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Abstract: Induced trench method is a well-known technique usually used to reduce the soil pressure
applied on buried pipes. This method involves the use of a lightweight compressible material above
the buried pipe to increase the positive arching, and thus, to decrease the soil pressure applied on the
buried pipe. However, little efforts have been given by previous studies to check the applicability
of using tire-derived aggregate (TDA) as the light weight and compressible material in the induced
trench method, where it is not clear if the TDA could be used to increase the positive arching for the
case of concrete pipes with different diameters and backfill heights. Thus, this paper investigates
the effect of using TDA on the structural performance of buried concrete pipes subjected to soil load
using a validated three-dimensional finite element model. A sensitivity analysis has been carried
out to examine the effect of the configuration of the TDA, backfill height, and pipe diameter on the
performance of the TDA in reducing the pipe wall bending moment. It was found that increasing
the backfill height decreases the performance of the TDA. Furthermore, increasing the pipe diameter
up to 1.2 m increases the TDA performance. However, the performance of the TDA significantly
reduces as the diameter increases from 1.2 m to 2.4 m. In addition, it was also observed that the TDA
configuration has a remarkable influence on its performance, where it is necessary to place the TDA
layer on top of the pipe crown to increase the positive arching. The results reported in this paper
provide useful addition to the literature and will help designers to ensure the economic design of
buried pipes using recyclable materials.

Keywords: induced trench method; tire-derived aggregate; buried concrete pipe; finite element
analysis; soil arching

1. Introduction

Induced (or imperfect) trench installation has been proposed to enable the economic
design of buried concrete pipes taking advantage of the positive soil arching. The mecha-
nism of this method involves the use a compressible and light weight material above the
buried pipe to establish a positive soil arching. This positive arching reduces the amount of
soil pressure applied on the pipe and thus reduces the pipe wall stress. Most of the previous
studies on the induced trench installation focused on the use of the expanded polystyrene
geofoam (EPS) [1–16], sawdust [17–19], and Styrofoam chips [20] as the compressible and
the lightweight material. However, little efforts have been paid to examine the perfor-
mance of tire-derived aggregate (TDA) as a compressible material in the induced trench
installation technique [21–26], although, the TDA is light and has low compressibility. In
addition, the use of TDA encourages recycling of used tires as the disposal of old tires
became challenging.

Meguid and Youssef [21] investigated the effect of using TDA in part of the backfill
on the response of a buried rigid pipe (outer diameter = 0.15 m) using a small-scale
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laboratory model. The study focused on the soil pressure applied on the pipe and the pipe
displacement. However, no insight is given into the pipe wall bending moment and pipe
wall stress. Ni et al. [22] developed a two-dimensional finite element model to explore the
influence of using TDA on the earth pressure applied on a buried rigid pipe. However, no
attention is given to the pipe wall bending moment. Mahgoub and El Naggar [23] studied
the effect of using a TDA layer as a backfill soil on the response of a buried steel pipe (outer
diameter = 0.2 m) subjected to external load from a newly constructed foundation using
three-dimensional finite element analysis. Mahgoub and El Naggar [24] investigated the
effect of using TDA as a backfill material and geocell soil reinforcement on top of it on the
response of a corrugated steel plate culvert (diameter = 0.6 m) subjected to static external
load using laboratory model and three-dimensional finite element analysis. Mahgoub and
El Naggar [25] used the same laboratory model and the finite element model developed in
their previous publication (Mahgoub and El Naggar [24]) to examine the effect of the TDA
configuration on the performance of a corrugated steel plate culvert under external loads,
where they examined three TDA configurations to find the optimum configuration which
achieved the highest percentage decrease in the culvert wall strain and culvert displacement.
Alzabeebee [26] studied the impact of the TDA on the bending moment developed in the
wall of a buried concrete pipe subjected to seismic loads using two-dimensional time-
history finite element analysis. The TDA is placed in the haunch and bedding areas and the
results were also compared with a reference case of a pipe surrounding by a compacted soil
in the bedding and haunch areas. He found that the TDA reduced the pipe wall bending
moment due to seismic effect by a percentage decrease of 22% to 38%, depending on the
earthquake intensity.

Based on the aforementioned discussion, it is evident that the previous studies on the
use of the TDA are limited, where very little attention is given in previous publications to
the efficiency of the TDA in reducing the bending moment developed in the wall of buried
concrete pipes. In addition, no study reported how the TDA configuration, pipe diameter,
and backfill height affect the performance of the TDA for the case of buried concrete pipes
subjected to soil load. Therefore, the aim of this study is to address these gaps in knowledge
by examining the effect of the TDA configuration, backfill height, and pipe diameter on
the performance of the TDA in reducing the bending moment of a buried concrete pipe
subjected to soil loads.

2. Statement of the Problem

As stated earlier, this paper aims to examine the effect of the TDA configuration,
backfill height, and pipe diameter on the TDA performance in reducing the bending
moment of the wall of a buried concrete pipe. To address the aim, the case of a pipe buried
in different trench conditions and subjected to embankment load (load from soil weight) is
considered in this study. Two types of soils are considered as a soil surrounding the pipe
and a backfilling soil; these are the well graded sandy soil with a degree of compaction of
90% of the standard Proctor density (referred to as SW90) and silty sand with a degree of
compaction of 90% of the standard Proctor density (referred to as ML90). These soils are
considered based on the recommendation of the American Association of State Highway
and Transportation Officials (AASHTO) to ensure good quality installation, and thus good
support condition, of buried concrete pipes [27].

Before defining the conditions of the trenches, it is important to state the terminology
of the pipe sections to avoid confusion to the readers; this terminology is shown in Figure 1.
In addition, three configurations are considered for the trench to address the aim of the
study as shown in Figure 2a–c. For trench configuration 1, the buried pipe is surrounded
by either SW90 or ML90 soils (shown in Figure 2a). This configuration corresponds to Type
2 condition for the pipe installation according to the AASHTO [27]. Trench configuration
2 comprises of a buried pipe surrounded by SW90 or ML90 soils, while the backfill com-
prises of a layer of the TDA with a thickness of 150 mm on top of the pipe crown, followed
by SW90 or ML90 soils as shown in Figure 2b. Trench configuration 3 comprises of a buried
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pipe surrounded by SW90 or ML90 soils in the bedding and haunch areas, and TDA in the
shoulders and on top of the crown followed by SW90 or ML90 soils as detailed in Figure 2c.
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Figure 2. Trench configurations employed in the present study: (a) trench configuration 1; (b) trench
configuration 2; and (c) trench configuration 3.

It is also worthy to state that backfill heights with range of 1.0 m to 3.5 m have been
considered in this research. Also, concrete pipes with inside diameter (D) range of 0.3 m
to 2.4 m have been examined. Table 1 states the inside diameter and the wall thickness of
the concrete pipes utilized in this research; these dimensions are adopted from Alzabeebee
et al. [27].

Table 1. The inside diameter of the pipes used in the research.

Inside Diameter (D) (m) Wall Thickness (m)

0.3 0.055
0.6 0.094
1.2 0.144
2.4 0.229

3. The Finite Element Model

The three-dimensional finite element method has been used in this research. The
simulation model is shown in Figure 3. The dimensions of the model and the mesh size
have been considered after conducting a thorough parametric study on the effect of the
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model width, model length, and mesh size on the results. The depth of the model has been
decided assuming that the rock layer is at a depth of 30 m below the surface.
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The buried concrete pipe has been simulated as a shell element similar to many
previous studies [27,28]. In addition, the soil has been modelled using 10-noded solid
elements. The interaction between the soil and the buried pipe has been simulated using
zero thickness interface elements. Standard boundary conditions of the three-dimensional
modelling have been considered in the analysis, where the bottom of the model is fully
fixed, and the sides of the model are allowed to move in the vertical direction only. These
boundary conditions have been repeatedly used in the three-dimensional finite element
analysis of soil structure interaction problems [27–31].

The analysis has been conducted in stages, where the first stage involved the calcula-
tion of the at-rest earth pressure of the soil before the trench excavation. The second stage
involved the simulation of the trench excavation by deactivating the solid elements which
represent the trench. The third stage simulated the placement of the bedding layer, the
installation of the concrete pipe, and the backfill process. The final stage considered the
construction of the embankment.

Finally, it is worthy to state that the general formulation of the utilized static finite
element analysis is controlled by Equation (1) [27].

Ku = F (1)

where [K] is the global stiffness matrix of the whole system, u is the displacement, and F is
the applied external forces.

4. Material Modelling and Properties

The Mohr–Coulomb model has been utilized to model the subgrade soil (natural soil)
due to the simplicity of the model and the availability of its material properties. This
model uses a constant stiffness value to represent the behavior of the soil and, thus, it
does not consider the effect of the stress level on stiffness. However, the hardening soil
model has been used to simulate the behavior of the soil surrounding the pipe (i.e., SW90
and ML90) and the backfill soil, as Katona [32] stated the necessity to use a model that
simulates the change of soil stiffness with stress level for accurate modeling of soil–pipe
interaction problems. The hardening soil model accounts to the influence of stress level, and
the loading and unloading on soil stiffness. This soil model uses Equation (2) to calculate
the stiffness of the soil for the case of primary loading (E50), Equation (3) to calculate the
tangent stiffness modulus due to primary loading (Eoed), and Equation (4) to determine the
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unloading/reloading stiffness (Eur). In addition, the TDA has also been simulated using
the hardening soil model to accurately model the change of the TDA stiffness as the backfill
height rises and, thus, to enable accurate simulation of the soil arching. The failure state
in the Mohr–Coulomb model and the hardening soil model is derived according to the
Mohr–Coulomb shear strength equation shown in Equation (6). The concrete pipe has been
simulated using the linear elastic model similar to many previous studies [27,28,33].

E50 = Ere f
50

(
σ3 + c cot ø

Pre f + c cot ø

)m
(2)

Eoed = Ere f
oed

(
σ1 + c cot ø

Pre f + c cot ø

)m
(3)

Eur = Ere f
ur

(
σ3 + c cot ø

Pre f + c cot ø

)m
(4)

σ3 = knc
o σ1 (5)

τ f = c + σ1tanø (6)

where Ere f
50 is the reference drained triaxial stiffness, σ3 is the lateral earth pressure, c is

the cohesion of the soil, ø is the angle of internal friction, Pref is the stress level at which
the hardening soil model parameters are derived, m is a factor that controls the effect of
the stress state on the stiffness of the soil, Ere f

oed is the reference tangent stiffness, Ere f
ur is the

unloading/reloading reference stiffness, knc
o is the at-rest lateral earth pressure, σ1 is the

vertical earth pressure, and τ f is the shear stress at failure [34,35]. More details on the
utilized constitutive models could be found in other studies in the literature [35,36].

The properties of the subgrade soil (natural soil), SW90, and ML90 are collected from
available studies in the literature [37–42] and are shown in Table 2. The TDA properties
are adopted from Mahgoub and El Naggar [23], who proposed these properties based on a
numerical calibration of high-quality experimental results. These properties are also listed
in Table 2. In addition, the modulus of elasticity and Poisson’s ratio of the concrete are
considered equal to 24,000,000 kPa and 0.2, respectively [33,34]. Furthermore, the interface
reduction coefficient of the interface elements between the soil and the buried pipe is taken
equal to 0.7 as used in previous studies [33].

Table 2. The properties of the SW90, ML90, TDA, and subgrade soil used in the research.

Parameter SW90 ML90 TDA Subgrade Soil

Unit weight (kN/m3) 20.99 18.84 7 17
Elastic modulus (MPa) - - - 31.04
Poisson’s ratio - - - 0.3
Ere f

50 (Mpa) 32.4459 11.26 2.75 -

Ere f
oed (Mpa) 32.4459 5.87 2.2 -

Ere f
ur (Mpa) 97.3377 33.77 8.25 -

νur 0.2 0.3 0.2 -
c (kPa) 1 24 24 20
ø (◦) 45.5 32.0 26.5 30.0
ψ (◦) 15.5 2.0 0.0 0.0
m 0.75 0.26 0.50 -
knc

o 0.31 0.43 0.55 -
Rf 0.75 0.89 0.95 -
Pre f (kPa) 100 100 25 -

Note: Ere f
50 is the reference drained triaxial stiffness, Ere f

oed is the reference tangent stiffness, Ere f
ur is the unload-

ing/reloading reference stiffness, νur is the unloading and reloading Poisson’s ratio, c is the cohesion of the soil, ø
is the angle of internal friction, ψ is the dilatancy angle, m is a factor that controls the effect of the stress state on
the stiffness of the soil, knc

o is the at-rest lateral earth pressure, Rf is the strain level at failure, and Pre f is the stress
level at which the hardening soil parameters are derived [35,36].
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5. Validation

The validation involved modelling the full-scale test conducted by MacDougall [43] to
assess the abilities of the developed three-dimensional finite element model in predicting
the bending moment of a buried concrete pipe subjected to combined soil and traffic loads.
MacDougall [43] carried out the aforementioned full-scale test to calculate the bending
moment of a buried reinforced concrete pipe buried with a backfill height of 0.6 m and
subjected to the AASHTO standard dual-tire load (which is equal to 100 kN and applied on
a contact area of 0.25 × 0.50 m). The concrete pipe had an inside diameter of 0.6 m and a
wall thickness of 0.094 m. In addition, the concrete compressive strength (fc′) was equal to
66 MPa. Furthermore, the soil surrounding the pipe was poorly graded sandy gravel with
a minimum degree of compaction of 90 percent of the standard Proctor dry density.

This problem has been modelled in this research to assess the accuracy of the finite
element model. The modelling methodology explained in Section 3 has been used in this
section. In addition, the backfill soil has been modelled using the properties of the SW90
with the properties listed in Table 1, as the previous studies provided the same constitutive
properties for the well graded sand and the sandy gravel soil at a compaction percentage
of 90% of the standard Proctor dry density (refer to Alzabeebee [44] for further details). In
addition, the concrete pipe has been modelled using the linear elastic model. The modulus
of elasticity for the concrete has been considered equal to 38,450 MPa calculated using the
value of the compressive strength reported by MacDougall [43] (i.e., 66 MPa). Furthermore,
the unit weight and the Poisson’s ratio (ν) of the pipe have been assumed to be equal to
25 kN/m3 and 0.2, respectively.

Figure 4 compares the results of the bending moment developed in the concrete pipe
wall obtained from the present study and the experimental results of MacDougall [43]. The
figure also reports the results of the same problem obtained by Alzabeebee et al. [27], who
used the same problem to validate the results of Midas GTX/NX software package. By
looking at Figure 4, it can be noticed that there is a good agreement between the results
obtained from the present study and the full-scale test results. In addition, the obtained
results are also in good agreement with the results of the numerical model of Alzabeebee
et al. [27]. Therefore, it is obvious that the model developed in the present study is capable
of capturing the observed behavior. Thus, these results give certainty in the methodology
adopted in this study.
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Figure 4. Calculated and predicted bending moment values developed in the pipe wall for a concrete
pipe buried with backfill height of 0.6 m and subjected to the AASHTO standard dual-tire load [27].

6. Results

The following subsections discuss the results obtained from the parametric study. It is
worthy to mention that only the results of the bending moment developed in the wall of
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the buried concrete pipe are displayed in this section as the bending moment is the only
parameter that is used usually in the routine design of concrete pipes according to the
indirect design method [28,34]. Notably, the bending moment is taken directly from the
results of the shell elements as the formulation of these elements allows the calculation of
the bending moment in the finite element analysis.

6.1. Effect of the TDA on the Development of the Bending Moment in the Pipe Wall

Firstly, the effect of the TDA configuration on the distribution of the bending moment
around the pipe wall is examined by inspecting the bending moment developed in the pipe
wall for the case of the conventional backfill using SW90 soil (CB (SW90)), conventional
backfill using ML90 (CB (ML90)), TDA configuration 1 (TDA 1), and TDA configuration
2 (TDA 2). The case of a backfill height of 1.0 m is selected for this task. Figures 5 and 6
present the results of the effect of the TDA configuration on the distribution of the bending
moment for SW90 backfill and ML90 backfill, respectively. The angle from the pipe crown
in both figures is measured as indicated in Figure 1. Looking at Figures 5 and 6, it is clear
that both figures show that the presence of the TDA reduces the bending moment, however,
it does not influence the trend of the relationship of the developed bending moment in
the pipe wall. In addition, it is also clear that the TDA 1 achieved lower bending moment
values compared to the TDA 2 and for both backfill cases (SW90 and ML90).
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Figure 5. Comparison of the bending moment developed in the pipe wall for conventional backfill
using SW90, TDA 1, and TDA 2 for SW90 backfill.
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Figure 6. Comparison of the bending moment developed in the pipe wall for conventional backfill
using ML90, TDA 1, and TDA 2 for ML90 backfill.
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6.2. Perfromance of the TDA for Different Backfill Heights

The effect of the backfill height on the structural response of the buried pipe for
conventional and TDA trench configurations is examined in this section. Figures 7 and 8
depict the relationship between the maximum bending moment in the pipe wall and the
backfill height for the three trench configurations for the SW90 backfill and ML90 backfill,
respectively. Both figures reveal an increase in the maximum bending moment as the
backfill height increases, which is due to the increase of the applied soil weight on the
pipe for the three trench configurations [27,45,46]. Similar observation is also reported
by Akyelken and Kılıç [16] and Kang [47]. It can also be observed from the figures that,
as expected, the TDA reduces the maximum bending moment for both backfill soils (i.e.,
SW90 and ML90). This is due to the low compressibility of the TDA material which helps
to make the soil prism on top of the pipe settle more than its surroundings and, thus, the
generated shear along the sides of the soil prism sheds the soil pressure away from the
pipe. Moreover, it can be noticed from both figures that the TDA 1 is better in decreasing
the maximum bending moment of the pipe when compared to the TDA 2. This means that
the TDA 1 configuration develops more positive arching compared to the TDA 2. This is
because the layer of the TDA in the TDA 1 configuration was confined and contained by a
strong medium from top and bottom, this confinement increased the effectiveness of the
TDA layer in shedding the soil pressure away [48].
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Figure 7. Effect of the backfill height on the maximum bending moment for the three trench configu-
rations considering the SW90 as a backfill soil.

Geotechnics 2022, 2, FOR PEER REVIEW  9 
 

 

 

Figure 7. Effect of the backfill height on the maximum bending moment for the three trench config-

urations considering the SW90 as a backfill soil. 

 

Figure 8. Effect of the backfill height on the maximum bending moment for the three trench config-

urations considering the ML90 as a backfill soil. 

 

Figure 9. Percentage decrease of the maximum bending moment using TDA 1 and TDA 2 trench 

configurations for the SW90 backfill. 

0

2

4

6

8

10

0 1 2 3 4

M
a

x
im

u
m

 b
en

d
in

g
 m

o
m

en
t 

(k
N

.m
/m

)

Backfill height (m)

CB (SW90) TDA 1 TDA 2

0

2

4

6

8

10

0 1 2 3 4

M
a

x
im

u
m

 b
en

d
in

g
 m

o
m

en
t 

(k
N

.m
/m

)

Backfill height (m)

CB (ML90) TDA 1 TDA 2

0

5

10

15

20

25

0 1 2 3 4

P
er

ce
n

ta
g
e 

d
ec

re
a
se

 (
%

)

Backfill height (m)

TDA1 TDA 2

Figure 8. Effect of the backfill height on the maximum bending moment for the three trench configu-
rations considering the ML90 as a backfill soil.



Geotechnics 2022, 2 997

To provide better insight into the effectiveness of the TDA in terms of the percentage
decrease of the maximum bending moment, Figures 9 and 10 present the percentage
decrease of the maximum bending moment for TDA 1 and TDA 2 configurations and for
the SW90 backfill and ML90 backfill, respectively. Both figures show that increasing the
backfill height reduces the percentage decrease of the maximum bending moment for both
TDA configurations. This means that the positive arching decreases as the soil weight
increases. In addition, the figures clearly show that the TDA 1 provides better effectiveness
for both backfill conditions compared to the TDA 2. Furthermore, comparing the results
of Figures 9 and 10 show that the percentage decrease is approximately similar for both
backfills. For the SW90 backfill, the maximum percentage decrease of the maximum
bending moment is equal to 20% and 11% for the TDA 1 and TDA 2, respectively. For the
ML90 backfill, the maximum percentage decrease of the maximum bending moment is
equal to 19% and 11% for the TDA 1 and TDA 2, respectively.
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Figure 9. Percentage decrease of the maximum bending moment using TDA 1 and TDA 2 trench
configurations for the SW90 backfill.
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Figure 10. Percentage decrease of the maximum bending moment using TDA 1 and TDA 2 trench
configurations for the ML90 backfill.

6.3. Performance of the TDA for Different Diamaters

Figures 11–13 present the effect of the pipe diameter on the maximum pipe wall
bending moment for the CB (SW90), TDA 1, and TDA 2, respectively. The figures show
that the maximum bending moment increases approximately linearly as the backfill height
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rises for all of the diameters modelled in this study, which is due to the dramatic increase
of the soil pressure applied on the pipe as the weight of the soil on top of the pipe rises [27].
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Figure 11. Effect of the pipe diameter and backfill height on the maximum pipe wall bending moment
for the CB (SW90).
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Figure 12. Effect of the pipe diameter and backfill height on the maximum pipe wall bending moment
for the TDA 1.
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Figure 13. Effect of the pipe diameter and backfill height on the maximum pipe wall bending moment
for the TDA 2.
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Figures 14 and 15 show the percentage decrease of the maximum bending moment
due to the use of TDA 1 and TDA 2, respectively. For both TDA configurations in general,
the percentage decrease rises as the diameter changes from 0.3 m to 1.2 m, then significantly
declines as the pipe diameter becomes equal to 2.4 m. This could be justified by the
complicated interaction between the soil arching and the increase of the weight of the soil
applied on the pipe for the case of a pipe with a diameter of 2.4 m. In addition, it is evident
that the percentage decrease declines as the backfill height rises and then stabilizes at a
certain backfill height. The stabilization of the percentage decrease means that the arching
factor stabilizes at a certain backfill height.
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Figure 14. Effect of the pipe diameter and backfill height on the percentage decrease of the maximum
bending moment for the TDA 1.
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Figure 15. Effect of the pipe diameter and backfill height on the percentage decrease of the maximum
bending moment for the TDA 2.

Comparing Figures 14 and 15 shows that the TDA 1 performs better than the TDA 2
as the latter scored a lower percentage decrease.

Finally, it is worthy to state that the results seem to be inconclusive for Figures 7, 8
and 11–13 and there is no backfill height at which the increase of the bending moment
stops. As stated earlier, this is due to the increase of the soil weight as the backfill height
rises and, thus, there is no point at which the increase of the bending moment stops due to
the continuous increase of the soil weight.
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7. Conclusions

The paper reported the results of a validated numerical analysis of the effect of the
tire-derived aggregate (TDA) configuration, backfill height, and pipe diameter on the
performance of tire-derived aggregate in reducing the bending moment of buried concrete
pipes subjected to embankment load (i.e., soil weight). The study reported new results
that are not available in the literature and provided an insight into the performance of
the TDA for different scenarios. The innovation of the paper is that it utilized a verified
methodology to show the feasibly of using the TDA in an economic design application that
is urgently needed. The following could be stated based on the scientific content provided
in this research work:

- In general, it has been noticed that the TDA configuration has a remarkable influence
on the performance of the TDA, where it is necessary to place the TDA layer on top
of the pipe crown to enable more positive arching. Therefore, the designer should
specify the configuration of the TDA for site engineers and supervise the installation
to ensure that the TDA provides its best performance.

- Increasing the backfill height decreases the beneficial effect of the TDA, where the
percentage decrease of the maximum bending moment declines as the backfill height
rises then stabilizes. Thus, the use of the TDA should be suggested for pipes buried
with shallow depths.

- In general, increasing the diameter of the pipe from 0.3 m to 1.2 m remarkably enhances
the ability of the TDA in decreasing the maximum bending moment. However, the
beneficial effect shrinks as the diameter rises further to 2.4 m. This means that the
TDA could be used to increase positive soil arching, and thus, ensure economic design
of buried pipes with a diameter range of 0.3 m to 1.2 m.
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