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Abstract: Numerous studies have been reported in the published literature on analytical solutions for
a vertically loaded pile installed in a homogeneous single soil layer. However, piles are rarely installed
in an ideal homogeneous single soil layer. This study presents an analytical model based on the energy-
based approach to obtain displacements in an axially loaded pile embedded in multi-layered soil
considering soil non-linearity. The developed analytical model incorporating Euler-Bernoulli beam
theory proved to be an effective way in estimating the load-displacement responses of piles embedded
in multi-layered non-linear elastic soil strata. The differential equations are solved analytically and
numerically using the variational principle of mechanics. A parametric study investigated the effect
of explicit incorporation of soil properties and layering in order to understand the importance of
predicting appropriate pile displacement responses in linear elastic soil system. It is clear from the
results that the analyses which consider the soil as a single homogeneous layer will not be able to
produce an accurate estimation of the pile stiffnesses. Therefore, it is highly important to account for
the effect of soil layering and the non-linear response. The pile displacement response is obtained
using the software MATLAB R2019a and the results from the energy-based method are compared
with those obtained from the field test data as well as the Finite Element Analysis (FEA) based on
the software ANSYS 2019R3. The non-linear elastic constitutive relationship which described the
variation of secant shear modulus with strain through a power law has shown reasonably accurate
predictions when compared to the published field test data and the FEA. The developed mathematical
framework is also more computationally efficient than the three-dimensional (3D) FEA.

Keywords: piles; multi-layered soil; soil non-linearity; analytical solutions; vertical (axial) load; pile
displacement; MATLAB R2019a; ANSYS 2019R3

1. Introduction

Many studies are available in the literature that explains the pile deformation response
under different loading conditions with the pile embedded in multi-layered soil, which treat
the soil as linear elastic. However, for practical applications in the real world, it is important
to study the response of the non-linear behavior of the soil and the variation of soil stiffness
based on its strain levels. A discretized continuum approach (numerical method) or the
energy-based method is preferred over the beam-on-elastic foundation approach since the
approach considers the surrounding soil behavior in three dimensions: vertical, radial and
circumferential directions. Several researchers estimated the pile deformations based on the
energy-based method [1–7]. There are many numerical methods available in the published
literature with various pile geometry and constitutive models using the Finite Element
Method (FEM) [8–13], the Finite Difference Method (FDM) [8,14–18] and the Boundary
Element Method (BEM) [3,4,19–22]. The present study is based on the FDM since it yields
results faster when compared to the FEM.
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1.1. Linear Elastic Soil Model

An analytical solution based on the energy-based method was used by several re-
searchers [8,16,23–28] to estimate laterally loaded and axially loaded pile deformation
for linear elastic soil. Independent functions describing the soil displacement have been
used; these functions vary in vertical, radial and circumferential directions. The linear
elastic analysis has been developed by employing variational principles and minimization
of energy, called Hamilton’s principle, to derive the governing equation and boundary
conditions. Hamilton’s equation can be expressed as∫ t2

t1

(δT − δU)dt +
∫ t2

t1

δW dt (1)

where T and U are the kinetic and potential energies of the pile and soil; W is the work
done by the applied load; and t1 and t2 are the initial and final times of loading [29].

The governing equations for pile deflection are obtained by minimizing kinetic and
potential energies. These governing equations can be solved either numerically or analyt-
ically for a given set of boundary conditions. Each of the displacement components are
expressed as a multiplication of one-dimensional functions when minimizing the energy to
obtain a set of one-dimensional equation. These equations are solved numerically using
the finite difference technique. In these studies, the soil is treated as linear elastic where the
shear modulus G and the Lame’s constant λ are treated as constants for all the layers [30].

1.2. Constitutive Model for Non-Linear Soil Behavior

In order to consider the non-linear effect of soil, the soil moduli G and λ are assumed to
vary in radial, circumferential and vertical directions according to the strain levels [7]. The
strain decay with increasing distances in the radial direction is accompanied by an increase
in soil stiffness G. In other words, soil stiffness degrades with increasing strain and hence
it varies in both radial and vertical directions. The analysis of the soil behavior using
a single constitutive model is very idealistic since the undrained strength of soil depends
on a number of factors such as the soil anisotropy, failure mode, strain rate, stress paths
and the mode of loading effects of stress–strain non-linearity which make the undrained
strength dependent on the test type [31,32]. Consideration of the non-linear soil behavior
will be more realistic in the analysis of pile displacement response. For piles subjected to
external loads, the decay of the soil stiffness varies with strain which in turn depends on
the type of the soil. The stiffness of soil was high at a very small strain level and decreases
with the increase in the strain [33]. Many researchers [34–39] conducted triaxial tests and
reported high values of soil stiffness when the shear strains are less than 10−5. Several
factors including the mean effective stress, void ratio, stress history, rate of loading, soil
plasticity for silts and clays, stress anisotropy for sands and the effective confining stress
affect the small strain stiffness Gmax [40–43]. The decay of the soil stiffness with the increase
of strain levels can be defined using the power law [44–46].

1.3. Research Significance

The non-linear responses of piles subjected to external loading conditions are analyzed
using the 3D Finite Element (FE) software packages with inbuilt constitutive soil models
based on the theory of elasticity and plasticity which are beneficial when determining the
ultimate load capacity. However, such models might not be necessary for analyzing the pile
head displacements as non-linear elastic models may be sufficient to predict considerably
accurate and faster pile responses. Therefore, an analytical model has been developed
based on the energy-based approach to predict the load-displacement responses of the piles
embedded in multi-layered soil strata subjected to static axial loads. The non-linear elastic
constitutive relationship which described the variation of secant shear modulus with strain
through a power law (proposed by Gunn [46]) has shown reasonably accurate predictions
when compared to the published field test data and the FEA.
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2. Problem Definition

The present study is based on an energy-based approach (simplified continuum model)
to study the displacement profile of an axially loaded pile in multi-layered soil strata
considering the soil’s non-linear elastic behavior. A mathematical framework is developed
that considers the soil as a 3D elastic continuum and the pile is modeled following the
elastic Euler-Bernoulli beam theory. The differential equations governing the soil and pile
displacements have been obtained utilizing the principle of minimum potential energy
assuming rational soil displacement functions. An iterative algorithm is adopted that solves
the differential equations analytically and numerically. The study investigates the effect of
explicit incorporation of soil properties and layering in order to understand the importance
of predicting appropriate pile displacement responses in linear elastic soil system. The
responses indicated that the effect of soil layers and their thicknesses, pile properties and
the variation in soil moduli have a direct impact on the displacements of piles subjected to
axial loading. Hence, proper emphasis has to be given to account for the soil non-linearity.

An axially loaded pile in an isotropic non-linear elastic multi-layered soil medium
is shown in Figure 1. This study considers a pile of length L with circular cross section
of radius r0. The pile is embedded in n horizontal soil layers and is subjected to an axial
(vertical) load Pt. The horizontal soil layers extend to infinity in the radial direction and the
bottom nth layer extends to infinity in the vertical direction.
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Figure 1. An axially loaded pile in an isotropic non-linear elastic medium.

The terms H1, H2, H3 . . . Hn−1 denote the vertical height from the ground surface to
the bottom of any layer i. Therefore, the thickness of any layer i is Hi–Hi−1 with H0 = 0.
Due to the axisymmetric problem behavior, a system of cylindrical coordinates (r-θ-z) is
chosen with the origin coinciding with the center of the pile cross section at the pile head
and the z axis coinciding with the pile axis. The pile head is considered to be free and the
tip of the pile is clamped. Another important assumption to be noted is that there is no
slippage or separation between the pile and the surrounding soil and between soil layers.
The stresses and the displacement within a soil continuum are shown below in Figure 2a,b.
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The goal of the analysis is to obtain pile head deflection caused by the action of the
vertical load at the pile head.

2.1. Basic Assumptions

For an axially loaded pile, the horizontal and tangential displacements can be neglected
as they are accompanied by very small strains [47]. For the case of a pile with circular cross-
section, there are two functions to be considered: v(z), which will represent the vertical
displacement at depth z and the dimensionless functions φ(r), describing the variation of
soil displacements in the radial direction.

The vertical displacement at any point of the soil is represented as a function in (r, z):

vr = 0 (2)

vθ = 0 (3)

vz(r, z) = φ(r) v(z) (4)

For a given uniform cross-sectional area of the pile along the length, φ(r) = 1 when
r = 0 to r0, whereas φ(r) = 0 when r→∞. This explains the decay of the function φ(r) with
an increase in the radial direction.
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2.2. Governing Differential Equation

The pile and its surrounding elastic medium are subjected to a vertical displacement
of the pile soil system when it is acted upon by a vertical load. The total potential energy
of the pile and the soil is a summation of internal potential energy and external potential
energy [8], which is given as:

Π =
1
2

Ep Ap

∫ L

0

(
φ

dv
dz

)2
+

1
2

∫ L

0

∫ 2π

0

∫ ∞

r0

σijεijrdrdθ +
1
2

∫ ∞

L

∫ 2π

0

∫ ∞

0
σijεijrdr− vPt at z=0 (5)

where Ep denotes the elastic Young modulus of the pile, Ap denotes the cross-section of the
pile, v represents the vertical displacement, Pt is the vertical load and σij, εij are stress and
strain components, respectively. The first term of the equation represents potential pile
energy, the second and third terms are potential energy from the surrounding soil and the
soil below the pile, respectively.

The soil non-linearity is considered by varying the soil elastic parameters (G and λ) at
each discretized nodal point in the soil domain. The stress–strain and strain–displacement
relationships at any given nodal point in the soil medium are idealized by the following
relationships. The stress–strain relationship is expressed as:

σr
σθ

σz
τrθ

τrz
τθz

 =



λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
λ λ λ + 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G





εr
εθ

εz
γrθ

γrz
γθz

. (6)

where G and λ are the elastic constants of the soil. The strain–displacement relationship is
given by:



εr
εθ

εz
γrθ

γrz
γθz

 =



− ∂ur
∂r

− ur
r −

1
r

∂uθ
∂θ

− ∂uz
∂z

− 1
r

∂ur
∂θ −

∂uθ
∂r + uθ

r

− ∂uz
∂r −

∂ur
∂z

− 1
r

∂uz
∂θ −

∂uθ
∂z


=



0
0

−φ(r) dv(z)
dz

0
−v(z) dφ(r)

dr
0


(7)

By substituting Equation (7) into Equation (6), the strain energy density function
W =

σijεij
2 is obtained, where the summation implies the repetition of the indices i and j as

required in indicial notation:

1
2

σij εij =
1
2

[
(λ + 2G)

(
φ

dv
dz

)2
+ G

(
v

dφ

dr

)2
]

(8)

Substituting Equation (8) into Equation (5) and integrating with respect to θ, the
potential energy equation becomes:

Π = 1
2 Ep Ap

∫ L
0

(
φ dv

dz

)2
dz

+π
∫ L

0

∫ ∞
r0

(
(λ + 2G)

(
φ dv

dz

)2
+ G

(
v dφ

dr

)2
)

rdrdz

+π
∫ ∞

L

∫ ∞
0

(
(λ + 2G)

(
φ dv

dz

)2
+ G

(
v dφ

dr

)2
)

rdrdz− vPt at z=0

(9)

The variational principle has been used to calculate the potential energy δU and the
external energy δW [48,49]. As a result, the governing equations of the pile-soil system
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are obtained by minimizing the potential energy of soil and pile. The expression of poten-
tial energy contains different functions, such as v(z), φ(r), dv(z)/dz and dφ(r)/dr, and so
minimizing the potential energy gives:

δΠ =

[
A(v)δv + B(v)δ

(
dv
dz

)]
+ [C(φ)δφ] (10)

where A, B and C are the terms associated with variations δv, δ (dv/dz) and δφ
The variation of Equation (9) becomes

δΠ = 1
2 Ep Ap

∫ L
0 φ dv

dz δφ dv
dz dz

+π
∫ L

0

∫ ∞
r0

(
(λ + 2G)

(
φ dv

dz δφ dv
dz

)
+ G

(
v dφ

dr δv dφ
dr

))
rdrdz

+π
∫ ∞

L

∫ ∞
0

(
(λ + 2G)

(
φ dv

dz δφ dv
dz

)
+ G

(
v dφ

dr δv dφ
dr

))
rdrdz− vPt at z=0

(11)

2.3. Output Parameters

(i.) Pile Displacement

The governing equation of the pile is obtained for 0 < z < L by collecting terms
associated with δvdz, δ(dv/dz) dz and its derivative, δv and δ(dv/dz)dz 6= 0. The governing
equation is obtained as follows:

k
d2v
dz2 + C

dv
dz

+ mv = 0 (12)

where
C = 2π

∫ ∞

r0

r
[
(λ + 2G)φ2

]
dr (13)

k = Ep Ip + 2π
∫ ∞

r0

r
[
(λ + 2G)φ2

]
dr (14)

m = −2π
∫ ∞

r0

rG
(

dφ

dr

)2
dr (15)

For this study, the tip of a pile is assumed to be clamped, which means that the
displacement and the curvature are equal to zero at the base of the pile. The boundary
conditions are obtained by collecting δv and δ(dv/dz). At the head of the pile (z = 0):

− Ep Ap − 2π
∫ ∞

r0

[
λ + G

(
2 + φ2

)]
dr

dv
dz

+ Pt = 0 (16)

The displacement at the tip of the pile (z = L):

v = 0 (17)

The second order differential Equation (12) can be solved using a central finite differ-
ence scheme. Equation (12) becomes

k
(

vi−1 − 2vi + vi+1

∆z2

)
+ C

(
vi−1 + vi+1

∆z

)
+ mvi = 0 (18)

where i denotes the ith node in z direction, and ∆z is the distance between two nodes. This
discretized analysis is then solved using the software MATLAB R2019a.

(ii.) Soil Displacement
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The governing equation of the soil is obtained for r0 ≤ r ≤ ∞ by collecting terms
associated with δφdr:

r
d2φ

dr2 + γ1
dφ

dr
+ γ2φ = 0 (19)

where

γ1 =

∫ L
0 G + rG∫ L

0 G
(20)

γ2 =
−
∫ L

0 (λ + rG)
(

dv
dz

)2

∫ L
0 Gv2

(21)

Note that the dimensionless parameter γ, defined in the above equation, describes the
function φ. Similar to the solution of Equation (12) by the central finite difference scheme,
the governing differential Equation (19) is also solved using the FDM (using the software
MATLAB R2019a).

2.4. Soil Non-Linearity

The variation of the shear stress with strain can be described using two parameters A
and n that have been obtained experimentally using a pressuremeter test as shown in the
equation below:

q = A
(
εq
)n (22)

where q represents the equivalent shear stress and εq is the deviator shear strain. Atkin-
son [33] shows that the decay curves of the soil stiffness with strain can be divided into three
regions as shown in Figure 4. The first region in Figure 4 represents the very small strain
where the stiffness, G0 is constant, the second region comprising small strains starts from
ε0 until ε = 0.1% and the third region exceeds ε = 0.1%, which is indicative of large strains.
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In the second region, the stiffness decays rapidly and in the third region with large
strain levels, the stiffness is the smallest, which concludes that the soil stiffness is high at
the small strain and decreases with the large strain [33]. Figure 5 shows the degradation of
soil stiffness with increasing strains for different clay types.
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The present study assumes decay of soil stiffness with strain using a power law to
describe the stress–strain behavior of soil [44,46]:

G = G0

(
εq

εq0

)n
(23)

G = a εn
q (24)

where a = G0
εn

q0
is a constant determined empirically; n describes soil nonlinearity which is

equal to (−0.5) according to the experimental data analyzed by Osman et al. [39] (Figure 6);

εq =

√
2
9

[
(εrr − εθθ)

2 + (εθθ − εzz)
2 + (εzz − εrr)

2
]
+ 4

3
(
ε2

rθ + ε2
θz + ε2

zr
)

represents the de-

viatoric strain; and εq0 is the maximum deviatoric strain with linear elastic behavior which
is equal to 10−5. The soil stiffness G is estimated by calculating the strain at each location
followed by the power law.
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3. Iterative Solution Methodology

The pile deflection equation can be solved when the soil and geometry related pa-
rameters k, C and m are known; however, these parameters depend on the unknown
dimensionless soil function φ, which can be estimated by calculating γ1 and γ2. Soil dis-
placement is obtained when the initial numbers of these values γ1 and γ2, are inserted into
Equation (19), from which the parameters k, C and m are obtained as a result of the pile
displacement. New values of γ1 and γ2 (Equations (20) and (21)) are determined and then
inserted into Equation (19) to evaluate φ then v; therefore, an iteration technique is needed
to obtain the condition γold−γnew

γold
< 0.001. This iterative solution methodology (Figure 7) is

used as input to the software MATLAB R2019a to obtain the pile head displacements.

Geotechnics 2022, 2, FOR PEER REVIEW  10 
 

 

 
Figure 7. Flowchart depicting the iterative solution procedure (Adapted from Fidel [30] after Basu 
et al. [7]). 

4. Results 
4.1. Effect of Explicit Incorporation of Soil Characteristics and Layering 

A parametric study was performed in order to study the effect of explicit incorpora-
tion of soil characteristics and layering to predict appropriate pile displacement responses 
in linear elastic soil system using the proposed energy-based method. The study is per-
formed in terms of normalized pile head stiffness,   in which D (=2r0) is the diam-

eter of the pile. Evaluations were made for the cases of two and three-layered soil strata 
with different pile and soil parameters as shown in Table 1. 

Table 1. Pile and soil parameters for understanding the effect of explicit incorporation. 

S. No. Soil and Pile Parameters Heights of Soil Lay-
ers, Hi (m) 

Shear Moduli, G0 (MPa) 

Case 1 

(a) 
L; D = 2r0; Ep; Pt 

Ep/G02= 1000 
L/D = 25 

Two-layer soil system, 
H1 = 0 to L 

G01/G02 = 0.2; 
G01/G02 = 0.5; 
G01/G02 = 1; 
G01/G02 = 2; 
G01/G02 = 5 

(b) L; D = 2r0; Ep; Pt  
L/D = 25 

Two-layer soil system, 
H1 = H2 = 0.5 L 

G01/G02 = 0.2; 
G01/G02 = 0.5; 
G01/G02 = 1; 
G01/G02 = 2; 
G01/G02 = 5 

Figure 7. Flowchart depicting the iterative solution procedure (Adapted from Fidel [30] after Basu et al. [7]).

4. Results
4.1. Effect of Explicit Incorporation of Soil Characteristics and Layering

A parametric study was performed in order to study the effect of explicit incorporation
of soil characteristics and layering to predict appropriate pile displacement responses in
linear elastic soil system using the proposed energy-based method. The study is performed
in terms of normalized pile head stiffness, Pt

vz=0 EpD in which D (=2r0) is the diameter of the
pile. Evaluations were made for the cases of two and three-layered soil strata with different
pile and soil parameters as shown in Table 1.
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Table 1. Pile and soil parameters for understanding the effect of explicit incorporation.

S. No. Soil and Pile Parameters Heights of Soil Layers, Hi (m) Shear Moduli, G0 (MPa)

Case 1

(a) L; D = 2r0; Ep; Pt Ep/G02 = 1000
L/D = 25 Two-layer soil system, H1 = 0 to L

G01/G02 = 0.2;
G01/G02 = 0.5;
G01/G02 = 1;
G01/G02 = 2;
G01/G02 = 5

(b) L; D = 2r0; Ep; Pt
L/D = 25

Two-layer soil system,
H1 = H2 = 0.5 L

G01/G02 = 0.2;
G01/G02 = 0.5;
G01/G02 = 1;
G01/G02 = 2;
G01/G02 = 5

Case 2

(a) L; D = 2r0; Ep; Pt Ep/G = 1000
L/D = 25

Three-layer soil system,
H1 = H2 = H3 = L/3

G01 = G;
G02 = 2G01;
G03 = 4G01

(b) L; D = 2r0; Ep; Pt Ep/G = 1000
L/D = 25

Three-layer soil system,
H1 = H2 = H3 = L/3

G01 = 2G02;
G02 = G;

G03 = 4G02

(c)
L; D = 2r0; Ep; Pt

Ep/G = 1000
L/D = 25

Three-layer soil system,
H1 = H2 = H3 = L/3

G01 = 4 G03;
G02 = 2 G03;

G03 = G

Two-layer soil system
The two-layered deposits included two different cases (Case (a) and Case (b)) with

results obtained for five different soil modulus ratios: G01/G02 = 0.2, 0.5, 1, 2 and 5 and
varying soil layer thicknesses (refer to Table 1). Figure 8a,b show the variation of the
normalized pile head stiffness as a function of h/L (with and Ep/G02 = 1000) and Ep/G02
(with h = 0.5 L) when the pile slenderness ratio L/D = 25.

Geotechnics 2022, 2, FOR PEER REVIEW  11 
 

 

Case 2 

(a) 
L; D = 2r0; Ep; Pt 

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = G; 
G02 = 2G01; 
G03 = 4G01 

(b) 
L; D = 2r0; Ep; Pt 

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = 2G02; 
G02 = G; 

G03 = 4G02 

(c) 
L; D = 2r0; Ep; Pt  

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = 4 G03; 
G02 = 2 G03; 

G03 = G 

Two-layer soil system 
The two-layered deposits included two different cases (Case (a) and Case (b)) with 

results obtained for five different soil modulus ratios: G01/G02 = 0.2, 0.5, 1, 2 and 5 and 
varying soil layer thicknesses (refer to Table 1). Figure 8a,b show the variation of the nor-
malized pile head stiffness as a function of h/L (with and Ep/G02 = 1000) and Ep/G02 (with h 
= 0.5 L) when the pile slenderness ratio L/D = 25. 

 
(a) 

 
(b) 

Figure 8. Cont.



Geotechnics 2022, 2 559

Geotechnics 2022, 2, FOR PEER REVIEW  11 
 

 

Case 2 

(a) 
L; D = 2r0; Ep; Pt 

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = G; 
G02 = 2G01; 
G03 = 4G01 

(b) 
L; D = 2r0; Ep; Pt 

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = 2G02; 
G02 = G; 

G03 = 4G02 

(c) 
L; D = 2r0; Ep; Pt  

Ep/G= 1000 
L/D = 25 

Three-layer soil sys-
tem, H1 = H2 = H3 = L/3 

G01 = 4 G03; 
G02 = 2 G03; 

G03 = G 

Two-layer soil system 
The two-layered deposits included two different cases (Case (a) and Case (b)) with 

results obtained for five different soil modulus ratios: G01/G02 = 0.2, 0.5, 1, 2 and 5 and 
varying soil layer thicknesses (refer to Table 1). Figure 8a,b show the variation of the nor-
malized pile head stiffness as a function of h/L (with and Ep/G02 = 1000) and Ep/G02 (with h 
= 0.5 L) when the pile slenderness ratio L/D = 25. 

 
(a) 

 
(b) 

Figure 8. (a) Normalized pile head stiffness versus h/L (with and Ep/G02 = 1000) and (b) Normalized
pile head stiffness versus Ep/G02 (with h = 0.5 L).

Three-layer soil system
The three-layer soil deposits included three different cases with the same thickness

(L/3) but different equivalent shear modulus G, such that the average value Gavg = G01 +
G02 + G03/3 remains the same for all the cases. Case (a) has a variation of shear modulus
increasing with depth with the smallest value observed for uppermost layers representing
the case of end-bearing piles. Case (b) represents a profile with an intermediate weak layer.
Case (c) has the shear modulus decreasing with depth with the largest value observed
for the uppermost layer representing friction piles. Figure 9a shows the variation of
the normalized pile head stiffness as a function of the pile slenderness ratio L/D with
Ep/G = 1000 (for all the three cases) and Figure 9b shows the variation of the normalized
pile head stiffness as a function of Ep/G with L/D = 25 (for all the three cases).
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Figure 9. (a) Normalized pile head stiffness as a function of the pile slenderness ratio L/D with
Ep/G =1000 (for all the three cases). (b) Normalized pile head stiffness as a function of Ep/G with
L/D = 25 (for all the three cases).

Results indicate that the normalized pile head stiffness decreases with the value of
slenderness ratio L/D for end-bearing piles and increases for friction piles. The difference in
the observed normalized pile stiffness becomes smaller as the soil becomes weaker (i.e., as
Ep/G becomes larger) and when the soil becomes extremely weak, there is no difference
observed in the normalized pile head stiffness for all the cases. It is clear from the results
that the analyses which consider the soil as a single layer will not be able to produce
an accurate estimation of the pile stiffnesses. Therefore, it is highly important to account
for the effect of soil layering and the non-linear response.

4.2. Accuracy of the Model Considering the Soil Non-Linearity

(a). Energy-based Method versus the field test data

“Full-scale load tests on instrumented micropiles”: Russo [51]
The present study makes a comparison of Russo’s field test data to validate the

superiority of the energy-based method for non-linear elastic soil over the linear elastic
solution of Salgado et al. [47]. Russo [51] outlined the case history of micropiles used
for underpinning a historical building in Naples, Italy. A micropile is a type of drilled
shaft with a diameter in the range of 75 to 300 mm [52]. A load test was carried out on
a micropile, 0.2 m in diameter and 19 m in length with an elastic modulus of 27 GPa, as
shown in Figure 10. The pile and soil characteristics used in the present study are adopted
from the published literature by Seo and Prezzi [27].
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Figure 10. The soil profile and elastic properties of each layer (adapted from Russo [51]).

The soil characteristics are given in Table 2.

Table 2. Soil characteristics.

Soil
Characteristics

Soil Thickness
(m)

Young’s Modulus,
E (MPa)

Shear Modulus,
G0 (MPa) Poisson’s Ratio

Layer 1 12 50 35 0.3
Layer 2 9 117 18 0.3

The power law equation (Equation (24)) is used to model the soil stiffness as a function
of strain to account for soil non-linearity. In Equation (24), a = G0

εqn
0

is a constant value and
the value of G0 for each layer is taken as reported from Table 1, where εqdonates deviatoric
strain, εq0 is the maximum deviatoric strain with linear elastic behavior which is equal to
10−5 and n represents a constant. The present study uses the published data for n = −0.5
proposed by Osman et al. [39].

A series of axial loads were applied to the pile head to obtain the corresponding
vertical displacements. Figure 11 compares the pile displacements from the energy-based
method with the field data and the linear elastic solution.
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The predicted pile displacements in the present study are in good agreement with
the field data. It can be seen that the pile displacements from the present study and the
published field data are greater than the computed values based on the linear elastic soil
solution when the axial load in the pile exceeds 300 kN.

“An instrumented driven pile in Dublin boulder clay”: Farrell et al. [53]
Farrell et al. [54] conducted field experiments with an instrumented tubular steel pile

driven into Dublin boulder clay (DBC). A steel closed-end tubular driven pile, 0.273 m in
diameter, 10 mm (0.01 m) in thickness and 7.5 m in length, was embedded in the boulder
clay (Figure 12). A flat 20 mm (0.02 m) thick, 0.273 m diameter steel disc was used to
close the pile base. The area’s geotechnical characteristics were investigated by various
researchers [54–57]. A detailed description of the geology at the test site is given by Skipper
et al. [54], whereas a brief summary is given by Long and Menkiti [55]. The geology of the
area as investigated by (Long and Menkiti [55]) classifies the soil layers into four categories:
Upper Brown Boulder Clay (UBrBC), Upper Black Dublin Boulder Clay (UBkBC), Lower
Brown Dublin Boulder Clay (LBrBC) and Lower Black Dublin Boulder Clay. Long and
Menkiti [55] reported G0 = 98 MPa for the first layer and G0 = 83 MPa for the second layer.
A single ‘operational’ value of Eu = 100 MPa is used, as derived from field observations
(Farrell et al. [58]).
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Figure 12. Pile Profile at TCD in Dublin.

The degradations of soil stiffness for UBrBC and UBkBC based on the present study are
shown in Figure 13a,b, respectively. The initial soil stiffness used in the calculations is based
on Long’s [55] study, and was also calculated using the power law relation in Equation (24).
The present study uses the published data for n = −0.5 proposed by Osman et al. [39]. This
value is in good agreement with published values for clay by Long and Menkiti [55].
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Figure 13. (a) Variation of soil stiffness with strains for Upper Brown Boulder Clay. (b) Variation 
of soil stiffness with strains for Upper Black Boulder Clay. 

A series of axial loads were applied to the pile in order to obtain the pile-soil defor-
mation. The field test results are then compared with the analytical solutions from the 
energy-based approach. Figure 14 shows axial load versus observed and predicted pile 
head deformations. 

 
Figure 14. Response of the axially loaded pile head versus the axial load. 

Figure 13. (a) Variation of soil stiffness with strains for Upper Brown Boulder Clay. (b) Variation of
soil stiffness with strains for Upper Black Boulder Clay.

A series of axial loads were applied to the pile in order to obtain the pile-soil defor-
mation. The field test results are then compared with the analytical solutions from the
energy-based approach. Figure 14 shows axial load versus observed and predicted pile
head deformations.
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Figure 14. Response of the axially loaded pile head versus the axial load.

Figure 14 shows that the energy-based method predicts the pile head displacements,
which are in good agreement with the field measurements.

(b). Energy-based Method versus FEA

A FEA was conducted using the software ANSYS Workbench 2019 R3 for the Soil-Pile
problem as discussed in the above section [54]. A static structural analysis was chosen and
the input data for the soil characteristics was taken from Long and Menkiti [55]. The pile
characteristics were added according to the steel pile used by Farrell et al. [53]. The soil
non-linearity was considered based on the actual soil stress–strain curves reported by Long
and Menkiti [55] for each soil layer (as shown in Figure 15a,b).
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Figure 15. (a) Input stress–strain relationship curve of soil layer 1 for the software ANSYS. (b) Input
stress–strain relationship curve of soil layer 2 for the software ANSYS.

The boundary conditions for the pile included a free head and fixed tip in order
to replicate the assumption adopted in the proposed energy-based method. The soil
block’s length was chosen as 15 times the pile diameter (15D) [30] and the depth was
according to the depth of each soil layer. The soil block was fixed at the bottom and free
on the surroundings. The interactions between the soil (contact element) and the pile
(target element) have been defined manually to establish proper contact regions [59]. The
discretized finite element model with a coarse mesh of 6978 nodes and 2039 elements is
shown in Figure 16. A Directional Deformation along the Z-axis is used to calculate the
displacements of pile head for the respective force applied.
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5. Discussions 

Figure 16. A mesh representation of the FEM Model (ANSYS 2019 R3).

Figure 17 compares the pile head displacements obtained by the energy-based method
and the FEM Analysis. Both the methods underestimate the pile head displacements when
compared to the field measured values. However, the displacements obtained by the
energy-based method are in good agreement up to 20 kN. On the other hand, the FEA
gives displacements close to field measured values only up to 10 kN and beyond, where
the displacements appear to be smaller. Such an observation could be associated with poor
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quality meshes or improper surface interactions between the soil and pile model. More
refined models may be necessary for future validations.
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5. Discussions

Several researchers have studied the pile responses using numerical methods including
BEM, FEM and FDM. Although the FEM using appropriate soil constitutive relationship,
elements and domains for the soil and pile gives realistic results, the method requires
enormous computation time and the resources required for such an analysis stands out as
a major limitation. This gives rise to the need for a more efficient method which has both the
strength of a rigorous three-dimensional non-linear approach for the pile-soil interaction
and potentials for obtaining a faster computational effort. The present study presents an
analytical solution based on an energy method (discretized continuum approach) to predict
pile-soil displacements, where the soil is assumed to be non-linear elastic (soil parameters
vary in radial, tangential and vertical directions). The analysis was conducted on an axially
(vertical) loaded pile embedded in multi-layered soil. Governing equations for pile and
soil have been obtained by applying the variational principle to the potential energy which
are then solved using the software MATLAB R2019a. The soil nonlinearity is considered
using non-linear constitutive relationships expressed in the form of a power law and a
hyperbolic equation applicable to undrained clay deposits where the degradation of secant
shear modulus is expressed as a function of the induced strain in soil. Comparisons have
been made with the published field data and the FEM. It is observed that the energy-based
method described in this study is in good agreement with the field data when compared to
the linear elastic solution that does not consider the soil non-linearity. The FEA has been
carried out using the software ANSYS Workbench 2019R3 in which the soil non-linearity
is considered by inserting the stress–strain curves of each soil layer available from the
published literature. It is observed that the results obtained from the energy-based method
are in good agreement with the field measured values and those obtained from the FEA.

6. Conclusions

• An analytical model has been developed based on the energy-based approach to
predict the load-displacement responses of the piles embedded in multi-layered soil
strata subjected to static loading conditions.

• The analytical technique included the pile conventionally modeled as a Euler-Bernoulli
beam and the soil as a 3D continuum considering the effect of non-linearity through
constitutive relationships (describes the variation of secant modulus with strain).
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• The differential equations are solved analytically and numerically using the varia-
tional principle of mechanics. A parametric study investigated the effect of explicit
incorporation of soil properties and layering in order to understand the importance
of predicting appropriate pile displacement responses in linear elastic soil system.
Results indicate that the normalized pile head stiffness decreases with the value of
slenderness ratio L/D for end-bearing piles and increases for friction piles. The differ-
ence in the observed normalized pile stiffness becomes smaller as the soil becomes
weaker (i.e., as Ep/G becomes larger) and when the soil becomes extremely weak, there
is no difference observed in the normalized pile head stiffness for all the cases. It is
clear from the results that the analyses which consider the soil as a single layer will
not be able to produce an accurate estimation of the pile stiffnesses. Therefore, it is
highly important to account for the effect of soil layering and the non-linear response.

• The present energy-based method considering the non-linear response of the soil gives
a good approximation of the field data when compared to the linear elastic solution
and the FEA.

• The developed mathematical framework is also more computationally efficient than
the 3D FEA.

7. Limitations and Recommendations for Future Work

• The main goal of this study is to extend the same approach to laterally loaded piles
and to the combined action of lateral and axial loading on the pile.

• The non-linear analysis framework should be extended to include different constitutive
soil models such as the elastic-plastic model especially for piles in sandy soil deposits.

• The proposed analytical models of the present study are subjected to static loads and
can be extended to the effect of dynamic loading.

• The present analysis can be utilized to obtain the response of piles for other structures
where the effect of pile-soil separation and slippage may have a significant effect on
the non-linear pile response. Hence, the current nonlinear analysis framework can be
extended to include the effect of pile-soil separation and slippage.

• In the present study, the load-displacement responses of single piles have been con-
sidered. However, the deformation responses of group piles is larger than the dis-
placement of isolated single piles. Hence, the present work needs to be extended to
understand the group action of the piles when subjected to several external loads.
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