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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has claimed many lives since it was
first reported in late December 2019. However, there is still no drug proven to be effective against
the virus. In this study, a candidate host–pathogen–interactive (HPI) genome-wide genetic and
epigenetic network (HPI-GWGEN) was constructed via big data mining. The reverse engineering
method was applied to investigate the pathogenesis of SARS-CoV-2 infection by pruning the false
positives in candidate HPI-GWGEN through the HPI RNA-seq time profile data. Subsequently, using
the principal network projection (PNP) method and the annotations of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, we identified the significant biomarkers usable as drug targets
for destroying favorable environments for the replication of SARS-CoV-2 or enhancing the defense of
host cells against it. To discover multiple-molecule drugs that target the significant biomarkers (as
drug targets), a deep neural network (DNN)-based drug–target interaction (DTI) model was trained
by DTI databases to predict candidate molecular drugs for these drug targets. Using the DNN-based
DTI model, we predicted the candidate drugs targeting the significant biomarkers (drug targets).
After screening candidate drugs with drug design specifications, we finally proposed the combination
of bosutinib, erlotinib, and 17-beta-estradiol as a multiple-molecule drug for the treatment of the
amplification stage of SARS-CoV-2 infection and the combination of erlotinib, 17-beta-estradiol, and
sertraline as a multiple-molecule drug for the treatment of saturation stage of mild-to-moderate
SARS-CoV-2 infection.

Keywords: SARS-CoV-2; COVID-19; systems biology; reverse engineering; principal network
projection (PNP); drug–target interaction (DTI) model; multiple-molecule drug; drug repositioning;
deep learning

1. Introduction

In late December 2019, China reported cases of pneumonia to the World Health
Organization (WHO). In January 2020, the WHO named this disease coronavirus disease
2019 (COVID-19). As of 21 June 2022, there have been more than 500 million confirmed
cases of COVID-19 and more than 6 million deaths [1]. COVID-19 is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The high transmissibility and
clinical severity of COVID-19 rapidly caused a global health crisis. In most cases, the
symptoms of COVID-19 are mild. The most commonly reported symptoms are headache
(34–70%), myalgia (36–63%), fatigue (63%), cough (50.3–63.2%), and fever (43–45%) [2,3].
However, some cases result in an acute course and complications. So far, the pathogenesis
of COVID-19 has not been completely clarified, and more than two years after the beginning
of the COVID-19 outbreak, there is still no drug proven to be effective against it.
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SARS-CoV-2 is a positive-sense single-stranded RNA virus and encodes approxi-
mately 29 proteins, including four structural proteins [4–6]. Some proteins of SARS-COV-2
have been confirmed to interact with host proteins and affect host gene expression [7,8].
In addition to genetic regulation, epigenetic regulation is also important to the viral in-
fection [9–11]. MicroRNA (miRNA) can cause RNA silencing and post-transcriptional
repression of gene expression [12,13]. They can regulate various cellular activities, includ-
ing apoptosis, cell growth, and differentiation [14]. Long noncoding RNA (lncRNA), a
class of non-coding RNA, can be an inhibitory regulator of miRNA [15,16] or involved in
transcriptional regulation. They are involved in different regulatory mechanisms during
viral infection [17].

For new drug discovery, the global pharmaceutical industry faces high attrition
rates [18], high costs increasing with time, and changing regulatory requirements. These
risks cause investors to be less willing to invest in the pharmaceutical industry. Therefore,
drug repositioning (also called drug repurposing) is proposed [19,20]. Drug repositioning
refers to the identification of new usages for investigational or approved drugs which are
outside the scope of the original medical indication. However, the experimental methods
to verify the drug–target interaction (DTI) are extremely expensive and time-consuming. It
is necessary that the systems biology method be employed to investigate pathogenic mech-
anisms to identify significant drug targets, and this should be followed by computational
methods based on the DTI model to predict the drugs for significant drug targets on a
large scale to reduce the high cost and development time, especially during the COVID-19
outbreak. Moreover, combination therapy for multiple proteins (drug targets) using more
than one medication or modality has been used for many diseases, including various can-
cers [21] and infections [22]. It has been proposed for the treatment of COVID-19 in some
research [23,24]. Veklury (Remdesivir) is an FDA-approved drug for mild-to-moderate
COVID-19. However, the efficiency of Remdesivir is still debatable [25–27]. Olumiant
(Baricitinib), the other FDA-approved drug, is used in the treatment of COVID-19 in hos-
pitalized adults who require supplemental oxygen, invasive or non-invasive mechanical
ventilation, or extracorporeal membrane oxygenation (ECMO—that is, Baricitinib is not
used for mild-to-moderate COVID-19).

In this study, we first employed the systems biology method via host–pathogen–
interactive (HPI) RNA-seq time profile data to investigate the pathogenesis of COVID-19 in
order to identify significant biomarkers as drug targets and treat the SARS-CoV-2 infection
at the amplification and saturation stages. Recently, a deep neural network (DNN)-based
DTI model that targets proteins to significantly improve the prediction of DTI compared to
conventional DTI models has been introduced by a deep learning algorithm through the
feature vectors of molecular drugs [28,29]. Therefore, a DNN-based DTI model was trained
by DTI databases [30–34] to efficiently predict candidate molecular drugs for each significant
biomarker (drug target) of the amplification and saturation stages of SARS-CoV-2 infection.
Then, based on drug design specifications, in order to prune some candidate drugs, a set of
candidate molecular drugs combined as a multiple-molecule drug was proposed as a potential
combination therapy to target these significant biomarkers at the amplification and saturation
stages to disrupt the progression of SARS-CoV-2 infection. Therefore, the systematic procedure
of repositioning a multiple-molecule drug for disrupting the progression of SARS-CoV-2
infection by utilizing the systems biology method through HPI RNA-seq data and DNN-
based DTI model with drug design specifications are described as follows: (1) constructing
the candidate HPI genome-wide genetic and epigenetic network (HPI-GWGEN) using big
data mining from databases [35–46]; (2) system identification and system order selection to
eliminate the false positives in the candidate HPI-GWGEN to obtain the real HPI-GWGEN
using the system models and HPI RNA-seq time profile data; (3) applying the principal
network projection (PNP) method to construct the core HPI-GWGEN and obtain the core
HPI signaling pathways and their abnormal downstream cellular functions of SARS-CoV-2
infection using annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [47,48]; (4) investigating and comparing the pathogenic mechanisms between
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the amplification and saturation stages of SARS-CoV-2 infection to identify significant
biomarkers as drug targets against SARS-CoV-2 infection at the amplification and saturation
stages; and (5) predicting the candidate drugs for significant biomarkers using a DNN-based
DTI model and selecting potential multiple-molecule drugs for the therapeutic treatment
of the amplification and saturation stages of SARS-CoV-2 infection with three drug design
specifications, i.e., regulation ability, toxicity, and sensitivity. We finally proposed the
combination of bosutinib, erlotinib, and 17-beta-estradiol as a multiple-molecule drug for
the treatment of the amplification stage of SARS-CoV-2 infection and the combination of
erlotinib, 17-beta-estradiol, and sertraline as a multiple-molecule drug for the treatment of
the saturation stage of mild-to-moderate SARS-CoV-2 infection.

2. Results
2.1. Core HPI Signaling Pathways during Amplification and Saturation Stage of SARS-CoV-2
Infection by the Systems Biology Method

To find the molecular drugs for disrupting SARS-CoV-2 infection, systematic methods
including reverse engineering (i.e., reversing the infectious process of SARS-CoV-2) were
first used to construct the real HPI-GWGEN by the genome-wide HPI RNA-seq time-profile
data, and the PNP method was applied to extract the core HPI-GWGEN for analysis. With
the annotation of KEGG pathways, the core HPI-GWGEN was annotated as the core signal
pathways to identify significant biomarkers as drug targets for the pathogenesis of SARS-
CoV-2 infection at the amplification and saturation stages (note that the amplification and
saturation stages are defined according to the RNA-seq time profile data in Section 4.2.1).
After training the DNN-based DTI model, we predicted the potential multi-molecule drugs
that target the significant biomarkers (drug targets) against SARS-CoV-2 infection at the
amplification and saturation stages based on the DNN-based DTI model and three drug
design specifications, respectively. The procedure of the systems biology method and drug
discovery is shown in Figure 1.

The number of nodes and edges in candidate HPI-GWGEN and real HPI-GWGENs
of amplification and saturation infectious stages are shown in Table 1. The significant
pruning of edges between candidate and real HPI-GWGEN implies that the false-positive
edges in candidate HPI-GWGEN are eliminated by the system order selection. The real
HPI-GWGENs of amplification and saturation infectious stages are respectively shown in
Figure A1, which are represented with the aid of Cytoscape [49].

Table 1. The number of nodes and edges in candidate and real HPI-GWGENs at amplification and
saturation stages. After system identification and system order detection, the false positives in each
node of candidate HPI-GWGEN can be pruned through each infectious stage of HPI RNA-seq data
and then form the real HPI-GWGEN of each infectious stage.

Node Candidate
HPI-GWGEN

Amplification Stage
Real HPI-GWGEN

Saturation Stage
Real HPI-GWGEN

Receptor 2294 2294 2294

Transcription factor 1452 1449 1449

Protein coding 13,989 13,980 13,981

miRNA 154 153 152

lncRNA 8827 1023 664

Virus 11 11 11

Total nodes 26,727 18,910 18,551

Edge Candidate
HPI-GWGEN

Amplification Stage
Real HPI-GWGEN

Saturation Stage
Real HPI-GWGEN

PPIs 4,722,699 953,464 1,053,818

TF -> Receptor 14,633 9493 8697
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Table 1. Cont.

Edge Candidate
HPI-GWGEN

Amplification Stage
Real HPI-GWGEN

Saturation Stage
Real HPI-GWGEN

TF -> TF 11,846 7168 6590

TF -> Protein 84,183 55,326 51,376

TF -> miRNA 178 102 88

TF -> lncRNA 301 290 291

TF -> Virus 15,972 131 59

miRNA -> Receptor 88,424 10,871 10,267

miRNA -> TF 71,046 9228 8256

miRNA -> Protein 570,830 72,563 67,652

miRNA -> lncRNA 5502 581 478

miRNA -> Virus 1694 23 12

lncRNA -> Receptor 436 313 306

lncRNA -> TF 472 270 287

lncRNA -> Protein 4274 2288 2337

lncRNA -> miRNA 7 5 4

lncRNA -> lncRNA 4 4 3

lncRNA -> Virus 97,097 753 244

Virus -> Virus 121 22 4

Total edges 5,689,719 1,122,895 1,210,769

In addition to the significant deletion of false-positive edges, the PNP method was
applied to evaluate the significance of each node to the network matrix according to its pro-
jection value. The core HPI-GWGENs in the amplification and saturation stages were built
by extracting the top-6000-significance nodes from the corresponding real HPI-GWGENs of
the amplification and saturation infectious stages. The core HPI-GWGENs of amplification
and saturation infectious stages are shown in Figure 2 and Appendix A, which were repre-
sented with the aid of Cytoscape [49]. The top-6000-significance nodes can be uploaded to
the database for annotation, visualization, and integrated discovery (DAVID) functional
annotation tool [47,48] to help investigate the pathogenic mechanism of the amplification
and saturation stages of SARS-CoV-2 infection. The enrichment analysis of KEGG pathways
for amplification and saturation infectious stages are shown in Tables 2 and 3, respectively.
The enrichment analysis of KEGG may imply what pathways are involved in each infection
stage. We try to find the pathogenetic molecular mechanism for the viral amplification
in early infection and the pathogenetic molecular mechanism for the viral saturation in
late infection.

With the help of the enrichment analysis of KEGG and the exiting literature, the core
host–pathogen interactive signaling pathways and their downstream abnormal cellular
functions of SARS-CoV-2 infection at the amplification and saturation stages are shown
in Figure 3. The core signaling pathways with red background in the middle of Figure 3
are common between the amplification and saturation stages of SARS-CoV-2 infection; the
specific signaling pathways on the left-hand-side are the amplification stage of SARS-CoV-2
infection; and the specific signaling pathways on the right-hand-side are the saturation
stage of SARS-CoV-2 infection.
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Figure 1. The flowchart of the systems biology method of investigating pathogenesis of SARS-CoV-
2 infection to identify significant biomarkers as drug targets and systems drug discovery via a DNN-
based DTI model to predict candidate molecular drugs for drug targets through a deep learning 
scheme and then to screen multiple-molecule drugs by drug design specifications for disrupting the 
SARS-CoV-2 infection at the amplification and saturation stages. 

The number of nodes and edges in candidate HPI-GWGEN and real HPI-GWGENs 
of amplification and saturation infectious stages are shown in Table 1. The significant 
pruning of edges between candidate and real HPI-GWGEN implies that the false-positive 
edges in candidate HPI-GWGEN are eliminated by the system order selection. The real 

Figure 1. The flowchart of the systems biology method of investigating pathogenesis of SARS-CoV-2
infection to identify significant biomarkers as drug targets and systems drug discovery via a DNN-
based DTI model to predict candidate molecular drugs for drug targets through a deep learning
scheme and then to screen multiple-molecule drugs by drug design specifications for disrupting the
SARS-CoV-2 infection at the amplification and saturation stages.
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Figure 2. Visualization of core HPI-GWGEN of amplification and saturation infectious stages. The 
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tively. The numbers of each type of node (protein, receptor, transcription factor, miRNA, lncRNA, 
and virus) are shown in the figure. (A,B) are the core HPI-GWGENs of amplification and saturation 
infectious stages, respectively. 

  

Figure 2. Visualization of core HPI-GWGEN of amplification and saturation infectious stages. The
blue and green edges (lines) represent the protein-protein interactions and gene regulations, respec-
tively. The numbers of each type of node (protein, receptor, transcription factor, miRNA, lncRNA,
and virus) are shown in the figure. (A,B) are the core HPI-GWGENs of amplification and saturation
infectious stages, respectively.

Table 2. The enrichment analysis of KEGG pathways for core HPI-GWGEN of the amplification
infectious stage.

KEGG Pathway Count p-Value

Cell cycle 86 6.32 × 10−17

FoxO signaling pathway 80 7.83 × 10−12

Pathways in cancer 236 1.37 × 10−10

Hepatitis B 90 4.19 × 10−12

Hepatitis C 84 1.81 × 10−8

ErbB signaling pathway 52 5.17 × 10−8

Tight junction 87 1.00 × 10−7

MAPK signaling pathway 133 6.95 × 10−7

Endocytosis 113 6.90 × 10−6
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Table 3. The enrichment analysis of KEGG pathways for core HPI-GWGEN of the saturation infec-
tious stage.

KEGG Pathway Count p-Value

Pathways in cancer 227 6.39 × 10−9

Th17 cell differentiation 59 8.13 × 10−7

Cell cycle 66 1.21 × 10−6

Osteoclast differentiation 66 2.46 × 10−6

T cell receptor signaling pathway 56 2.93 × 10−6

Human T-cell leukemia virus 1 infection 102 3.81 × 10−6

Apoptosis 68 6.66 × 10−6

Hepatitis B 77 1.59 × 10−5

Hepatitis C 75 1.7 × 10−5
Stresses 2022, 2 412 
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Figure 3. The core HPI signaling pathways and their downstream abnormal cellular functions of 
SARS-CoV-2 infection in (i) amplification stage (left-hand side), (ii) common between amplification 
and saturation infectious stages (red background in the middle of the figure), and (iii) saturation 
infectious stage (right-hand side). The green nodes represent the high expression of protein/gene. 
The red nodes represent the low expression of protein/gene. 
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downstream abnormal cellular functions were identified in Figure 3. We try to investigate 
the progression of SARS-CoV-2 infection. In specific core signaling pathways of the am-
plification infectious stage in the left column of Figure 3, AP2M1 and AAK1 were identi-
fied to be associated with endocytosis. AAK1 can phosphorylate AP2M1, which promotes 
receptor-mediated endocytosis to help with viral entry [50]. 

The receptor EGFR was identified to activate MAPK1 by signaling through SOS1, 
RRAS2, BRAF, and MEK1. The activation of receptor EGFR may be caused by the ligand 
HB-EGF. For coronavirus infection, the upregulation of ligand HB-EGF, which can bind 
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Figure 3. The core HPI signaling pathways and their downstream abnormal cellular functions of
SARS-CoV-2 infection in (i) amplification stage (left-hand side), (ii) common between amplification
and saturation infectious stages (red background in the middle of the figure), and (iii) saturation
infectious stage (right-hand side). The green nodes represent the high expression of protein/gene.
The red nodes represent the low expression of protein/gene.
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2.2. Investigation of Specific Core HPI Signaling Pathways and Their Downstream Abnormal
Cellular Functions during SARS-CoV-2 Infection
2.2.1. Investigation of Specific Core HPI Signaling Pathways in Amplification
Infectious Stage

According to the core HPI signaling pathways of SARS-CoV-2 infection, several down-
stream abnormal cellular functions were identified in Figure 3. We try to investigate the
progression of SARS-CoV-2 infection. In specific core signaling pathways of the amplifi-
cation infectious stage in the left column of Figure 3, AP2M1 and AAK1 were identified
to be associated with endocytosis. AAK1 can phosphorylate AP2M1, which promotes
receptor-mediated endocytosis to help with viral entry [50].

The receptor EGFR was identified to activate MAPK1 by signaling through SOS1,
RRAS2, BRAF, and MEK1. The activation of receptor EGFR may be caused by the ligand
HB-EGF. For coronavirus infection, the upregulation of ligand HB-EGF, which can bind to
the receptor EGFR and ERBB4, has been observed [51]. MAPK1 is the pivotal component
to activate the downstream cellular function of receptor EGFR. MAPK1 suppresses the TF
FOXO3 by phosphorylation and activates MNK1 and TF FOS. The target gene of TF FOXO3,
BCL2L11, encodes the Bcl-2-like protein 11 (BIM) and acts as an apoptotic activator [52].
Lots of pathogens may interfere in the host’s cellular functions to establish the proper
environment for replication. Because viruses, including SARS-CoV-2, need to use the host
cell for replication, the apoptosis of the host cell in early infection may be not desirable
for it [53]. Thus, the suppression of BCL2L11 causes the survival of the host cell, which is
necessary for the replication of SARS-CoV-2. MNK1 activates the translation initiation factor
EIF4E. EIF4E can direct the ribosomes to bind to the 5′ cap of mRNA. It has been reported
that the inhibition of the interaction between viral mRNA and EIF4E can suppress the
replication of SARS-CoV-2 [54], which implies that the activation of EIF4E is also a desirable
event for the replication of SARS-CoV-2. The activation of TF FOS induces the target
genes CCL2 and IL12. CCL2 belongs to cytokine genes and is involved in inflammation
and immunoregulatory processes. It exhibits a chemotactic activity for basophils and
monocytes, which can help the host cell defend the SARS-CoV-2 virus. In addition to
activating MAPK1, receptor EGFR also interacts with PIK3C2A and NUMB. Recently, the
activation of PIK3C2A has been proven to act both in the control of receptor endocytosis
and resensitization [55], and the activation of receptor EGFR can increase the activity of
PIK3C2A [56]. The activation of endocytic adaptor protein NUMB has been reported to
promote the recycling of EGFR [57]. The recycling and resensitization may enhance the
activation of downstream genes of receptor EGFR.

The receptor ERBB4 is also activated by the binding of HB-EGF. After interacting
with HB-EGF, receptor ERBB4 activates PIK3CB and then activates the AKT1. AKT1 can
suppress TF FOXO3 and activate MTOR, CHUK, and TF CREB1. The phosphorylation of
MTOR can activate the S6K1. The activation of S6K1 induces protein synthesis, including
the viral protein at the ribosome [58]. The activation of TF CREB1 by AKT1 induces the
target gene BCL2, which can encode an outer mitochondrial membrane protein to block
the apoptosis of cells. Therefore, the expression of BCL2 can promote the survival of the
infected cells. As mentioned above, the survival of infected cells may help in the replication
of SARS-CoV-2. The TF CREB1 is also activated by lncRNA MALAT1. The high expression
of MALAT1 has been reported to be differentially expressed in severe COVID-19 [59]. A
previous study has shown that the lncRNA MALAT1 can maintain the phosphorylation
of TF CREB1 for continuous CREB1 signaling activation [60]. The lncRNA MALAT1 has
also been found to regulate the miRNA MIR106B. The miRNA MIR106B is silenced by
MALAT1 and induces the target gene of MIR106B [61]. Here, the identified target gene
of miRNA MIR106B is CDKN1A [62], which can block cell cycle progression by inhibiting
the cyclin-dependent kinase (CDK). Lots of viruses can induce the host cell cycle arrest
to produce resources and construct a proper environment for viral replication to increase
replication efficiency [63].
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In summary, the activated EGFR is involved in the endocytosis which may help
the entry of virus and establishes a favorable environment, including the suppression of
pro-apoptotic protein and the activation of eukaryotic translation initiation factor. Further-
more, receptor EGFR has been shown to act as a cofactor for the internalization of several
viruses [64,65]. Endocytosis is also required for the entry of SARS-CoV-2 into the host cell.
To disrupt the proper environment for viral replication, we choose EGFR and AKT1, as
significant biomarkers, as drug targets for the specific pathogenesis of the amplification
stage to destroy the favorable environment.

2.2.2. Investigation of Common Core HPI Signaling Pathways of Amplification and
Saturation Infectious Stages

Some signaling pathways were identified in both the amplification and saturation
stages of SARS-CoV-2 infection. The common signaling pathways of amplification and
saturation infectious stages are shown in the middle column of Figure 3 with a red back-
ground. The receptor TLR2 has been shown to detect the SARS-CoV-2 envelope (E) protein
as its ligand [66]. It is a common pathogen recognition receptor that activates the host’s
innate immunity. After detecting the SARS-CoV-2 E protein, TF NFKB1 is activated by
signaling through MYD88, IRAK4, TRAF6, TAK1, and CHUK. The activation of TF NFκ-B
induces the target genes CCL2, IL1A, TNF, and IL12A. All of them are involved in the
inflammation and innate immune responses [67–69] to defend against SARS-CoV-2 infec-
tion. TNF may also be implicated in apoptosis [70]. It is the ligand of receptor TNFR1
as well. In addition to the activation of TF NFκ-B as a defense response of the host cell,
melanoma differentiation-associated protein 5 (MDA5) can detect replicative intermediates
of both positive- and negative-strand RNA viruses [71]. After detecting the virus, TF IRF3
is phosphorylated through signaling proteins MDA5, MAVS, TRAF3, and TBK1, which can
induce the target gene IFNB1. The IFNB1 can be the ligand of the receptor IFNAR1. The
infected host cells will release interferons (IFN) and let nearby cells enhance their anti-viral
defenses. Like other viruses [72], SARS-CoV-2 also interrupts the host cell’s immune system.
The SARS-CoV-2 membrane (M) protein was identified to inhibit the production of IFN. A
recent study has shown that SARS-CoV-2 M protein can prevent nuclear translocation of
TF IRF3 and inhibit the phosphorylation of IRF3 [73].

The host cell cycle is also interfered with by the SARS-CoV-2 protein. The receptor
TGFBR1 was identified to activate TF SMAD3, which may be caused by the ligand TGF-β.
The upregulation of ligand TGF-β has been observed in SARS-CoV-2 infection [74,75]. The
phosphorylation of SMAD3 induces the target genes CDKN1A, CDKN2B, and SERPINE1.
Both CDKN1A and CDKN2B are CDK inhibitors to disrupt the cell cycle’s progression.
As mentioned above, cell cycle arrest is a desirable event for viral replication. SARS-
CoV-2 nucleocapsid (N) protein was identified to interact with TF SMAD3 to enhance the
downstream target genes, which was consistent with previous research [76]. In addition to
causing cell cycle arrest, TF SMAD3 is also involved in coagulopathy by inducing the target
gene SERPINE1. The overexpression of SERPINE1 has been reported to play an important
role in COVID-19-associated coagulopathy, leading to acute respiratory distress syndrome
(ARDS) [77]. Coagulopathy may be fatal, so TF SMAD3 should be suppressed.

Briefly, the abnormal suppression of IRF3, which induces IFNB1, by the SARS-CoV-
2 M protein and the overactivation of TF SMAD3 establishes the proper environment
for the replication of SARS-CoV-2. Therefore, we choose IFNB1 and SMAD3 as signifi-
cant biomarkers (drug targets) for the overlapping pathogenesis of the amplification and
saturation stages.

2.2.3. Investigation of Specific Core HPI Signaling Pathways at Saturation Infectious Stage

In the saturation infectious stage, the mRNA level of the virus is decreased. Based
on signaling pathways in the right column of Figure 3, we investigate the host defense
mechanism against SARS-CoV-2 infection. The inducted proteins of target genes TNF and
IFNB1 may be the ligands. While receiving the ligand TNF-α, the downstream proteins
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of receptor TNFR1 are activated. The activation of receptor TNFR1 can activate TRAF2
and FADD through signaling protein TRADD. After activation of TRAF2, TF JUN is
phosphorylated via signaling proteins MEKK1/SEK1/JNK3, which induce the target genes
TNF, IL12A, CXCL10, and TP53. The target gene CXCL10 is a pro-inflammatory cytokine
that is involved in lots of processes such as apoptosis, chemotaxis, and the activation
of peripheral immune cells [78–80]. The induction of TP53 can induce the target gene
BAX. BAX is a pro-apoptosis protein that has been shown to be involved in P53-mediated
apoptosis [81]. The other apoptotic pathway activated by the receptor TNFR1 is through
FADD, which activates the BH3 interacting-domain (BID) protein through signaling protein
CASP10 [82]. BID is also a pro-apoptosis protein. As mentioned above, the apoptosis of the
infected host cells can reduce the replication of virus because the virus must employ the
living host cell for replication.

Another specific signaling pathway of the saturation infectious stage is the production
of ISG. With the binding of ligand IFN-β, receptor IFNAR1 interacts with TYK2. TYK2
can stimulate the phosphorylation of STAT1 to interact with TF IRF1 and TF IRF9. TF
IRF1 induces the target gene IFNB1 and TF IRF9 targets genes ISG15 and MX1. Interferon-
stimulated gene 15 (ISG15) is important to host cells against virus infection. It is involved
in several cellular functions, including the limit of the newly synthesized virus proteins,
induction of natural killer cell proliferation, and the enhancement of lytic capabilities
of lymphokine-activated killer-like cells [83]. The target gene MX1 can antagonize the
replication process of several different RNA and DNA viruses. Recent research has shown
that MX1 is upregulated after SARS-CoV-2 infection, that MX1 has a direct effect on the
viral ribonucleoprotein complex, and that its GTPase activity is essential for its antiviral
function [84].

In summary, for the specific core HPI signaling pathways in the saturation infectious
stage, the virus mRNA level begins to reduce. The activation of TNF and IFN signaling
pathways may contribute to the host cell defense against SARS-CoV-2 infection. Further-
more, the enhancement of IFNB1 in common core HPI signaling pathways potentially
enhances the IFN signaling pathway. Thus, the TF JUN is picked as the drug target
for the specific pathogenesis in the saturation infectious stage to enhance the defense of
SARS-CoV-2 infection.

2.3. Multiple-Molecule Drug Discovery and Design by DNN-Based DTI Model with Drug
Design Specifications

After investigating the core HPI signaling pathways and their downstream abnormal
cellular functions for SARS-CoV-2 infection at the amplification and saturation stages in the
above subsection, we finally chose EGFR, AKT1, IFNB1, and SMAD3 as the drug targets for
the amplification stage of SARS-CoV-2 infection and picked IFNB1, SMAD3, and JUN as
the drug targets for saturation stage of SARS-CoV-2 infection. The purpose of drug targets
for the amplification infectious stage is mostly to reduce the interferences of the host cell by
SARS-CoV-2. The drug target JUN for therapy in the saturation infectious stage is to shorten
the course of the SARS-CoV-2 infection by reducing the virus’s replication. Subsequently,
the DNN-based DTI model is constructed and trained by DTI databases to predict the
candidate repurposing drugs that target these significant biomarkers (drug targets). Finally,
the potential multiple-molecule drug is proposed for SARS-CoV-2 infection by screening
the candidate repurposing drugs with three drug design specifications. The architecture of
the DNN-based DTI model for DTI prediction is shown in Figure 4.
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Figure 4. The flowchart of multiple-molecule drug design of the amplification and saturation stages 
of SARS-CoV-2 infection based on DNN-based DTI model and drug design specifications. The 
DNN-based DTI model was first trained by DTI data at the right column. Then, the well-trained 
DNN-based DTI model was used for the prediction of candidate drugs and the candidate drugs 
were finally screened by drug design specifications as the potential drugs to combine a multiple-
molecule drug in the left column. 

2.3.1. Prediction Performance of DNN-Based DTI Model 
The model was trained by Keras with a batch size = 64, epoch = 200 (with Early Stop-

ping), and Adam optimizer (default arguments). A 10-fold cross-validation was applied 
to estimate the prediction performance of the DNN-based DTI model, which is shown in 
Table 4. The learning process (loss and accuracy of training and validation) is visualized 
in Figure 5 (the early stop at epoch = 117 to avoid overfitting). Finally, the receiver oper-
ating characteristic (ROC) curve is plotted in Figure 6, and the area under the ROC curve 
(AUC) is 0.991, which implies that the model has good ability to distinguish between pos-
itive and negative interactions. 

  

Figure 4. The flowchart of multiple-molecule drug design of the amplification and saturation stages
of SARS-CoV-2 infection based on DNN-based DTI model and drug design specifications. The
DNN-based DTI model was first trained by DTI data at the right column. Then, the well-trained
DNN-based DTI model was used for the prediction of candidate drugs and the candidate drugs were
finally screened by drug design specifications as the potential drugs to combine a multiple-molecule
drug in the left column.

2.3.1. Prediction Performance of DNN-Based DTI Model

The model was trained by Keras with a batch size = 64, epoch = 200 (with Early
Stopping), and Adam optimizer (default arguments). A 10-fold cross-validation was
applied to estimate the prediction performance of the DNN-based DTI model, which is
shown in Table 4. The learning process (loss and accuracy of training and validation) is
visualized in Figure 5 (the early stop at epoch = 117 to avoid overfitting). Finally, the
receiver operating characteristic (ROC) curve is plotted in Figure 6, and the area under the
ROC curve (AUC) is 0.991, which implies that the model has good ability to distinguish
between positive and negative interactions.

Table 4. The prediction performance of DNN-based DTI model by 10-fold cross-validation.

Validation Loss Validation Accuracy Test Loss Test Accuracy

1 0.1656409 0.95065 0.2180897 0.9521126

2 0.1929858 0.9438001 0.1789017 0.9493726

3 0.1807019 0.9504943 0.1856036 0.9519569

4 0.1761861 0.9507278 0.2022759 0.951521
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Table 4. Cont.

Validation Loss Validation Accuracy Test Loss Test Accuracy

5 0.1868679 0.9527516 0.216308 0.9517078

6 0.1671205 0.9526701 0.1956254 0.9513031

7 0.1850127 0.9536821 0.1776747 0.9516767

8 0.1905898 0.9474545 0.1865388 0.9505246

9 0.1813395 0.9499455 0.1792253 0.951988

10 0.1789479 0.9497898 0.1836274 0.9529221

Average 0.1805393 0.9501966 0.192387 0.9515085

Standard
Deviation 0.0086033 0.0027209 0.0143861 0.0009184
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accuracy is represented in (B). The early stop is adopted to avoid overfitting to stop at epoch = 117. 
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Figure 6. The ROC curve of DNN-based DTI model. The higher AUC value indicates the higher 
ability to distinguish positive and negative interaction. The worst case (AUC = 0.5) is shown with 
the dotted line, which implies the model predicts the positive and negative randomly. 

2.3.2. Multiple-Molecule Drug Repositioning for Disrupting the progression of SARS-
CoV-2 Infection 

After training the DNN-based DTI model, we can predict the candidate drugs which 
target the significant drug targets found by the systems biology method. The regulation 
ability, toxicity, and sensitivity of the drug are considered as drug design specifications 
for screening the candidate drugs. The regulation ability indicates the upregulation (>0) 
or downregulation (<0) of the drug target interaction. Therefore, if a drug target is upreg-
ulated during infection process, we need to select a drug to downregulate it, and vice 
versa. A small value of sensitivity indicates a lower sensitivity to chemical perturbation 
for the cell, and a higher LC50 implies a lower toxicity for the body. Thus, to upregulate a 
target gene, we tend to find a molecular drug with a larger regulation ability, a small value 
of sensitivity, and a larger LC50 value. Based on these drug design specifications, some 
candidate drugs for the significant drug targets are shown in Table 5. Finally, the potential 
multiple-molecule drug shown in Table 6 is proposed for the treatment of the amplifica-
tion stage of SARS-CoV-2 infection, and the potential multiple-molecule drug shown in 
Table 7 is proposed for the saturation stage of mild-to-moderate SARS-CoV-2 infection. 

  

Figure 6. The ROC curve of DNN-based DTI model. The higher AUC value indicates the higher
ability to distinguish positive and negative interaction. The worst case (AUC = 0.5) is shown with the
dotted line, which implies the model predicts the positive and negative randomly.

2.3.2. Multiple-Molecule Drug Repositioning for Disrupting the Progression of
SARS-CoV-2 Infection

After training the DNN-based DTI model, we can predict the candidate drugs which
target the significant drug targets found by the systems biology method. The regulation
ability, toxicity, and sensitivity of the drug are considered as drug design specifications for
screening the candidate drugs. The regulation ability indicates the upregulation (>0) or
downregulation (<0) of the drug target interaction. Therefore, if a drug target is upregulated
during infection process, we need to select a drug to downregulate it, and vice versa. A
small value of sensitivity indicates a lower sensitivity to chemical perturbation for the
cell, and a higher LC50 implies a lower toxicity for the body. Thus, to upregulate a target
gene, we tend to find a molecular drug with a larger regulation ability, a small value of
sensitivity, and a larger LC50 value. Based on these drug design specifications, some
candidate drugs for the significant drug targets are shown in Table 5. Finally, the potential
multiple-molecule drug shown in Table 6 is proposed for the treatment of the amplification
stage of SARS-CoV-2 infection, and the potential multiple-molecule drug shown in Table 7
is proposed for the saturation stage of mild-to-moderate SARS-CoV-2 infection.

Table 5. According to drug design specifications, the candidate drugs for each significant drug target
are list below.

Candidate
Drugs

Regulation Ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Downregulation of EGFR
Fursultiamine −0.932 −0.035 2.928

fasudil −0.791 0.367 3.083



Stresses 2022, 2 418
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Candidate
Drugs

Regulation Ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Downregulation of EGFR
* Bosutinib −0.585 −0.017 6.273

cefaclor −0.383 −0.099 3.666

* Erlotinib −0.229 −0.332 5.73
Downregulation of AKT1

Iproniazid −0.802 −0.337 2.82

gabexate −0.733 −0.134 4.487

diazoxide −0.544 0.393 3.058

* Bosutinib −0.434 −0.017 6.273

Apoptosis-activator-II −0.302 0.037 5.695
Upregulation of IFNB1

topiramate 0.848 0.161 2.289

* 17-beta-estradiol 0.72 −0.27 5.215

nitrofural 0.691 −0.404 3.88

raclopride 0.514 0.078 3.851

Acyclovir 0.363 0.3078 2.452
Downregulation of SMAD3

niridazole −0.772 0.264 2.746

* Erlotinib −0.537 −0.332 5.730

* 17-beta-estradiol −0.503 −0.27 5.215

Azacitidine −0.412 −0.393 2.049

Nobiletin −0.312 −0.448 5.214
Upregulation of JUN

oleoylethanolamide 0.878 −0.15 3.54

carmoxirole 0.776 −0.006 4.477

zibotentan 0.611 0.209 3.013

* Sertraline 0.557 0.097 7.434

Limonin 0.367 −0.36 6.726
The drugs with a star (*) are the potential drugs for multiple-molecule drugs in Tables 6 and 7.

Table 6. The proposed potential multiple-molecule drug with the corresponding targets for disrupting
the progression of the amplification stage of SARS-CoV-2 infection.

Drug
Target

EGFR AKT1 IFNB1 SMAD3

Bosutinib V V

Erlotinib V V

17-beta-estradiol V V

Structure of multiple-molecule drug

Bosutinib Erlotinib 17-beta-estradiol
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V indicates the drug can induce or inhibit the corresponding target. 
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Table 7. The proposed potential multiple-molecule drug with the corresponding targets for shortening
the course of the saturation stage of SARS-CoV-2 infection.

Drug
Target

SMAD3 IFNB1 JUN

Erlotinib V

17-beta-
estradiol V V

Sertraline V

Structure of multiple-molecule drug

Erlotinib 17-beta-estradiol Sertraline
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3. Discussion 
After two years of the COVID-19 pandemic, many drugs have been used to treat 

COVID-19. Nevertheless, there is still no drug proven effective against COVID-19 and no 
clear mechanism for how SARS-CoV-2 affects the host cell to replicate efficiently. We first 
constructed the dynamic models to describe the candidate HPI-GWGEN and used HPI 
RNA-seq time-profile data to identify the core signaling pathways of the HPI-GWGEN 
during SARS-CoV-2 infection. Then, we explored the possible systematic molecular mech-
anism of why SARS-CoV-2 can replicate rapidly by the reverse engineering method. Alt-
hough the treatment of cytokine storm (the main cause of mortality in COVID-19) is a 
crucial issue, the suppression of viral load is also important. For viral infection, the drugs 
can be designed to target the host or virus. The drugs targeting the virus are designed to 
target viral proteins such as viral proteases to inhibit their biological function. The rapid 
mutation of viruses may cause the failure of the drugs that target the virus, especially 
RNA viruses. The variant of viruses may not only increase the transmissibility but also 
cause the failure of vaccines and the drugs targeting the viral protein. Although the design 
of drugs targeting the virus is more popular, antiviral drugs targeting host proteins have 
also been used for other viral infections. For instance, the commercial drug interferon al-
pha has been shown to be effective against the viral infection of hepatitis B and C virus, 
papillomavirus (Kaposi’s sarcoma) virus, and human herpesvirus 8 [85]. The drug Nita-
zoxanide shows antiviral activity for some viruses by targeting the host protein and af-
fecting the host cellular functions [85,86]. Thus, we try to find the drugs that target the 
host proteins to reduce the risk of the variant of SARS-CoV-2. With the temporal infor-
mation of HPI RNA-seq time-solved data, we could investigate the core HPI signaling 
pathways of SARS-CoV-2 infection, as shown in Figure 3, to identify the significant drug 
targets for the amplification and saturation infectious stages. Then, we utilized the DNN-
based DTI model to predict the candidate drugs which can induce or inhibit the significant 
biomarkers (drug targets). After screening drug design specifications, we suggested the 
multiple-molecule drug consisting of bosutinib, erlotinib, and 17-beta-estradiol for the 
treatment of the amplification stage of SARS-CoV-2 infection and the multiple-molecule 
drug consisting of erlotinib, 17-beta-estradiol, and sertraline for the treatment of the satu-
ration stage of mild-to-moderate SARS-CoV-2 infection. 

In the multiple-molecule drug for the amplification stage of SARS-CoV-2 infection, 
Bosutinib, a synthetic quinolone derivative and tyrosine kinase inhibitor, is commonly 
used for the treatment of chronic myeloid leukemia. It has been shown that Bosutinib can 
inhibit the activation of EGFR and induce the apoptosis of cells [87]. In addition to the 
inhibition of EGFR activation, it can inhibit the activation of Akt as well [87]. Erlotinib, a 
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pathways of SARS-CoV-2 infection, as shown in Figure 3, to identify the significant drug 
targets for the amplification and saturation infectious stages. Then, we utilized the DNN-
based DTI model to predict the candidate drugs which can induce or inhibit the significant 
biomarkers (drug targets). After screening drug design specifications, we suggested the 
multiple-molecule drug consisting of bosutinib, erlotinib, and 17-beta-estradiol for the 
treatment of the amplification stage of SARS-CoV-2 infection and the multiple-molecule 
drug consisting of erlotinib, 17-beta-estradiol, and sertraline for the treatment of the satu-
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In the multiple-molecule drug for the amplification stage of SARS-CoV-2 infection, 
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inhibition of EGFR activation, it can inhibit the activation of Akt as well [87]. Erlotinib, a 
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drug consisting of erlotinib, 17-beta-estradiol, and sertraline for the treatment of the satu-
ration stage of mild-to-moderate SARS-CoV-2 infection. 

In the multiple-molecule drug for the amplification stage of SARS-CoV-2 infection, 
Bosutinib, a synthetic quinolone derivative and tyrosine kinase inhibitor, is commonly 
used for the treatment of chronic myeloid leukemia. It has been shown that Bosutinib can 
inhibit the activation of EGFR and induce the apoptosis of cells [87]. In addition to the 
inhibition of EGFR activation, it can inhibit the activation of Akt as well [87]. Erlotinib, a 

V indicates the drug can induce or inhibit the corresponding target.

3. Discussion

After two years of the COVID-19 pandemic, many drugs have been used to treat
COVID-19. Nevertheless, there is still no drug proven effective against COVID-19 and no
clear mechanism for how SARS-CoV-2 affects the host cell to replicate efficiently. We first
constructed the dynamic models to describe the candidate HPI-GWGEN and used HPI
RNA-seq time-profile data to identify the core signaling pathways of the HPI-GWGEN dur-
ing SARS-CoV-2 infection. Then, we explored the possible systematic molecular mechanism
of why SARS-CoV-2 can replicate rapidly by the reverse engineering method. Although the
treatment of cytokine storm (the main cause of mortality in COVID-19) is a crucial issue, the
suppression of viral load is also important. For viral infection, the drugs can be designed to
target the host or virus. The drugs targeting the virus are designed to target viral proteins
such as viral proteases to inhibit their biological function. The rapid mutation of viruses
may cause the failure of the drugs that target the virus, especially RNA viruses. The variant
of viruses may not only increase the transmissibility but also cause the failure of vaccines
and the drugs targeting the viral protein. Although the design of drugs targeting the virus
is more popular, antiviral drugs targeting host proteins have also been used for other viral
infections. For instance, the commercial drug interferon alpha has been shown to be effec-
tive against the viral infection of hepatitis B and C virus, papillomavirus (Kaposi’s sarcoma)
virus, and human herpesvirus 8 [85]. The drug Nitazoxanide shows antiviral activity for
some viruses by targeting the host protein and affecting the host cellular functions [85,86].
Thus, we try to find the drugs that target the host proteins to reduce the risk of the variant
of SARS-CoV-2. With the temporal information of HPI RNA-seq time-solved data, we could
investigate the core HPI signaling pathways of SARS-CoV-2 infection, as shown in Figure 3,
to identify the significant drug targets for the amplification and saturation infectious stages.
Then, we utilized the DNN-based DTI model to predict the candidate drugs which can
induce or inhibit the significant biomarkers (drug targets). After screening drug design
specifications, we suggested the multiple-molecule drug consisting of bosutinib, erlotinib,
and 17-beta-estradiol for the treatment of the amplification stage of SARS-CoV-2 infection
and the multiple-molecule drug consisting of erlotinib, 17-beta-estradiol, and sertraline for
the treatment of the saturation stage of mild-to-moderate SARS-CoV-2 infection.

In the multiple-molecule drug for the amplification stage of SARS-CoV-2 infection,
Bosutinib, a synthetic quinolone derivative and tyrosine kinase inhibitor, is commonly used
for the treatment of chronic myeloid leukemia. It has been shown that Bosutinib can inhibit
the activation of EGFR and induce the apoptosis of cells [87]. In addition to the inhibition



Stresses 2022, 2 420

of EGFR activation, it can inhibit the activation of Akt as well [87]. Erlotinib, a quinazoline
derivative, is a common EGFR inhibitor that is used to treat cancer, especially for EGFR
mutation-positive, non-small-cell lung cancer [88]. In addition to the inhibition of EGFR, a
previous study has also shown that Erlotinib can inhibit the activation of Smad2/3 [89].
Furthermore, Erlotinib was reported to prevent fibrosis development in in vivo models [51],
and it was proposed as a therapeutic agent in the treatment of COVID-19 [90]. For the
drug targeting IFNB1, we predicted 17-beta-estradiol. 17-beta-estradiol is a synthetic
form of estradiol, a steroid sex hormone, which may be involved in inflammation and the
immune [91]. A previous study shows that 17-beta-estradiol can induce IFN, especially
IFN-β, via the activation of IRF1 [92]. 17-beta-estradiol is also reported to suppress the
phosphorylation of Smad2 and Smad3 and reduce their gene reporter activity in response to
TGF-beta [93]. Interestingly, many observations have shown that the mortality rate of men
is higher than women [94–96]. Estradiol may be a protective role against COVID-19 [97].
Hence, it was also proposed as a therapy of COVID-19 [98]. Here, we think that it can
induce IFNB1 and suppress the phosphorylation of SMAD3 to achieve protection against
COVID-19. In the multiple-molecule drug for the saturation stage of SARS-CoV-2 infection,
Sertraline, a selective serotonin reuptake inhibitor used in the treatment of depression,
can upregulate JUN and induce apoptosis [99–101]. The apoptosis of infected cells is
important to clean the viruses in infected cells. In addition to the upregulation of JUN, the
anticoagulant property of Sertraline has been reported as well [102].

In summary, we applied the systems biology method to clearly understand the molec-
ular mechanism of rapid replication of SARS-CoV-2. Subsequently, we identified the
significant biomarkers as drug targets to destroy the proper microenvironment for the
replication of SARS-CoV-2 or enhance the defense of host cells against SARS-CoV-2. EGFR,
AKT1, IFNB1, and SMAD3 are chosen as the drug targets for the amplification stage of
SARS-CoV-2 infection, and IFNB1, SMAD3, and JUN are picked out as the drug targets for
the saturation stage of SARS-CoV-2 infection. After training the DNN-based DTI model
with DTI databases, we could predict the potential molecular drugs with three design
specifications for the treatment of SARS-CoV-2 infection. Finally, we proposed the com-
bination of bosutinib, erlotinib, and 17-beta-estradiol as the multiple-molecule drug for
the treatment of the amplification stage of SARS-CoV-2 infection and the combination of
erlotinib, 17-beta-estradiol, and sertraline as the multiple-molecule drug for the treatment
of the saturation stage of mild-to-moderate SARS-CoV-2 infection.

4. Materials and Methods
4.1. Construction of the Candidate HPI-GWGEN Using Big Data Mining

The HPI-GWGEN contains two networks: the HPI protein–protein interaction network
(HPI-PPIN) and the HPI gene regulation network (HPI-GRN). Both of them can be further
classified into the host intraspecies network, host–pathogen interspecies network, and
pathogen intraspecies network. In the candidate HPI-GWGEN, we are only concerned
with whether proteins, genes, miRNAs, or lncRNAs in the candidate HPI-GWGEN have
existing interactions or regulations. This can be expressed by a Boolean matrix.

The host intraspecies of candidate HPI-PPINs were constructed using the data from
some databases, including the Database of Interacting Proteins (DIP) [46], the Biological
General Repository for Interaction Datasets database (BioGRID) [45], the Biomolecular
Interaction Network Database (BIND) [44], the IntAct Molecular Interaction Database (In-
tAct) [43], and the Molecular INTeraction Database (MINT) [41]. The pathogen intraspecies
and host–pathogen interspecies of candidate PPIN were constructed from BioGRID [45],
IntAct [43], and UniProt [42].

The databases for the construction of the host intraspecies of candidate HPI-GRNs
included TargetScan [40], CircuitsDB [39], and starBase v2.0 [38] for epigenetic regulation
(miRNA and lncRNA) and the Human Transcriptional Regulation Interactions database
(HTRIdb) [35], the Transcription Factor database (TRANSFAC) [37], and Integrated Tran-
scription Factor Platform database (ITFP) [36] for other regulations (transcription factors).
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There are currently not enough regulations between humans and SARS-Cov-2 to construct
an HPI-GRN. We first supposed that the regulations of the host on the virus genes are not
negative. We then used systematic methods to eliminate the false positives.

4.2. System Identification of HPI-GWGEN Using HPI RNA-Seq Time-Profile Data
4.2.1. HPI RNA-Seq Time-Profile Data

To find the crosstalk between humans and SARS-CoV-2, the dynamic models for
the candidate HPI-GWGEN were constructed, and HPI RNA-seq time-profile data were
utilized to present the expressions of HPI-GWGEN during the amplification and satura-
tion infectious stages for these HPI-GWGEN models. The dynamic models can describe
the candidate HPI-GWGEN through the reverse engineering method [103] using HPI
RNA-seq time-profile data to reflect the system behavior of HPI-GWGEN during SARS-
CoV-2 infection.

The HPI RNA-seq data could be downloaded from the National Center for Biotech-
nology Information (NCBI) (GEO number: GSE163547) [104]. We found the average for
two samples infected with the MOI of 0.25 at 0, 4, 24, 48, 72, and 96 h post-infection (hpi).
The genome-wide HPI RNA-seq time-profile data were employed to identify the system
parameters of candidate HPI-GWGENs using the system identification method [103]. Since
the mRNA level of SARS-CoV-2 majorly increased with time, reached the peak at 48 hpi,
and slowly decreased (saturation) after 48 hpi, we defined the period from 0 to 48 hpi as
the (viral) amplification stage and the period from 24 to 96 hpi as the (viral) saturation
stage. With the Gencode v35/v27 annotation, the nodes were sorted into six types to be
adopted for the dynamic models: host proteins, virus proteins, host genes, host miRNAs,
host lncRNAs, and virus genes.

4.2.2. Dynamic Models for HPI-GWGEN

For the candidate HPI-PPIN in candidate HPI-GWGEN, the expression levels of host
proteins and interactive pathogen proteins can be modeled as the following dynamic
equations [103]:

pH
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hi pH

i (t)pH
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i (t)pP
v (t)

+αHigH
i (t)− γHi pH
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αHi ≥ 0 and− γHi ≤ 0, for i = 1, 2, · · · , I

(1)

where pH
i (t), pH

h (t), pP
v (t), and gH

i (t) represent the expression level of the ith host protein,
the hth host protein, the vth pathogen protein, and the ith host gene at time t, respectively;
Hi and Vi are the number of the host proteins and the pathogen proteins that interact with
the ith host protein, respectively; CpHH

hi and CpHP
vi specify the interactive ability between

the hth host protein and the ith host protein and between the vth pathogen protein and
the ith host protein, respectively; αHi, −γHi, and βHi indicate the translation rate from the
corresponding mRNA, the degradation rate, and the basal activity level of the ith host
protein, respectively; the basal level denotes the unknown or unavailable interaction such
as phosphorylation; nHi(t) is the stochastic noise of the ith host protein at time t; I is the
total number of host proteins in candidate HPI-PPIN.

The dynamic interaction models of pathogen proteins of HPI-PPIN in the candidate
HPI-GWGEN can be described as the following discrete-time dynamic equations [103]:
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where pP
k (t), pH

h (t), pP
v (t), and gP

k (t) denote the expression level of the kth pathogen
protein, the hth host protein, the vth pathogen protein, and the kth pathogen gene at
time t, respectively; Hk and Vk are the number of the host proteins and the pathogen
proteins that interact with the kth pathogen protein in a candidate HPI-PPIN, respectively;
CpHP

hk and CpPP
vk specify the interactive ability between the hth host protein and the kth

pathogen protein and between the vth pathogen protein and the kth pathogen protein,
respectively; αPk,−γPk, and βPk indicate the translation rate from the corresponding mRNA,
the degradation rate, and the basal activity level of the kth pathogen protein, respectively;
nPk(t) represents the stochastic noise of the kth pathogen protein at time t; K is the total
number of pathogen proteins in a candidate HPI-PPIN.

The dynamic regulatory models of host genes in the HPI-GRN of a candidate HPI-
GWGEN can be depicted as the following discrete-time dynamic equations [103]:
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(3)

where gH
o (t), pH

h (t), mµ(t), and lλ(t) denote the expression level of the oth host gene, the
hth host TF, the µth host miRNA, and the λth host lncRNA at time t, respectively; Ho,
Uo, and Lo represent the number of host TFs, host miRNAs, and host lncRNAs that have
regulation on the oth host gene, respectively; CTG

ho , CMG
µo , and CLG

λo specify the regulation
ability of the hth host TF, the µth host miRNA, and the λth host lncRNA on the oth host
gene, respectively; −γGo and βGo indicate the degradation rate and the basal activity level
of the oth host gene, respectively; nGo(t) is the stochastic noise of the oth host gene at time
t; O is the total number of host genes in a candidate HPI-GRN.

The dynamic regulatory models of the host miRNAs in the HPI-GRN of a candidate
HPI-GWGEN can be modeled as the following discrete-time dynamic equations [103]:

mq(t + 1) = mq(t) +
Hq

∑
h=1

CTM
hq pH

h (t) +
Uq

∑
µ=1

CMM
µq mq(t)mµ(t) +

Lq

∑
λ=1

CLM
λq lλ(t)

−γMqmq(t) + βMq + nMq(t), CMM
µq ≤ 0 and− γMq ≤ 0

for q = 1, 2, · · · , Q

(4)

where mq(t), pH
h (t), mµ(t), and lλ(t) denote the expression level of the qth host miRNA,

the hth host TF, the µth host miRNA, and the λth host lncRNA at time t, respectively; Hq,
Uq, and Lq represent the number of host TFs, host miRNAs, and host lncRNAs that have
regulation on the qth host miRNA, respectively; CTM

hq , CMM
µq , and CLM

λq specify the regulation
ability of the hth host TF, the µth host miRNA, and the λth host lncRNA on the qth host
miRNA, respectively; −γMq and βMq represent the degradation rate and the basal activity
level of the qth host miRNA, respectively; nMq(t) is the stochastic noise of the qth host
miRNA at time t; Q is the total number of host miRNAs in candidate HPI-GRN.

The dynamic regulatory models of the host lncRNAs in the HPI-GRN of a candidate
HPI-GWGEN can be depicted as the following discrete-time dynamic equations [103]:
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where ls(t), pH
h (t), mµ(t), and lλ(t) denote the expression level of the sth host lncRNA,

the hth host TF, the µth host miRNA, and the λth host lncRNA at time t, respectively; Hs,
Us, and Ls represent the number of host TFs, host miRNAs, and host lncRNAs that have
regulation on the sth host lncRNA, respectively; CTL

hs , CML
µs , and CLL

λs specify the regulation
ability of the hth host TF, the µth host miRNA, and the λth host lncRNA on the sth host
lncRNA, respectively; −γLs and βLs indicate the degradation rate and the basal activity
level of the sth host lncRNA, respectively; nLs(t) is the stochastic noise of the sth host
lncRNA at time t; S is the total number of host lncRNAs in a candidate HPI-GRN.

The dynamic regulatory models of the pathogen genes in the HPI-GRN of a candidate
HPI-GWGEN can be depicted as the following discrete-time dynamic equations [103]:
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where gP
w(t), pH

h (t), mµ(t), lλ(t), and pP
y (t) denote the expression level of the wth pathogen

gene, the hth host TF, the µth host miRNA, the λth host lncRNA and yth pathogen protein
at time t, respectively; Hw, Uw, Lw, and Yw represent the number of host TFs, host miRNAs,
host lncRNAs, and pathogen TFs that have regulation on the wth pathogen gene, respec-
tively; CTV

hw , CMV
µw , CLV

λw, and CPV
yw specify the regulation ability of the hth host TF, the µth

host miRNA, the λth host lncRNA, and the yth pathogen protein on the wth pathogen gene,
respectively; −γVw and βVw indicate the degradation rate and the basal activity level of the
wth pathogen gene, respectively; nVw(t) is the stochastic noise of the wth pathogen gene at
time t; W is the total number of pathogen genes in a candidate HPI-GRN.

4.2.3. System Identification and System Order Selection for HPI-GWGEN

With the discrete-time dynamic models for the candidate HPI-GWGEN, we can per-
form system identification using HPI RNA-seq time-profile data. Nevertheless, the number
of parameters may be larger than the number of samples, which may cause over-fitting in
the least square parameter estimation. Furthermore, the candidate HPI-GWGEN contains
many false positives. Thus, we used the cubic spline interpolation to solve the over-fitting
problem in the system identification process [103]. Then, we applied a system order detec-
tion method, the Akaike information criterion (AIC) [103], to detect the system order of the
dynamic equations of protein interaction and gene regulation after the system identification
to prune the false positives out of the system order in the candidate HPI-GWGENs to obtain
the real HPI-GWGEN.

To estimate the parameters in Equations (1)–(6), we arranged each equation as the
linear regression form with regressor (expression level from RNA-seq data) ωi(t) and the
parameter vector Ci as follows:



Stresses 2022, 2 424

pH
i (t + 1) =

[
pH

i (t)pH
1 (t) . . . pH

i (t)pH
Hi
(t) pH

i (t)pP
1 (t) . . . pH

i (t)pP
Vi
(t) gH

i (t) pH
i (t) 1

]



CpHH
1i
...

CpHH
Hi i

CpPH
1i
...

CpPH
Vi i
αHi

1− γHi
βHi



+ nHi(t)

= ωHi(t)CHi + nHi(t), for i = 1, 2, · · · , I

(7)

pP
k (t + 1) =

[
pP

k (t)pH
1 (t) . . . pP

k (t)pH
Hk
(t) pP

k (t)pP
1 (t) . . . pP

k (t)pP
Vk
(t) gP

k (t) pP
k (t) 1

]



CpHP
1k
...

CpHP
Hkk

CpPP
1k
...

CpPP
Vkk

αPk
1− γPk

βPk



+ nPk(t)

= ωPk(t) CPk + nPk(t), for k = 1, 2, · · · , K

(8)

gH
o (t + 1) =

[
pH

1 (t) . . . pH
Ho
(t) gH

o (t)m1(t) . . . gH
o (t)mUo (t) l1(t) . . . lLo (t) gH

o (t) 1
]



CTG
1o
...

CTG
Hoo

CMG
1o
...

CMG
Uoo

CLG
1o
...

CLG
Loo

1− γGo
βGo



+ nGo(t)

= ωGo(t) CGo + nGo(t), for o = 1, 2, · · · , O

(9)



Stresses 2022, 2 425

mq(t + 1) =
[

pH
1 . . . pH

Hq
(t) mq(t)m1(t) . . . mq(t)mUq(t) l1(t) . . . lLq(t) mq(t) 1

]



CTM
1q
...

CTM
Hqq

CMM
1q
...

CMM
Uqq

CLM
1q
...

CLM
Lqq

1− γMq
βMq



+ nMq(t)

= ωMq(t) CMq + nMq(t), for q = 1, 2, · · · , Q

(10)

ls(t + 1) =
[

pH
1 . . . pH

Hs
(t) ls(t)m1(t) . . . ls(t)mUs(t) l1(t) . . . lLs(t) ls(t) 1

]



CTL
1s
...

CTL
Hss

CML
1s
...

CML
Uss

CLL
1s
...

CLL
Lss

1− γLs
βLs



+ nLs(t)

= ωLs(t) CLs + nLs(t), for s = 1, 2, · · · , S

(11)

gP
w(t + 1) =

[
pH

1 . . . pH
Hw

(t) gP
wm1(t) . . . gP

wmUw(t) l1(t) . . . lLw(t) pP
1 (t) . . . pP

Yw
(t) gP

w(t) 1
]



CTV
1w

. . .
CTV

Hww

CMV
1w
. . .

CMV
Uww

CLV
1w

. . .
CLV

Lww

CPV
1w

. . .
CPV

Yww
1− γVw

βVw



+ nVw(t)

= ωVw(t) CVw + nVw(t), for w = 1, 2, · · · , W

(12)

Then, we used the time points from t2 to tT (T represents the number of time points
of each infectious stage after interpolation) as the vector of observations. We could form
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the regressor matrices πi and the vectors of observations Πi with Equations (7)–(12) as the
following augmented regression equations, respectively:
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ωMq(tT−1)

CMq +


nMq(t1)
nMq(t2)

...
nMq(tT−1)


⇒ ΠMq = πMq CMq + NMq, for q = 1, 2, · · · , Q

(16)


ls(t2)
ls(t3)

...
ls(tT)

 =


ωLs(t1)
ωLs(t2)

...
ωLs(tT−1)

CLs +


nLs(t1)
nLs(t2)

...
nLs(tT−1)


⇒ ΠLs = πLs CLs + NLs, for s = 1, 2, · · · , S

(17)


gP

w(t2)
gP

w(t3)
...

gP
w(tT)

 =


ωVw(t1)
ωVw(t2)

...
ωVw(tT−1)

CVw +


nVw(t1)
nVw(t2)

...
nVw(tT−1)


⇒ ΠVw = πVw CVw + NVw, for w = 1, 2, · · · , W

(18)

With regressor matrices πi and the regression vectors of observations Πi, we could
obtain the estimated parameter vectors Ĉi by solving the following constrained optimiza-
tion problems with some biological upper and lower bounds (i.e., the translation rate
αi ≥ 0, the degradation rate −γi ≤ 0, and the regulation ability of miRNAs ≤ 0) on
Equations (13)–(18) [103]:

ĈHi = argmin
CHi

‖πHi CHi −ΠHi‖2
2 ,

subject to

0 . . . 0
0 . . . 0︸ ︷︷ ︸

Hi

∣∣∣∣∣∣∣∣∣
0 . . . 0
0 . . . 0︸ ︷︷ ︸

Vi

∣∣∣∣∣∣∣∣∣
−1 0 0
0 1 0

ĈHi ≤
[

0
1

] (19)
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ĈPk = argmin
CPk

‖πPk CPk −ΠPk‖2
2 ,

subject to

0 . . . 0
0 . . . 0︸ ︷︷ ︸

Hk

∣∣∣∣∣∣∣∣∣∣
0 . . . 0
0 . . . 0︸ ︷︷ ︸

Vk

∣∣∣∣∣∣∣∣∣∣
−1 0 0
0 1 0

ĈPk ≤
[

0
1

] (20)

ĈGo = argmin
CGo

‖πGo CGo −ΠGo‖2
2 ,

subject to



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Ho

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0︸ ︷︷ ︸

Uo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Lo

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
...

...
0 0
1 0


ĈGo ≤


0
0
...
0
1


(21)

ĈMq = argmin
CMq

‖πMq CMq −ΠMq‖2
2 ,

subject to



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Hq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0︸ ︷︷ ︸

Uq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Lq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
...

...
0 0
1 0


ĈMq ≤


0
0
...
0
1


(22)

ĈLs = argmin
CLs

‖πLs CLs −ΠLs‖2
2 ,

subject to



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Hs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0︸ ︷︷ ︸

Us

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Ls

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
...

...
0 0
1 0


ĈLs ≤


0
0
...
0
1


(23)

ĈVw = argmin
CVw

‖πVwCVw −ΠVw‖2
2 ,

subject to



0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Hw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0︸ ︷︷ ︸

Uw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Lw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . 0︸ ︷︷ ︸

Yw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
...

...
0 0
1 0


ĈVw ≤


0
0
...
0
1


(24)

We wanted to prune the false positives in the candidate HPI-GWGEN by detecting the
edges out of the system order (i.e., the number of interactions or regulations for each node).
The AIC considers both the estimated variance and model complexity to obtain the fittest
number of edges (i.e., the system order). The AIC value for each model of a node with
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estimated parameters is given as follows (the dim() in equations represents the dimension
of vector) [103]:

AICHi(Hi, Vi) = log

(
‖πHi ĈHi −ΠHi‖2

2
T − 1

)
+

2 dim
(
ĈHi

)
T − 1

(25)

AICPk(Hk, Vk) = log

(
‖πPk ĈPk −ΠPk‖2

2
T − 1

)
+

2 dim
(
ĈPk
)

T − 1
(26)

AICGo(Ho, Uo, Lo) = log

(
‖πGo ĈGo −ΠGo‖2

2
T − 1

)
+

2 dim
(
ĈGo

)
T − 1

(27)

AICMq
(

Hq, Uq, Lq
)
= log

(
‖πMq ĈMq −ΠMq‖2

2
T − 1

)
+

2 dim
(
ĈMq

)
T − 1

(28)

AICLs(Hs, Us, Ls) = log

(
‖πLs ĈLs −ΠLs‖2

2
T − 1

)
+

2 dim
(
ĈLs
)

T − 1
(29)

AICVw (Ho, Uo, Lo, Yw) = log

(
‖πVwĈVw −ΠVw‖2

2
T − 1

)
+

2 dim
(
ĈVw

)
T − 1

(30)

In the AICs in Equations (25)–(30), increasing the number of interactions or regulations
would decrease the system identification error in the first term but increase the second term
in the right-hand-side of Equations (25)–(30), and vice versa. The right number (system
order of each node) of regulations and interactions would lead to the minimum value of
AIC. In other words, when the false positives are considered in AIC with a larger model
complexity, a larger AIC value is obtained because the false positives cannot reduce the
estimated error variance in the first term and increase the model complexity in the second
term. Hence, we can delete some false-positive interactions or regulations in each node of
the candidate HPI-GWGEN to achieve the correct (real) HPI-GWGEN via the AIC method.
After solving optimization problems in Equations (19)–(24) with the aid of the MATLAB
function lsqlin and considering the system order, we could obtain the real HPI-GWGEN. To
represent the real HPI-GWGEN as a network matrix, we needed to integrate the PPIN and
GRN. When we described the dynamic models in Equations (1)–(6), we did not consider the
zero term. To represent different models (especially, different dimension of network) with a
network matrix, we had to fill the terms which lack interaction or regulation (i.e., without
interaction or regulation in candidate HPI-GWGENs or the false positives pruned off after
system order detection) with zeros. For convenience, we still used the same superscript
for estimated coefficients of interaction or regulation to denote the relation between two

nodes, i.e., ĈpHH
12 still represents the estimated interactive ability between the 1st host

protein and the 2nd host protein; it will be zero if these proteins do not interact in the
candidate HPI-GWGEN, or it will be a false positive pruned off after system order selection.
Then, the network matrix M ∈ R(I+K+O+Q+S+W)×(I+K+M+L) of the real HPI-GWGEN was
integrated as the following network matrix:
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M =



PHP↔HP PPP↔HP 0I×Q 0I×S
PHP↔PP PPP↔PP 0K×Q 0K×S

GHP→HG 0O×K GHM→HG GHL→HG
GHP→HM 0Q×K GHM→HM GHL→HM
GHP→HL 0S×K GHM→HL GHL→HL
GHP→PG GPP→PG GHM→PG GHL→PG



=



ĈpHH
11 ĈpHH

21 · · · ĈpHH
I1 ĈpPH

11 · · · ĈpPH
K1

ĈpHH
12 ĈpHH

22 · · · ĈpHH
I2 ĈpPH

12 · · · ĈpPH
K2 0I×Q 0I×S

...
...

. . .
...

...
. . .

...

ĈpHH
1I ĈpHH

2I . . . ĈpHH
II ĈpPH

1I . . . ĈpPH
KI

ĈpHP
11 ĈpHP

21 . . . ĈpHP
I1 ĈpPP

11 . . . ĈpPP
K1

ĈpHP
12 ĈpHP

22 . . . ĈpHP
I2 ĈpPP

12 . . . ĈpPP
K2 0K×Q 0K×Q

...
...

. . .
...

...
. . .

...

ĈpHP
1K ĈpHP

2K . . . ĈpHP
IK ĈpPP

1K . . . ĈpPP
KK

ĈTG
11 ĈTG

21 . . . ĈTG
I1 ĈMG

11 . . . ĈMG
Q1 ĈLG

11 . . . ĈLG
S1

...
...

. . .
... 0O×K

...
. . .

...
...

. . .
...

ĈTG
1O ĈTG

2O · · · ĈTG
IO ĈMG

1O . . . ĈMG
QO ĈLG

1O . . . ĈLG
SO

ĈTM
11 ĈTM

21 . . . ĈTM
I1 ĈMM

11 . . . ĈMM
Q1 ĈLM

11 . . . ĈLM
S1

...
...

. . .
... 0Q×K

...
. . .

...
...

. . .
...

ĈTM
1Q ĈTM

2Q . . . ĈTM
IQ ĈMM

1Q . . . ĈMM
QQ ĈLM

1Q . . . ĈLM
SQ

ĈTL
11 ĈTL

21 . . . ĈTL
I1 ĈML

11 · · · ĈML
Q1 ĈLL

11 . . . ĈLL
S1

...
...

. . .
... 0S×K

...
. . .

...
...

. . .
...

ĈTL
1S ĈTL

2S · · · ĈTL
IS ĈML

1S · · · ĈML
QS ĈLL

1S · · · ĈLL
SS

ĈTV
11 ĈLL

21 · · · ĈTV
I1 ĈPV

11 · · · ĈPV
K1 ĈMV

11 · · · ĈMV
Q1 ĈLV

11 · · · ĈLV
S1

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

ĈTV
1W ĈLV

2W · · · ĈTV
IW ĈPV

1W · · · ĈPV
KW ĈMV

1W · · · ĈMV
QW ĈLV

1W · · · ĈLV
SW



(31)

where P and G represent the PPIN and GRN, respectively; HP, PP, HG, HM, HL, and PG
specify the host protein, the pathogen protein, the host gene, the host miRNA, the host
lncRNA, and the pathogen gene, respectively.

We wanted to investigate the significant pathogenesis for the amplification and satura-
tion stages based on their real HPI-GWGEN. However, the real HPI-GWGEN was too large
to be analyzed by the annotation of KEGG pathways. Thus, we applied the PNP method to
extract the core HPI-GWGEN from the real HPI-GWGEN, which is more easily annotated
by KEGG pathways [47,48].

4.3. PNP Method to Extract the Core HPI-GWGEN from Network Matrix of Real HPI-GWGEN

The is a method that projects each row (node) of network matrix M in Equation (31)
(real HPI-GWGEN) onto the significant 85% structure of the overall network so that we can
know the importance of each node to the overall network according to the projection value.
We first performed the singular value decomposition (SVD) for the network matrix using
the following equation:

M = LERT , L ∈ R(Row)×(Row), RT ∈ R(Col)×(Col) and E ∈ R(Row)×(Col) (32)
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where the columns of L and R denote the left singular vectors and right singular vectors
of M, respectively; E only contains the singular values of M on the entries of eii and
e11 ≥ e22 ≥ e33 ≥ . . . ≥ 0; Row = I + K + O + Q + S + W and Col = I + K + M + L are
the row and column dimensions of network matrix M, respectively.

Here, we adopted the truncated SVD. That is, we chose the top t singular values that
consisted of more than 85% of the energy of network. In other words, the minimum t is
satisfied with the following equation:

∑t
k=1 e2

kk

∑Col
i=1 e2

ii

≥ 85% (33)

Then, we define the projection value for the ath row of the network matrix on the top t
singular vectors of the network matrix M using the following equation:

Proja =

√√√√ t

∑
k=1

(
MaRT

k
)2, f or a = 1, . . . , Row (34)

where Ma and RT
k represent the ath row of M in Equation (31) and the kth column of R (the

columns of R are the right singular vectors of M), respectively.
Subsequently, the projection values of each node were ranked from large to small

values (a larger value implies more significance to the network). We used the top-6000-
significance nodes to construct the core HPI-GWGEN, which is acceptable for the annotation
of KEGG pathways in DAVID [47,48]. Thus, we could extract the core HPI-GWGEN of
the amplification and saturation stages from the real HPI-GWGEN of the amplification
and saturation stages, correspondingly. With the aid of the annotation of KEGG pathways,
we investigated the pathogenic mechanism. Finally, considering the core HPI signaling
pathways and their downstream abnormal cellular functions, we selected the significant
biomarkers as drug targets against the amplification and saturation stages of SARS-CoV-2
infection.

4.4. Systematic Discovery and Design of Multiple-Molecule Drug by UtilizingDNN-Based DTI
Model with Drug Design Specifications
4.4.1. Preprocess of Targets and Drugs Data

To train the DNN-based DTI model in Figure 4, we first collected the DTI data from
databases, including ChEMBL [30], BindingDB [31], Pubchem [32], UniProt [33], and
DrugBank [34]. To calculate chemical descriptors for drugs and properties of proteins, we
used PyBioMed [105], a python package, to transform the drugs and targets into features.
Subsequently, the drug and target features were merged into a feature vector FDT as in the
following equation:

FDT = [FD, FT ] =
[

fd1 , fd2 , . . . , fda , . . . , fdA , ft1 , ft2 , . . . , fdb
, . . . , ftB

]
(35)

where FD and FT are the features of the drug and target (protein), respectively; fda and
ftb are the ath drug feature and the bth target feature, respectively; A and B are the total
number of features of the drug and the total number of features of the target, respectively.
The input of the DNN-based DTI model should be in the feature vector form.

The collected drug–target interaction data contain 80,291 proven (positive) interactions
and 100,024 unproven (negative) interactions, which implies that the collected data suffer
from data imbalance. Data imbalance can cause the model to predict the majority, leading
to prediction bias. Hence, the negative interactions were randomly deleted to match the
number of positive interactions. Then, we divided all the data into training data (four-
fifths) and testing data (one-fifth). To improve the convergence of gradient descent, we
first performed feature scaling for the training dataset. Because there were some outliers
for some features, we used standardization for each feature of training data. Then, PCA
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was applied to reduce the dimensions of the feature vector to 900 for the convenience
of computing the DNN-based DTI model with 900 neurons in the input layer, as shown
in Figure 4.

4.4.2. Architecture of DNN-Based DTI Model

Recent studies [28,29] have shown that the DNN-based DTI model can improve the
prediction of interaction probability. We employed the DNN to predict the DTI for the pre-
candidate molecular drugs with the significant biomarkers (drug targets). The architecture
of neural network is shown in Figure 4. The neural network contains four hidden layers.
Each hidden layer contains 512, 256, 128, and 64 neurons, respectively. Each neuron in
the hidden layer has a bias, ReLU as the activation function to learn the nonlinearity, and
a dropout (=0.45) to avoid overfitting [106]. The output layer contains a neuron, a bias,
and sigmoid as the activation function to represent the output between 0 and 1 as the
drug–target interaction probability.

Since the DTI prediction was the binary classification, we used the binary cross-entropy
as the loss function. The adaptive moment estimation (Adam) [107] was adopted as the
optimization algorithm to update the parameters of the DNN-based DTI model. The
DNN-based DTI model was trained by Keras with batch size = 64, epoch = 200 (with Early
Stopping), and Adam optimizer (default arguments). The 10-fold cross-validation was first
applied to examine the prediction performance of the DNN-based DTI model. Finally, the
AUC was used to judge the ability of DNN-based DTI model to distinguish positive and
negative interaction.

4.4.3. Drug Design Specifications

In addition to the drug–target interaction, the regulation ability, toxicity, and sensitivity
of the drug are considered when we chose the drugs to make sure the quality of drugs. The
Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 dataset [108,109] is
used for drug regulation ability, i.e., the indicates the upregulation (>0) or downregulation
(<0) of the drug target interaction. The drug sensitivity is also considered. The PRISM
Repurposing dataset [110] contains chemical perturbations of compounds for homo sapiens
cells. The closer zero value of sensitivity indicates the less sensitivity chemical perturbation
for the cell. The other drug design specification is the toxicity (LC50), which is obtained
by the tool ADMETlab 2.0 [111]. The higher value of LC50 implies the lower toxicity for
the body.
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Figure A1. Visualization of real HPI-GWGEN of amplification and saturation infectious stages. The 
blue and green edges (lines) represent the protein–protein interactions and gene regulations, respec-
tively. The numbers of each type of node (protein, receptor, transcription factor, miRNA, lncRNA, 
and virus) are shown in the figure. (A,B) are the real HPI-GWGENs at the amplification and satu-
ration infectious stages, respectively. 
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