specific weight
ν0 Initial specific volume of the soil
ux Displacement vector in direction x
κz=0 Compressibility factor at depth = 0
κz=max Compressibility factor at maximum depth
R = κz=max

κz=0
Ratio of the compressibility factors measured at depth = 0
and at maximum depth

µR Mean value of ratio R
κz=max,mean Compressibility factor at maximum depth when the ratio R has its mean value
κL Linear distribution over depth for the compressibility factor
κC Constant distribution over depth for the compressibility factor
κµ Mean value of κ

cR Random variable case for the critical state line inclination
cD Deterministic case for the critical state line inclination
µφ Mean value of the friction angle
σφ Standard deviation of the friction angle
µk Mean value of the permeability
CoVk Coefficient of variation of the friction angle
κmean Mean value of the compressibility factor in the random field representation
cmean Mean value of the critical state line inclination in the random field

representation
kmean Mean value of the permeability in the random field representation
σκ Standard deviation of the compressibility factor in the random field

representation
σφ Standard deviation of the critical state line inclination in the random field

representation
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σk Standard deviation of the permeability in the random field representation
µν Mean values of the results
σδ Coefficient of variation of the results
M Maximum values of the results
µ Minimum values of the results
N Total settlement force
ux Horizontal displacement at failure
uy Vertical displacement at failure
pvol Volumetric stress at failure
qdev von Mises stress at failure
evol Volumetric strain at failure
edev Deviatoric strain at failure
Rvol Percentage plastic volumetric strains at failure
Rdev Percentage plastic deviatoric strains at failure

Appendix A

The following tables and figures are placed in this section

Table A1. Monte Carlo results for the maximum stress, (kPa) the normal force, (kN) the maximum
and minimum displacements, (m) and the rotation of the foundation (rad) for non-porous medium.
µν, σδ, M, µ stand for the mean value, the coefficient of variation, the maximum and the minimum
value of the output random vector. σmax, N, umax, umin, φ denote the maximum footing settlement
stress, the foundation axial force at failure, the maximum failure displacement, the minimum failure
displacement and the corresponding rotation of the shallow foundation, respectively.

σmax e = 0 e = h
12

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 4022.60 4022.60 3852.80 3851.60 5221.60 5222.00 4956.40 4955.60

σδ 0.04 0.09 0.02 0.09 0.04 0.10 0.02 0.09

M 4446.00 4824.00 4050.00 4566.00 5810.00 6279.00 5201.00 5887.00

µ 3762.00 3366.00 3696.00 3234.00 4865.00 4368.00 4760.00 4158.00
M
µ 1.18 1.43 1.10 1.41 1.19 1.44 1.09 1.42

σmax e = h
6 e = h

3

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 6044.90 5909.80 5699.80 5699.30 9298.10 9301.90 8697.20 8700.00

σδ 0.05 0.07 0.02 0.09 0.05 0.10 0.02 0.09

M 6748.00 6531.00 5971.00 6769.00 10.395.00 11.220.00 9075.00 10.335.00

µ 5621.00 5054.00 5488.00 4781.00 8640.00 7770.00 8400.00 7290.00
M
µ 1.20 1.29 1.09 1.42 1.20 1.44 1.08 1.42

N e = 0 e = h
12

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 4022.60 4022.60 3852.80 3851.60 3481.07 3481.33 3304.27 3303.73

σδ 0.04 0.09 0.02 0.09 0.04 0.10 0.02 0.09

M 4446.00 4824.00 4050.00 4566.00 3873.33 4186.00 3467.33 3924.67

µ 3762.00 3366.00 3696.00 3234.00 3243.33 2912.00 3173.33 2772.00
M
µ 1.18 1.43 1.10 1.41 1.19 1.44 1.09 1.42
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N e = h
6 e = h

3

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 3022.45 2954.90 2849.90 2849.65 2324.53 2325.48 2174.30 2175.00

σδ 0.05 0.07 0.02 0.09 0.05 0.10 0.02 0.09

M 3374.00 3265.50 2985.50 3384.50 2598.75 2805.00 2268.75 2583.75

µ 2810.50 2527.00 2744.00 2390.50 2160.00 1942.50 2100.00 1822.50
M
µ 1.20 1.29 1.09 1.42 1.20 1.44 1.08 1.42

umax e = 0 e = h
12

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0297 0.0298 0.0488 0.0488 0.0286 0.0287 0.0473 0.0473

σδ 0.22 0.25 0.05 0.08 0.22 0.25 0.04 0.08

M 0.0420 0.0444 0.0529 0.0559 0.0404 0.0427 0.0510 0.0540

µ 0.0151 0.0156 0.0439 0.0435 0.0146 0.0150 0.0427 0.0421
M
µ 2.78 2.85 1.21 1.29 2.76 2.84 1.19 1.28

umax e = h
6 e = h

3

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0276 0.0288 0.0458 0.0458 0.0258 0.0258 0.0432 0.0432

σδ 0.22 0.21 0.04 0.08 0.22 0.25 0.04 0.07

M 0.0389 0.0411 0.0493 0.0523 0.0363 0.0384 0.0461 0.0491

µ 0.0142 0.0198 0.0416 0.0408 0.0133 0.0137 0.0396 0.0384
M
µ 2.75 2.07 1.18 1.28 2.73 2.81 1.17 1.28

umin e = 0 e = h
12

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0297 0.0298 0.0488 0.0488 0.0248 0.0249 0.0406 0.0405

σδ 0.22 0.25 0.05 0.08 0.23 0.25 0.05 0.08

M 0.0420 0.0444 0.0529 0.0559 0.0351 0.0372 0.0441 0.0467

µ 0.0151 0.0156 0.0439 0.0435 0.0126 0.0129 0.0362 0.0359
M
µ 2.78 2.85 1.21 1.29 2.79 2.87 1.22 1.30

umin e = h
6 e = h

3

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0208 0.0217 0.0336 0.0336 0.0137 0.0137 0.0210 0.0210

σδ 0.22 0.21 0.05 0.09 0.22 0.26 0.06 0.11

M 0.0294 0.0312 0.0367 0.0391 0.0192 0.0206 0.0234 0.0251

µ 0.0106 0.0149 0.0298 0.0294 0.0070 0.0073 0.0181 0.0180
M
µ 2.77 2.09 1.23 1.33 2.74 2.84 1.29 1.40
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φ e = h
12 e = h

6

S− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0038 0.0038 0.0067 0.0067 0.0068 0.0070 0.0122 0.0122

σδ 0.21 0.23 0.02 0.05 0.22 0.20 0.02 0.04

M 0.0053 0.0055 0.0069 0.0073 0.0095 0.0099 0.0126 0.0132

µ 0.0020 0.0021 0.0065 0.0062 0.0035 0.0049 0.0118 0.0113
M
µ 2.58 2.63 1.07 1.17 2.67 2.02 1.07 1.17

φ e = h
3

S− κC-cD κC-cR κL-cD κL-cR

µν 0.0121 0.0121 0.0222 0.0222

σδ 0.22 0.24 0.01 0.05

M 0.0170 0.0178 0.0228 0.0240

µ 0.0063 0.0064 0.0215 0.0205
M
µ 2.72 2.77 1.06 1.17
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Figure A1. Cont.
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Figure A1. PDFs of the Normal force of the settlement in kN for non-porous medium. κL, κC stands
for the linear and constant distribution for κ, respectively, and cD, cR stands for the deterministic and
random distribution for c, respectively. Subplot (a–d) stand for eccentricity 0, h

12 , h
6 , h

3 respectively.
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Figure A2. PDFs of the maximum displacement in m for non-porous medium. κL, κC stands for
the linear and constant distribution for κ, respectively, and cD, cR stands for the deterministic and
random distribution for c, respectively. Subplot (a–d) stand for eccentricity 0, h

12 , h
6 , h

3 , respectively.
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Table A2. Monte Carlo results for the maximum stress kPa the normal force kN the maximum
and minimum displacements m and the rotation of the foundation rad for porous analyses with
deterministic shape functions for the stochastic material variables. µν, σδ, M, µ stand for the mean
value, the coefficient of variation, the maximum and the minimum value of the output random vector.
σmax, N, umax, umin, φ denote the maximum footing settlement stress, the foundation axial force at
failure, the maximum failure displacement, the minimum failure displacement and the corresponding
rotation of the shallow foundation respectively.

σmax e = 0,kD e = 0,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 3745.70 3734.60 3947.00 3942.60 3729.60 3735.40 3948.90 3940.50

σδ 0.02 0.10 0.03 0.09 0.02 0.09 0.03 0.09

M 3942.20 4502.40 4196.20 4705.70 3808.70 4497.80 4202.50 4691.80

µ 3653.90 3083.00 3777.60 3271.70 3645.10 3107.20 3770.70 3277.80
M
µ 1.08 1.46 1.11 1.44 1.04 1.45 1.11 1.43

σmax e = h
12 ,kD e = h

12 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 4768.70 4792.80 5035.20 5012.60 4792.10 4815.90 5035.80 5034.60

σδ 0.03 0.09 0.03 0.11 0.02 0.10 0.03 0.09

M 4963.80 5781.40 5349.80 5999.50 4945.80 5802.50 5344.70 6014.50

µ 4267.10 4018.30 4826.10 3642.50 4648.30 3961.80 4816.00 4193.60
M
µ 1.16 1.44 1.11 1.65 1.06 1.46 1.11 1.43

σmax e = h
6 ,kD e = h

6 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 5519.50 5558.10 5843.10 5619.70 5554.90 5552.40 5747.00 5571.90

σδ 0.03 0.09 0.02 0.14 0.01 0.09 0.05 0.14

M 5781.10 6662.10 6148.40 6940.60 5684.20 6658.80 6183.30 6930.10

µ 4921.90 4624.00 5570.90 4474.60 5430.90 4683.60 4783.20 4402.50
M
µ 1.17 1.44 1.10 1.55 1.05 1.42 1.29 1.57

σmax e = h
3 ,kD e = h

3 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 8495.60 8277.80 7874.90 8030.30 8656.30 8318.20 7960.30 8061.50

σδ 0.05 0.14 0.02 0.11 0.04 0.14 0.04 0.11

M 8955.70 10276.00 8052.00 10767.00 8990.60 10286.00 8675.40 10767.00

µ 7706.80 6548.40 7591.80 6940.50 7621.00 6393.20 7307.20 6791.80
M
µ 1.16 1.57 1.06 1.55 1.18 1.61 1.19 1.59

N e = 0,kD e = 0,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 3745.70 3734.60 3947.00 3942.60 3729.60 3735.40 3948.90 3940.50

σδ 0.02 0.10 0.03 0.09 0.02 0.09 0.03 0.09

M 3942.20 4502.40 4196.20 4705.70 3808.70 4497.80 4202.50 4691.80

µ 3653.90 3083.00 3777.60 3271.70 3645.10 3107.20 3770.70 3277.80
M
µ 1.08 1.46 1.11 1.44 1.04 1.45 1.11 1.43
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N e = h
12 ,kD e = h

12 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 3179.13 3195.20 3356.80 3341.73 3194.73 3210.60 3357.20 3356.40

σδ 0.03 0.09 0.03 0.11 0.02 0.10 0.03 0.09

M 3309.20 3854.27 3566.53 3999.67 3297.20 3868.33 3563.13 4009.67

µ 2844.73 2678.87 3217.40 2428.33 3098.87 2641.20 3210.67 2795.73
M
µ 1.16 1.44 1.11 1.65 1.06 1.46 1.11 1.43

N e= h
6 ,kD e= h

6 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 2759.75 2779.05 2921.55 2809.85 2777.45 2776.20 2873.50 2785.95

σδ 0.03 0.09 0.02 0.14 0.01 0.09 0.05 0.14

M 2890.55 3331.05 3074.20 3470.30 2842.10 3329.40 3091.65 3465.05

µ 2460.95 2312.00 2785.45 2237.30 2715.45 2341.80 2391.60 2201.25
M
µ 1.17 1.44 1.10 1.55 1.05 1.42 1.29 1.57

N e = h
3 ,kD e = h

3 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 2123.90 2069.45 1968.73 2007.58 2164.08 2079.55 1990.08 2015.38

σδ 0.05 0.14 0.02 0.11 0.04 0.14 0.04 0.11

M 2238.93 2569.00 2013.00 2691.75 2247.65 2571.50 2168.85 2691.75

µ 1926.70 1637.10 1897.95 1735.13 1905.25 1598.30 1826.80 1697.95
M
µ 1.16 1.57 1.06 1.55 1.18 1.61 1.19 1.59

umax e = 0,kD e = 0,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0301 0.0304 0.0529 0.0529 0.0274 0.0274 0.0530 0.0529

σδ 0.27 0.28 0.05 0.08 0.62 0.63 0.05 0.08

M 0.0444 0.0468 0.0576 0.0613 0.0443 0.0472 0.0578 0.0614

µ 0.0099 0.0152 0.0472 0.0466 0.0331 0.0333 0.0472 0.0467
M
µ 4.49 3.09 1.22 1.32 1.34 1.42 1.23 1.31

umax e = h
12 ,kD e = h

12 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0259 0.0290 0.0506 0.0505 0.0258 0.0262 0.0507 0.0505

σδ 0.63 0.28 0.05 0.09 0.66 0.63 0.05 0.09

M 0.0420 0.0447 0.0552 0.0587 0.0420 0.0450 0.0550 0.0585

µ 0.0324 0.0133 0.0457 0.0409 0.0364 0.0315 0.0455 0.0428
M
µ 1.30 3.35 1.21 1.44 1.16 1.43 1.21 1.37

umax e = h
6 ,kD e = h

6 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0279 0.0275 0.0492 0.0477 0.0276 0.0279 0.0479 0.0475

σδ 0.23 0.28 0.04 0.10 0.25 0.26 0.05 0.11

M 0.0403 0.0427 0.0525 0.0562 0.0403 0.0427 0.0528 0.0559

µ 0.0162 0.0117 0.0445 0.0410 0.0116 0.0159 0.0422 0.0392
M
µ 2.49 3.64 1.18 1.37 3.46 2.69 1.25 1.43
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umax e = h
3 ,kD e = h

3 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0241 0.0245 0.0431 0.0433 0.0247 0.0248 0.0429 0.0432

σδ 0.24 0.28 0.04 0.06 0.22 0.30 0.04 0.07

M 0.0340 0.0373 0.0457 0.0502 0.0335 0.0397 0.0464 0.0502

µ 0.0117 0.0117 0.0388 0.0394 0.0116 0.0117 0.0394 0.0389
M
µ 2.90 3.19 1.18 1.27 2.89 3.39 1.18 1.29

umin e = 0,kD e = 0,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0301 0.0304 0.0529 0.0529 0.0274 0.0274 0.0530 0.0529

σδ 0.27 0.28 0.05 0.08 0.62 0.63 0.05 0.08

M 0.0444 0.0468 0.0576 0.0613 0.0443 0.0472 0.0578 0.0614

µ 0.0099 0.0152 0.0472 0.0466 0.0331 0.0333 0.0472 0.0467
M
µ 4.49 3.09 1.22 1.32 1.34 1.42 1.23 1.31

umin e= h
12 ,kD e= h

12 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0229 0.0258 0.0444 0.0443 0.0231 0.0231 0.0445 0.0442

σδ 0.65 0.28 0.05 0.10 0.64 0.65 0.05 0.10

M 0.0373 0.0398 0.0487 0.0520 0.0373 0.0400 0.0485 0.0518

µ 0.0311 0.0115 0.0398 0.0351 0.0308 0.0302 0.0395 0.0368
M
µ 1.20 3.47 1.22 1.48 1.21 1.32 1.23 1.41

umin e = h
6 ,kD e = h

6 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0216 0.0215 0.0372 0.0358 0.0216 0.0216 0.0361 0.0357

σδ 0.24 0.29 0.05 0.12 0.25 0.28 0.07 0.13

M 0.0315 0.0336 0.0401 0.0434 0.0314 0.0335 0.0405 0.0433

µ 0.0099 0.0089 0.0330 0.0298 0.0088 0.0100 0.0308 0.0284
M
µ 3.17 3.76 1.21 1.46 3.56 3.35 1.31 1.52

umin e = h
3 ,kD e = h

3 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0125 0.0129 0.0210 0.0212 0.0130 0.0134 0.0209 0.0211

σδ 0.26 0.33 0.07 0.10 0.23 0.34 0.07 0.10

M 0.0172 0.0213 0.0232 0.0263 0.0183 0.0225 0.0234 0.0263

µ 0.0059 0.0059 0.0178 0.0182 0.0059 0.0059 0.0181 0.0182
M
µ 2.90 3.61 1.30 1.45 3.10 3.78 1.29 1.45

φ e = h
12 ,kD e = h

12 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0032 0.0032 0.0062 0.0063 0.0035 0.0032 0.0062 0.0063

σδ 0.24 0.25 0.02 0.04 0.24 0.28 0.02 0.04

M 0.0047 0.0049 0.0065 0.0067 0.0055 0.0049 0.0065 0.0068

µ 0.0014 0.0019 0.0060 0.0058 0.0022 0.0013 0.0059 0.0060
M
µ 3.41 2.62 1.09 1.15 2.53 3.89 1.10 1.14
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φ e = h
6 ,kD e = h

6 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0062 0.0061 0.0120 0.0119 0.0060 0.0063 0.0119 0.0118

σδ 0.20 0.26 0.02 0.04 0.25 0.20 0.02 0.05

M 0.0088 0.0091 0.0123 0.0127 0.0088 0.0092 0.0123 0.0127

µ 0.0041 0.0028 0.0114 0.0112 0.0028 0.0047 0.0114 0.0108
M
µ 2.13 3.25 1.08 1.13 3.15 1.96 1.08 1.18

φ e = h
3 ,kD e = h

3 ,kR

P− κC-cD κC-cR κL-cD κL-cR κC-cD κC-cR κL-cD κL-cR

µν 0.0116 0.0115 0.0221 0.0221 0.0117 0.0115 0.0220 0.0221

σδ 0.23 0.24 0.02 0.03 0.23 0.25 0.02 0.03

M 0.0168 0.0164 0.0226 0.0238 0.0157 0.0172 0.0230 0.0239

µ 0.0058 0.0058 0.0210 0.0211 0.0057 0.0058 0.0211 0.0207
M
µ 2.90 2.84 1.08 1.13 2.77 2.98 1.09 1.15
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Figure A3. Cont.
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Figure A3. PDFs of the Normal force of the settlement in kN for porous analyses with deterministic
shape functions for the stochastic material variables. κL, κC stands for the linear and constant
distribution for κ respectively while cD, cR stands for the deterministic and random distribution for
c respectively and kR, kD stands for the random and deterministic distribution for k. Subplot (a–d)
stand for eccentricity 0, h

12 , h
6 , h

3 , respectively.
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Figure A4. Cont.
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Figure A4. PDFs of the maximum displacement in m for porous analyses with deterministic shape
functions for the stochastic material variables. κL, κC stands for the linear and constant distribution for
κ, respectively, while cD, cR stands for the deterministic and random distribution for c, respectively,
and kR, kD stands for the random and deterministic distribution for k. Subplot (a–d) stand for
eccentricity 0, h

12 , h
6 , h

3 , respectively.

Table A3. Monte Carlo results for the maximum stress kPa the normal force kN, the maximum and
minimum displacements m and the rotation of the foundation rad for porous analyses with random
field representation for the stochastic material variables. µν, σδ, M, µ stand for the mean value, the
coefficient of variation, the maximum and the minimum value of the output random vector. σmax, N,
umax, umin, φ denote the maximum footing settlement stress, the foundation axial force at failure, the
maximum failure displacement, the minimum failure displacement and the corresponding rotation
of the shallow foundation, respectively.

σmax e = 0 e = h
12

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 3605.40 3438.00 3615.30 4558.00 4387.50 4656.20

σδ 0.14 0.13 0.09 0.16 0.13 0.09

M 4533.70 4553.50 4125.90 5759.90 5882.40 5443.40

µ 2688.20 2709.30 3066.60 3151.10 3508.50 3939.90
M
µ 1.69 1.68 1.35 1.83 1.68 1.38

σmax e = h
6 e = h

3

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 5046.10 4810.60 5086.70 7349.00 7041.70 7373.40

σδ 0.16 0.14 0.13 0.12 0.11 0.08

M 6571.60 6144.30 6586.70 9164.40 8513.40 8461.50

µ 3811.90 3640.10 3900.90 5652.00 5841.40 6234.80
M
µ 1.72 1.69 1.69 1.62 1.46 1.36
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N e = 0 e = h
12

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 3605.40 3438.00 3615.30 3038.67 2925.00 3104.13

σδ 0.14 0.13 0.09 0.16 0.13 0.09

M 4533.70 4553.50 4125.90 3839.93 3921.60 3628.93

µ 2688.20 2709.30 3066.60 2100.73 2339.00 2626.60
M
µ 1.69 1.68 1.35 1.83 1.68 1.38

N e = h
6 e = h

3

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 2523.05 2405.30 2543.35 1837.25 1760.43 1843.35

σδ 0.16 0.14 0.13 0.12 0.11 0.08

M 3285.80 3072.15 3293.35 2291.10 2128.35 2115.38

µ 1905.95 1820.05 1950.45 1413.00 1460.35 1558.70
M
µ 1.72 1.69 1.69 1.62 1.46 1.36

umax e = 0 e = h
12

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 0.0641 0.0599 0.0628 0.0602 0.0566 0.0600

σδ 0.14 0.11 0.05 0.15 0.12 0.06

M 0.0788 0.0734 0.0705 0.0752 0.0713 0.0672

µ 0.0443 0.0486 0.0576 0.0414 0.0459 0.0551
M
µ 1.78 1.51 1.22 1.82 1.55 1.22

umax e = h
6 e = h

3

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 0.0553 0.0516 0.0546 0.0509 0.0469 0.0496

σδ 0.14 0.11 0.07 0.13 0.14 0.06

M 0.0721 0.0646 0.0622 0.0599 0.0597 0.0551

µ 0.0391 0.0426 0.0480 0.0328 0.0360 0.0433
M
µ 1.85 1.52 1.30 1.83 1.66 1.27

umin e = 0 e = h
12

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 0.0641 0.0599 0.0628 0.0532 0.0501 0.0532

σδ 0.14 0.11 0.05 0.15 0.11 0.06

M 0.0788 0.0734 0.0705 0.0664 0.0621 0.0598

µ 0.0443 0.0486 0.0576 0.0375 0.0412 0.0486
M
µ 1.78 1.51 1.22 1.77 1.51 1.23
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Table A3. Cont.

umin e = h
6 e = h

3

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 0.0422 0.0397 0.0421 0.0266 0.0249 0.0262

σδ 0.14 0.11 0.08 0.12 0.09 0.07

M 0.0553 0.0502 0.0489 0.0310 0.0298 0.0298

µ 0.0316 0.0322 0.0354 0.0197 0.0206 0.0236
M
µ 1.75 1.56 1.38 1.57 1.44 1.26

φ e = h
12 e = h

6

P− b = 2 m b = 4 m b = 8 m b = 2 m b = 4 m b = 8 m

µν 0.0071 0.0064 0.0068 0.0131 0.0119 0.0126

σδ 0.17 0.20 0.06 0.18 0.21 0.06

M 0.0089 0.0093 0.0074 0.0169 0.0169 0.0140

µ 0.0040 0.0047 0.0059 0.0074 0.0087 0.0110
M
µ 2.24 1.98 1.25 2.28 1.95 1.28

φ e = h
3

P− b = 2 m b = 4 m b = 8 m

µν 0.0243 0.0220 0.0234

σδ 0.18 0.23 0.07

M 0.0312 0.0325 0.0260

µ 0.0131 0.0153 0.0190
M
µ 2.39 2.13 1.37
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Figure A5. Cont.
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Figure A5. PDFs of the Normal force of the settlement in kN for porous analyses with random field
representation for the stochastic material variables. κRF2 , κRF4 , κRF8 stands for correlation length b = 2,
4, 8 for κ respectively whilst cRF2 , cRF4 , cRF8 stands for correlation length b = 2, 4, 8 for c respectively
and kRF2 , kRF4 , kRF8 stands for correlation length b = 2, 4, 8 for k. Subplot (a–d) stand for eccentricity
0, h

12 , h
6 , h

3 , respectively.
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Figure A6. Cont.
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Figure A6. PDFs of the maximum displacement in m for porous analyses with random field repre-
sentation for the stochastic material variables. κRF2 , κRF4 , κRF8 stands for correlation length b = 2, 4, 8
for κ, respectively, whilst cRF2 , cRF4 , cRF8 stands for correlation length b = 2, 4, 8 for c, respectively,
and kRF2 , kRF4 , kRF8 stands for correlation length b = 2, 4, 8 for k. Subplot (a–d) stand for eccentricity
0, h

12 , h
6 , h

3 , respectively.
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Figure A7. Histograms of monitored output variables and the normal distribution fitting for 3
randomly selected analyses. (a) Porous analysis with constant distribution for κ, random distribution
for c and k with e = 0 and monitored output variable the Normal force; (b) porous analysis of
eccentricity e = h

6 with random field representations for all stochastic material variables and b = 2
m and monitored output variables of the maximum failure displacement. (c) Porous analysis with
linear distribution for κ, random distribution for c and k with e = h

3 and monitored output variable
the maximum settlement stress in kPa.
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Table A4. Kolmogorov–Smirnov test results for the Monte Carlo simulations of Figure A7.

Figure A7a Figure A7b Figure A7c Critical

Largest Absolute Difference 0.0821 0.0972 0.1121 0.13851
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